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1 Background

Equilibrium statistical mechanics is the mathematical framework created by Gibbs for predicting macroscopic
properties of matter from a microscopic description. Within this framework thermodynamic functions of
state such as temperature and entropy are defined in such a way as to satisfy the laws of thermodynamics. In
principle the formalism determines the model specific relation called the equation of state. The first example
of such a prediction is the famous ideal gas law P = (n/V )RT relating pressure P to the number of
atoms/volume and temperature T . This is the equation of state for an assembly of non-interacting particles.
This equation of state is notable for having no singularities: in the physical domain T > 0 the pressure is
a smooth function of temperature. However interacting systems will not in general relate thermodynamic
variables in a smooth way and therefore the equation of state has singularities which reflect phase transitions.
For example the density of water changes discontinuously as a function of temperature at the boiling point.
In practice the determination of the complete equation of state is not realistic for systems with interactions,
but the nature of the singularities, the exponents of power law divergences at these singularities, are more
accessible. Thus these singularities have been the focus of research.

The basic setup for equilibrium statistics is a probability space Ω whose points ω ∈ Ω are possible
configurations of the physical system and a probability measure called the Gibbs measure which has the form
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Z
e−βH(ω) × Uniform Measure

where β is proportional to the inverse temperature and H is the energy of the system in configuration ω. Z
normalises the Gibbs measure so that it is a probability measure. Z is called the partition function (of β and
parameters in H).

In the context of polymer physics we are interested in the thermodynamic properties of large molecules
called polymers formed by atoms or smaller molecules arranged in a chain or other topologies such as trees
(branched polymers) or rings. The subunits from which the polymer is formed are called monomers.

The goal of the physical chemist is to predict the properties of the polymer starting with knowledge of
the forces acting between the monomers. The desired properties include the average size of the polymer
as a function of the number of monomers in the polymer, when the number is large. Size is measured by
diameter or, in the case of chains, end-to-end distance. This size can exhibit discontinuities when parameters
such as temperature are varied. In other words a long chain molecule such as DNA can suddenly change its
conformation and therefore its size. These discontinuities are called theta phase transitions.

The medium in which the polymer is immersed is called the solvent. Instead of starting with detailed
information on the solvent molecules and the forces that act between them and the monomer it is common
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to leave out any explicit description of the solvent and suppose that the forces experienced by the monomers
have been adjusted to take into account the effect of the solvent. In physics this is expressed by the words “the
interactions are equivalent to a simplified model with an effective interaction”. The idea is that a complicated
model may have a large scale structure that is the same as a simpler model and we may hope to classify all
models into equivalence classes labeled by these simpler models. For example, consider a polymer modeled
as a simple random walk: there is a first monomer at X0 = 0 and then the next one in the chain occupies
a position X1 randomly chosen near X0 according to some probability density p and then the one after that
X2 is chosen independently according to the same density but centred on X1, . . . , i.e. we have a Markov
chain X0, X1, . . . of random variables whose law satisfies P (Xi+1 = x|Xi = y) = p(x − y). The density
p(x− y) is likely to be very complicated, being determined by microscopic chemistry. However the theorem
of Donsker [16] tells us that if we scale the random variables so as to see only the large scale structure by
looking at the chain from far away,

Yt = lim
T→∞

T−νXbTtc, ν =
1

2
,

then the form of p is not important. All that will matter is the matrix of second moments of p. This is called
taking the scaling limit. No matter how we choose p the scaling limit will be a continuous random path Y (t)
called Brownian motion. The probability law of Brownian motion is completely determined by the matrix of
second moments. All different choices of p with the same second moments give rise to the same scaling limit.
One can take this a step further and show that there is a direction-dependent scaling such that the scaling limit
is isotropic, i.e., standard Brownian motion. In this model we see a good example of the notion of a critical
exponent, namely ν. The existence of the scaling limit for ν = 1/2 implies that the typical random walk with
n monomers will have an end-to-end distance of O(n1/2).

The Donsker theorem is an ultimate version of the Central Limit Theorem, but the theory of scaling limits
starts where the central limit theorem ends. For example, modeling a polymer by simple random walk is
rather optimistic: we know that different monomers cannot occupy the same position so we ought at least to
consider that, and adopt as a better model, a self avoiding walk. More generally we should consider attractive
and repulsive interactions. The simple random walk model is the analogue of the ideal gas mentioned in the
first paragraph. Once we introduce interactions the existence of a scaling limit for some ν is still largely
Terra Incognita. We think the scaling limits exist because we can prove they do in a small number of cases
and because this belief now permeates theoretical physics. Almost all theoretical physicists work on models
which are vast simplifications of reality. They do so because they think their models classify the large scale
structures of reality. The long term health of their enterprise will be improved if we succeed in adding to
the list of cases where this can be proved to be true. As with any hard problem, the struggle is spinning
off new developments in mathematics and has formed a nice community of researchers with very different
backgrounds.

Self-avoiding walk is the archetypical problem that embodies a combinatorial aspect of polymer physics.
In this model we generally start with a simple cubic lattice Zd, hoping that the scaling limit will make the
lattice invisible. The points in Zd are called sites and they represent the possible positions of a monomer. A
long chain molecule consisting of n monomers is represented as a sequence ω = (ω0, . . . , ωn). We define
the energy H(ω) of the polymer ω to be infinite if ω has a self-intersection and zero otherwise. This reduces
the role of β in the Gibbs measure to cases β = 0, in which case the Gibbs measure is the standard measure
on simple random walk and β > 0, in which case the Gibbs measure is the uniform measure on the subset of
Ω consisting of self-avoiding walks (SAW). These are the sequences ω = (ω0, . . . , ωn) consisting of distinct
nearest neighbour sites. Thus the temperature appears in a trivial way in this model. The fundamental
question for this model is what is the right scaling: does there exist ν such that the scaling limit exists and
what is that limit? How does the end-to-end distance of self-avoiding walk grow as a function of n?

Percolation is the archetypical model for a phase transition. We again start with the simple cubic lattice
Z

d. An unordered pair {x, y} of nearest neighbour sites is called an edge. Each edge can be either open
or closed. Think of open as meaning that fluid can pass from x to y and closed as meaning that it cannot.
A configuration ω of percolation is a possible choice of open/ closed for every edge. We make this choice
independently for each edge; edge {x, y} is open with probability p and closed with probability 1 − p. In
this model the connection to Gibbs measures is not apparent but there is a connection called the Fortuin −
Kasteleyn representation which will not be discussed here. p plays the role of temperature as follows: the
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sites of the lattice fall into clusters connected by open edges. One can ask whether there is an infinitely
large cluster. For d > 1 there is a critical probability pc(d) such that for p > pc there is an infinitely large
cluster whereas for p < pc all clusters are finite. Thus the probability that the origin lies in an infinite cluster
is zero for an interval p ∈ [0, pc) and non-zero for p ∈ (pc, 1].1 The outstanding open questions concern
the existence and values of critical exponents. An example of a critical exponent is the expected size of the
cluster containing the origin as a function (p − pc)

β for p > pc. In d = 3 dimensions the existence of ν and
β has not been proved.

One may wonder what this model has to do with polymers. At the outset it was a separate subject but
now both models are slowly becoming united in a larger framework of random geometry and there is a
commonality of concepts and techniques.

2 Scaling limits in two dimensions

The 1984 paper by Belavin et al. [8] theory started two decades of progress by theoretical physicists in two
dimensional statistical mechanics based on conformal field theory (CFT) and more recently also string theory
and quantum gravity. In addition there are exact but non-rigorous solutions to lattice models based on the
Bethe Ansatz and Yang Baxter equations. We conflate these subjects under the initials CFT.

The book [15] provides a good review: the range of statistical mechanical models for which critical
exponents can be calculated (in advance of knowing if they exist!) is remarkable. Mathematicians have yet
to find their Euclid for CFT and so they have to regard these calculations as conjectures. There are partial
axiomatic programs, for example [18].

The methods of conformal field theory give information on correlations but less directly on random geom-
etry. The family of stochastic processes SLEκ studied in the work of Lawler Schramm and Werner over the
last five years describes the geometric objects within statistical mechanical models. For example, as reviewed
in the lecture by Lawler and in [34], the distribution on simple random curves prescribed by SLE(8/3) is the
only possible scaling limit for SAW if the scaling limit exists and is conformally invariant. SLEκ is effective
for calculations and some scaling exponents such as ν have been verified to be equal to the values provided
by Nienhuis [39] by CFT (actually by first mapping to Solid on Solid models). Thus there is still a very hard
open question to show that the discrete process approaches a conformally invariant limit. Another fundamen-
tal question is to give the ”correct” parametrization of the path which would correspond to the limit of the
natural discrete parametrization. This was discussed at this meeting by Lawler and in detail by Kennedy who
has examined it by Monte Carlo simulations. Here is a brief summary of Kennedy’s lecture.

“SLE8/3 is believed to describe the scaling limit of the two-dimensional self-avoiding walk. However,
these two processes have different natural parameterizations. SLE is parameterized by the capacity of the
curve, and the length of the SAW leads to a natural parameterization in the scaling limit. One can reparam-
eterize the SAW using its capacity. Monte Carlo simulations were presented which indicate that with this
parameterization the SAW process agrees with the SLE process. A more interesting question is to find the
parameterization of the SLE that would make it agree with the SAW with its natural parameterization. Lawler
gave several properties such a parameterization should have - local dependence on the curve, additivity and
an appropriate transformation property under conformal maps which reflects the Hausdorff dimension of the
curves. A possible candidate is what probabilists call the “pth variation” where p is taken to be 1/ν. Monte
Carlo simulations presented showed that while this parameterization makes the SLE agree with the SAW
for one random variable, for another random variable there is roughly 6% discrepancy. Understanding the
source of this difference is an important open problem for future simulations. Several lines of attack have
been developed as a result of conversations with other participants at the conference.”

For percolation the geometrical object is the boundary of a percolation cluster for the critical model.
Recalling that the critical clusters in percolation are known to be finite in dimension two one needs a method
to constrain them to be as large as the scaling limit scale L as the scaling limit L → ∞ is taken. This can be
achieved by by using boundary conditions that force a percolation boundary to pass from one side a region
of scale L to the other. The scaling limit of the resulting boundary curve has been identified with SLE6.

1In dimension d = 2 and in very large dimensions it is known that there is no infinite cluster at pc.
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Remarkably, existence and conformality in the scaling limit was established by Smirnov, not for the whole
model, but for expectations of a specific crossing probability [45].

In this conference Camia gave a report on his work with Newman in which the full scaling limit and
conformality of percolation has been established. The crucial point is that this work considers the set of all
interfaces as opposed to one forced by boundary conditions. This is fundamental progress because one wants
to make contact with the methods of CFT which are based on random fields and one wants to identify the
interfaces with contours of the random field. Here is a brief summary of the talk by Camia.

“In my talk, I discussed some aspects of the convergence of critical percolation interfaces to their con-
tinuum scaling limits, following a recent joint paper with Charles M. Newman [14]. More specifically, I
looked at the “percolation exploration path,” conjectured by Oded Schramm to converge to SLE(6) and used
by Stanislav Smirnov and Wendelin Werner to rigorously obtain various critical exponents for percolation,
and at the set of all percolation interfaces. Percolation is so far the only model for which one can go beyond a
single interface and prove the scaling limit of the set of all interfaces. This gives rise to a “full” scaling limit
in terms of fractal, continuous loops in the plane. Similar objects should arise when taking the full scaling
limit of other models, like Ising and Potts models, and should be described by conformal loop ensembles
(CLE) as described by Scott Sheffield and Wendelin Werner in their talks. Such relations, for models other
than percolation, are still conjectural. In the case of percolation, the full scaling limit was first constructed in
a joint paper with C.M. Newman [13].

The field is rapidly moving forward, and various talks at the meeting showed that the understanding of
the continuum counterpart of various discrete models is reaching its maturity. There is hope that this will lead
in the future to proofs that the beautiful continuum objects described by Sheffield and Wendelin are indeed
the continuum scaling limits of discrete models, extending the results known for percolation to Ising, Potts
and O(N) models.”

The importance of making complete contact with CFT is illustrated by “Duplantier duality”. Using CFT
Duplantier noticed that, in the scaling limit, for a spin model or percolation, there must be a relation between
the SLE that describes the boundary of a cluster and the SLE that describes the outer boundary of a cluster,
namely Duplantier duality κ → 16/κ. The continuing inspiration coming from these lines of thought is
evident in this summary of his lecture.

“I presented a unified heuristic point of view on the Stochastic Loewner Evolution (SLE). It consisted in
relating critical exponents for conformally invariant random paths in the plane to similar ones on a random
surface with fluctuating metric. The key ingredient was the so-called Knizhnik, Polyakov, and Zamolod-
chikov (KPZ) relation between these exponents. The status of this relation is to be considered as true in
theoretical physics, but conjectural from the point of view of rigorous mathematics. The machinery it pro-
vides, however, is strikingly efficient. Any exponent from SLE can be predicted this way. This was illustrated
in several instances:

The duality κ → 16/κ which is believed to map hulls of SLEs to their external boundaries is reflected by
a similar duality built in the two analytical determinations of the inverse KPZ map.

The pressure effect on an SLE path coming from a drift term of strength ρ in the Brownian source of
the Loewner equation of that path (the SLE(κ, ρ)), can be analyzed through the KPZ relation in terms of an
equivalent number of multiple SLEs, or of a certain equivalent number of Brownian paths.

The “shadow exponents” describing the probability that some Brownian paths screen some others from
the exterior can also be calculated systematically in terms of these Quantum Gravity equivalences.

The multifractal harmonic and rotational spectra of the SLE curves have been obtained from that ap-
proach.

A challenge is now to establish the proper rigorous form of this fundamental tool coming from conformal
field theory.”

And here is a summary of Cardy’s lecture which also underlines the need for a complete understanding of
CFT.

“There has been a very fruitful interdisciplinary connection formed between the study of critical behaviour
by theoretical physicists and the approach to random spatial processes of probabilists. In recent years this
has been brought to the fore by the spectacular progress by mathematicians using ideas such as SLE, which
have reinterpreted and put on a more systematic basis the earlier results of the physicists in conformal field
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theory, inspired by ideas which were born in string theory. Now this subject is reaching a point where there
is a mutual flow back and forth between the SLE ideas and CFT. My talk gave a very simple example of
this interdisciplinary thinking, concentrating on a small result which, however, both illuminates what should
be the correct extension of SLE to many random curves, and also on the physics side relates to potentially
measurable phenomena in the quantum Hall effect.”

Conformal Field Theory is the study of correlation functions for a random field on a Riemann surface.
The simplest example is called the (massless) Gaussian field on the complex plane C. This may also be the
fundamental example since a method called the Coulomb gas representation is used to write correlations of
other CFT’s in terms of the Gaussian field. One immediately discovers that the Gaussian free field φ is not
actually a random field, but instead is a generalised random function. This means that for each test function
f on the plane there is a random variable φ(f) which would be given by φ(f) =

∫
φ(x)f(x) dx except that

φ(x) does not exist because there is too much oscillation at arbitrary small scales. This would seem to be a
major obstacle to making a connection between SLE and the free field based on the idea mentioned above:
that scaling limits of interfaces should be contours of a conformal field. Thus we were excited by the lectures
of Sheffield and Werner in which contours of the free field were defined and related to variants of SLEκ. Here
is summary of the lecture given by Werner who gave a talk based on joint work with Scott Sheffield.

“Motivated by identifying and understanding better the possible conformally invariant scaling limits of
various 2-dimensional models such as O(N) models or the Ising model, we define a natural property that these
continuous limits should satisfy:

We are considering random collections of disjoint simple non-nested loops in a domain D. A sample is
therefore a collection of loops (γj , j ∈ J). We assume conformal invariance so that one can define for any
simply connected domain such a law PD (in a conformally invariant way).

Suppose now that D′ ⊂ D. Then, one can define two sets of loops: Those that stay in D′ (for which we
say that j ∈ J̃) and those that exit D′ (for which j ∈ I). One defines D̃ = D′ \ ∪j∈Iγj . Roughly speaking
the condition is that conditionally on D̃, the law of (γj , j ∈ J̃) is PD̃.

If this is true for all D′, then we say that (γj) is a conformal loop ensemble.
We study various properties of these loop-ensembles. In particular, we show that
1) The outer boundaries of loop-soup clusters (related to the Brownian loop-soup introduced in joint work

with Greg Lawler) are examples of such loop-ensembles. These examples are parametrized by the intensity
of the loop-soup c. This works for all c ≤ c0 where c0 is a critical intensity.

2) In fact these are the only conformal loop-ensembles.
3) The level-lines of the Gaussian Free Field studied by Schramm and Sheffield are other examples of

such conformal loop-ensembles and they coincide with the c0 case in 1).
4) One can construct all these conformal loop-ensembles via SLE related processes, the SLE(κ, κ − 6)

processes and the relation between κ and c is c = (3κ − 8)(6 − κ)/2κ where κ ∈ (8/3, 4]”.

3 High Dimensions

For dimensions above two nothing is known about the scaling limits of self-avoiding walk and percolation
until one gets to the critical dimension, which is four in the case of self-avoiding walk and six in the case
of percolation. Above the critical dimension there is a method called the Lace Expansion which one can
read about in the lecture notes of Slade [44]. The range of usefulness of this tool has expanded very greatly
from the original application [12] to a variant of self-avoiding walk. In this conference Sakai reported on
a first time application to the Ising model. The significance of this application is that it provides a way to
prove “universality” which is the conjecture that drives much of theoretical physics: that the scaling limit is
independent of details of the local interactions: refer to the discussion at the beginning of Donsker’s theorem.
Sakai’s success should encourage us to look for ways to extend it to other spin models. Here is a summary of
the lecture by Sakai.

“In this talk, I describe a lace expansion for the Ising model, which can be applied to prove Gaussian in-
frared asymptotics for the critical two-point function for Ising ferromagnets above four dimensions, assuming
that the dimension d or the range of the spin-spin coupling is sufficiently large [42, 43]. As a consequence,
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the other observables also exhibit the mean-field behavior for d > 4 [1, 3, 4, 5]. The main point is that the
proof of these results does not require the reflection positivity [17].

For reflection-positive models, it is known that the two-point function obeys a Gaussian infrared bound
for d > 2. Although the nearest-neighbor model satisfies the reflection positivity, other finite-range models
(e.g., the next-nearest-neighbor model) do not. Since local details of the models should not affect the critical
behavior (i.e., universality), all these finite-range models must exhibit the same mean-field behavior for d > 4,
no matter whether the reflection positivity holds or does not. Therefore, our approach using the lace expansion
is more robust.

The lace expansion has been used for stochastic-geometrical models, such as self-avoiding walk (e.g.,
[12, 21]), lattice trees and lattice animals (e.g., [20]), percolation (e.g., [19]), oriented percolation (e.g., [38])
and the contact process (e.g., [41]), to prove a Gaussian infrared bound or asymptotics of the critical two-point
function above the upper-critical dimension. The lace expansion gives rise to a recursion equation similar to
the one for the random-walk Green’s function, and this is the foundation of the Gaussian behavior for the
two-point function. The lace expansion for the Ising model has just been proved for the first time [42].”

Applications of the Lace expansion to percolation are also in the news. The important development is
the analysis of a cluster constrained to be very large. The idea is that in critical percolation no cluster is
infinite but the slightest increase in the density of occupied bonds will cause the critical clusters to link up
into an infinite cluster. In some sense one can therefore see the infinite cluster before it has appeared. Here
is a summary of the lecture of van de Hofstad based on joint work with Frank den Hollander, Antal Járai and
Gordon Slade.

“The incipient infinite cluster (IIC) describes the infinite cluster which is on the verge of arising in critical
percolation models. Kesten [31] first constructed the incipient infinite cluster for two-dimensional percola-
tion. Kesten’s IIC describes the infinite cluster which is on the verge of appearing at the critical value, and is
constructed by conditioning the origin to be connected to infinity by an appropriate limiting procedure. This
construction of the IIC is different in spirit as the one suggested by Aizenman in [2], which is closely related
to the scaling limit and the behaviour of all critical clusters in a large cube simultaneously, and is also studied
in [22, 23] in the high-dimensional case.

We discuss Kesten’s results in two dimensions, as well as the extension by Járai [27, 28] for the two-
dimensional case and give some of its properties, such as its dimension and its backbone dimension, which
follow from the connection to SLE6 (see [31, 33]).

We also present the constructions of Kesten’s IIC for percolation above the upper critical dimension. We
will give 2 different constructions for the IIC for sufficiently spread-out percolation above six dimensions,
and 3 different constructions for the sufficiently spread-out oriented percolation IIC above 4+1 dimensions.
We will also discuss properties of the IIC, such as its dimension and, in the oriented case, its scaling limit.
The high-dimensional results are taken from the papers [24, 26, 25].

One reason to study Kesten’s IIC is that it is the natural context for a random walk on a critical clus-
ter. Random walk on a super-critical cluster is expected to converge to Brownian motion, which is recently
proved by Berger and Biskup (see the talk by Marek Biskup). Kesten [32] studied the random walk on the
two-dimensional IIC, and proved that it is subdiffusive. He also proved that a random walk of n-steps on a
branching process cluster scales like n1/3, which suggests that a random walk on a critical branching ran-
dom walk cluster conditioned to survive forever, has displacement of order n1/6. Since in high-dimensions,
Kesten’s IIC has similar scaling properties as critical branching random walk cluster conditioned to survive
forever, this suggests that a random walk on the IIC has displacement n1/6 after n-steps. The latter problem
is still open.”

There are at least three further developments one should hope for. (1) The Lace expansion applies to
models whose interactions are repulsive. A self-avoiding walk with a small nearest-neighbour attraction is
not amenable to the Lace expansion. The best attempt so far is [48]. (2) The critical dimension models are
not accessible to the Lace expansion. The Renormalisation Group is likely to be the key to progress on these
models. You can see a start in this direction at [10, 11]. (3) Stochastic models such as True Self-Avoiding
Walk are almost Terra Incognita in dimensions greater than one. A good starting point is to develop more
understanding of random walk in random environments. Here is a summary of the lecture by Biskup on this
topic.



4 OTHER MODELS 7

“Random walk in random environment is a subject of considerable interest in probability community. One
particular setting concerns simple random walk on supercritical percolation cluster. In 2003, Sidoravicius and
Sznitman proved that, in dimensions four and higher, such walk scales to Brownian motion under the usual
diffusive scaling of space and time. Their proof uses heavily the path-transience of simple random walk in
high dimensions and, as such, it does not seem to be generalizable to include the ”hard” dimensions d = 2
and 3. In my talk, I have described the recent result – obtained jointly with Noam Berger – that establishes
the invariance principle for such walks in any dimension d > 1. The principal idea of our proof is to consider
the embedding of the percolation cluster into Rd that makes the random walk an L2 martingale”.

Random walk in random environment gives an opening into the study of walks which have attractive
self interaction because integrating over the environment constructs a self interaction. A particularly nice
example is provided by the self-reinforced walk discussed in the lecture by Rolles. Here is a summary of her
lecture. In her third paragraph she is referring to the fact that this model is equivalent to a random walk over
an environment which has been integrated out.

“Linearly edge-reinforced random walk was introduced by Diaconis in 1986. Diaconis asked whether
edge-reinforced random walk on Z

d is recurrent or transient. As usually, the random walk is called recurrent
if almost all paths visit all vertices infinitely often. For all dimensions d ≥ 2, this question is still open.

Recently, progress has been made in studying the edge-reinforced random walk on ladders Z×{1, 2, . . . , d}
and, more generally, on graphs of the form Z×T with a finite tree T : For large constant initial weights, recur-
rence was proved by Merkl and Rolles in [36] and [40]. A more detailed analysis was obtained in [37]. There,
it is shown that the edge-reinforced random walk on infinite ladders has the same distribution as a random
walk in a random environment given by spatially decaying random edge weights. Convergence theorems and
estimates for the position of the random walker at large times are given.

A crucial tool in the analysis is a representation of the edge-reinforced random walk on finite graphs as
a mixture of reversible Markov chains; see e.g. [29]. Transfer operator techniques are used to analyze the
random environment.”

4 Other models

Fortunately we are not constrained to work on the archetypal problems, which are not always making good
progress. The archetypal problems arose by distilling challenges from other subjects to their simplest level.
New archetypes and fresh ideas will arise from problems such as the localisation problems discussed by
Whittington and den Hollander. Here is a summary of their talks.

“A random copolymer is a copolymer in which the sequence of monomers is determined by a random
process and is then quenched. Suppose we have two immiscible liquids, A and B, and suppose that one type
of monomer prefers to be in the A phase and the other prefers to be in the B phase. For instance, think of the
two monomer types as being hydrophobic and hydrophillic and the two liquids as oil and water. Depending
on the chosen parameters (e.g., temperature or relative interaction strength) the polymer can localize at the
interface so as to optimize the numbers of monomers in their preferred phases, or delocalise into one of the
bulk phases to optimize the entropy of the system. One has a choice as to how the configurational properties of
the polymer are modeled (e.g., as directed or undirected self-avoiding walks, with possibly other appropriate
restrictions). Similarly there is some choice about the details of the interaction Hamiltonian.

The aim is to establish the existence of a phase transition in the system and to study the properties of the
phase transition curve. This can be done either at the thermodynamic level or at the level of path properties.
Most work has focused on localization at a single infinite flat interface but there has been recent interest and
progress in multi-interface and random interface problems, e.g., as models of polymers in an emulsion.

An early paper on the directed walk model is Bolthausen and den Hollander, Localization transition for
a polymer near an interface, [9], and some results on the self-avoiding walk model can be found in Madras
and Whittington, Localization of a random copolymer at an interface, [35]. For a recent review see Soteros
and Whittington, Statistical mechanics of random copolymers, [46]. There are important recent results on the
single interface problem by G. Giacomin, and work in progress on random interfaces by den Hollander and
Whittington.”
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Jarai introduced us to self-organised criticality and the relations it has with models we already study such
as the uniform spanning tree. Here is a summary of his lecture.

“In the last 15 years, a lot of attention was devoted in the physics literature to so called self-organized
critical (SOC) systems. In these systems critical scaling appears with a somewhat different flavour than in
the well-known examples of percolation and the Ising model. Namely, criticality is generated by a highly
non-local dynamics that is a result of a separation of scales, rather than a parameter passing through a critical
point. The main challenge in the area is to develop rigorous methods to study SOC. For some SOC models
there is a close connection with a corresponding classical critical model, which opens up the possibility
to study SOC via these connections. For example Chayes, Chayes and Newman have shown the intimate
relationship between invasion percolation and critical percolation. Dhar and Majumdar have established a
mapping between the Abelian sandpile model and the uniform spanning tree, which is the q → 0 limit of the
Potts model. In a rigorous approach to SOC, one of the first problems is to establish the existence of infinite
volume limits, which can be difficult due to the non-local interaction present. In this regard, recent progress
has been made for the Abelian sandpile model based on the connection with spanning trees in dimensions
d > 4. Future challenges include extending these to lower dimensions. It is expected that in d = 2 conformal
invariance plays a role, and therefore a description using SLE is to be explored”.

¿From the world of Biology we have a lecture on Vesicles by Buks van Rensburg.

“Vesicles in the biological world, such as blood cells, are known to posses a number of different phases.
For example, red blood cells, which are normally shaped as an indented disk (also called ”discocytes”)
become sickled shaped in individuals with cickle cell anemia. In addition, red blood cells could be burred,
pinched, pointed, indented, berry-shaped, etc., in either normal or pathological conditions depending on on
factors such as dehydration and membrane properties. Vesicles appear to have a very rich phase diagram, and
some of these phases can be examined by building mathematical models of a vesicle.

Perhaps the simplest approach to a vesicle would be a two or three dimensional discrete vesicle in the
square or cubical lattices. These lattice vesicles include models such as square, partition and convex polygon
vesicles in two dimensions, and cubical, rectangular and plane partition models of vesicles in three dimen-
sions. Curvature and osmotic pressure terms van be build into the models by defining partition and generating
functions with activities conjugate to volume, area or perimeter. From a mathematical point of view these
models offer considerable challenges in combinatorics and in statistical mechanics, and tricritical scaling
appears to be the appropriate physical frame for a mathematical description.

In my talk I will present some results on models of three dimensional cubical and rectangular vesicles
in a perimeter-area-volume ensemble. These models have a multicritical point and the values of scaling
exponents around this point is determined by the asymptotic analysis of the generating functions in both
cases. For example, in the volume-area ensemble, the crossover exponent φ has value 2/3 in both these
models, and this transition is an inflation-deflation transition between vesicles which are cubical or square
shaped”.

Finally there was an introduction to one of the outstanding problems of condensed matter physics: to
prove that adding a small density of randomly placed impurities to a conductor does not make it an insulator,
at least in dimensions three or more. The first first fundamental issue is whether a Schroedinger operator with
a random potential has absolutely continuous spectrum. Here is a summary of the lecture by Aizenman on
joint work with Robert Sims and Simone Warzel.

“Spectral and dynamical properties of linear operators with extensive disorder are of interest for con-
densed matter physics, as well as the broad subject of mathematics of graphs and related structures.

An outstanding challenge in the field is to shed light on the existence of extended states in the presence
of disorder. Such states play a basic role in conduction properties of an “electron gas” and in the spreading
of vibrations in randomized systems. The converse of conduction is Anderson localization which was proven
to occur at high disorder, and is particularly pronounced in low dimensions [47], in particular at d=1 where it
precludes extended states even at weak levels of the disorder.

The models discussed start from a well familiar Laplacian, or the incidence matrix on a regular graph,
which is then modified by incorporating the effect of disorder, represented by random terms with a homoge-
neous distribution and a control parameter. Specific examples are provided by:
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i the discrete Schrdinger operator with a random potential, and

ii the Laplacian acting on functions supported along the edges of a graph, whose edge length are stretched
by random factors.

Other models are not hard to formulate; the obstacles encountered in their analysis are similar. The challenge
is to prove that if the dimension is high enough, and the disorder not too strong, then the spectral measures
associate with the action of the random operators on local functions have an absolutely continuous (ac)
component. Such delocalised states associated with ac spectrum are expected to occur in dimensions d > 2.
The issues under study resemble a quantum version of percolation, in that it concerns conduction, or the
spread of correlations, connectivity, etc., occurring through a local mechanism but measured at a distance. A
common experience is that moderate dimensions, like d = 3, are out of reach of mathematics. For present
case the spectral analysis has been most effective in dimension d = 1, where no extended states exist at any
strength of the disorder, and at the opposite extreme of the tree graphs, which in a sense represent the case of
infinite dimension. In fact, the latter situation is the only for which existence of delocalised states has been
established; a proof due to A. Klein [30]. The talk presented a new method for establishing the persistence of
ac spectra on tree graphs [6, 7].

The main result is the continuity of the Lebesgue measure of the ac spectrum as the disorder is turned on.
The proof makes an essential use of the study of the fluctuations of the relevant Green functions, which are
bounded through a non-linear recursion relation which these obey on a tree. Useful input is obtained from
the analytical theory of the Lyapunov exponent. The new criterion for the continuity of the ac spectrum has
been applied also to the case of radial quasi-periodic potentials. These allow to draw an instructive contrast
between the effects of radially correlated disorder versus one which is weakly correlated among different tree
branches.”
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