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1 Overview of the Field
Summary. Algebraic curves are among the most ubiquitous mathematical objects; they have deep connec-
tions to algebra, geometry, topology, and mathematical physics. Moduli spaces of curves allow one to study
curves in families, whereby each point of the moduli space corresponds to a curve. These spaces exhibit rich
combinatorial and recursive structure, which often allows problems about curves and their moduli spaces to
be approached using tools from classical enumerative and modern algebraic combinatorics, including gener-
ating functions, Young tableaux, polytopes, and graph theory.

Recent years have seen rapid advances on geometric questions about curves and their moduli spaces,
many of which have introduced new and intriguing combinatorial objects of study. For instance, one cele-
brated result on curves is the fact that there is no way to parametrize a family of general smooth curves of
genus g ≥ 22 in terms of free parameters. The proof of this fact combined the study of the moduli space Mg

of smooth curves of genus g, together with combinatorial methods: for g ≥ 23, examining extremal rays of
cones of effective divisors [15, 30]; and for g = 22, using Young tableaux, graphs, and new ideas in tropical
geometry [17].

The role of combinatorics in moduli of curves. A fundamental feature of moduli spaces of curves, which is
also a source of combinatorial structure, is self-similarity. By marking points on the curves, we get the moduli
spaces Mg,n of stable n-pointed curves of genus g. These spaces are interconnected for different values of g
and n through tautological forgetful and gluing maps, and the boundary ofMg,n, which parametrizes singular
curves, is self-similar: it is stratified by products

∏
Mg′,n′ for smaller g′ and n′ (modulo a finite symmetric

group action). Each stratum parametrizes curves with a specified topological type, encoded by a dual graph
indicating the components, genera, marked points, and nodes. Graphical properties are also used to describe
a range of closely related moduli spaces [1, 3, 31, 49, 50, 51].

Many core questions aboutMg,n and its cousins reflect these combinatorial and graphical underpinnings.
For example, the tautological ring Rg,n, introduced by Mumford [42], has been partly described by Pixton
[47] using generators and relations that are formal sums of decorated dual graphs. These rings are generated
by classes obtained by pushing and pulling basic cohomology classes along the tautological maps, and while
Rg,n is much smaller than the Chow ring, it has a rich structure reflecting deep geometric information.
Generators for Rg,n have been explicitly described; relations, proposed by Faber and Faber–Zagier, have
been shown in special cases [10, 43, 44], and generalized further [48]. The full system of relations is still
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unknown and has since become one of the most important open problems in the field. Indeed, since the
tautological rings were first defined in the 1980s, there have been more than 130 published papers on the
subject, with more than 60 having appeared in the last 10 years.

A second important example is the use of tropical methods: tropical geometry works directly with metric
graphs and is an ongoing and active (parallel) research focus. In addition to the breakthrough result above
in genus 22, tropical methods have been used to calculate certain cohomology groups of Mg using graph
homology [8], and tropical methods famously led to a proof of the (classical) Brill–Noether Theorem [12],
which examines the geometry of curves via their projective embeddings. Indeed, the past decade has seen
a resurgence of activity in Brill–Noether theory: in addition to the tropical proof of the classical Brill–
Noether theorem, recent work has examined curves with low gonality [33, 46], Brill–Noether theory and
Hurwitz spaces [40], and the breakthroughs of Farkas–Jensen–Payne on the Kodaira dimension ofMg and of
Larson–Vogt [41] on the interpolation problem for Brill–Noether curves. These results all rely on nontrivial
combinatorial and especially tropical arguments, which suggest the potential for further advances with more
sophisticated combinatorics.

A third example comes from the facts that questions about curves of genus g > 0 can often be reduced
to questions in genus 0, and that M0,n shares some (but not all) features with simpler spaces such as toric
varieties. As such, M0,n itself is an important test variety in moduli theory, birational geometry, and other
areas of algebraic geometry. A key question about M0,n, for example, is to determine for which n it is a
Mori Dream Space (MDS) – a variety whose birational geometry is essentially the nicest possible. All toric
varieties are Mori Dream Spaces, whereas M0,n is known to be an MDS for n ≤ 6, and was recently shown
not to be an MDS for n ≥ 10 [32]. Polyhedral and other combinatorial methods played an important role in
these and related results. These results are closely related to the F-Conjecture [24, 35] that the nef cone of
Mg,n is a polyhedral cone. This conjecture holds for Mg,n if it holds for Sg-invariant divisors on M0,g+n.
Using this theorem the F-Conjecture is known on Mg for g ≤ 35 [18, 23], where the most recent jump from
g ≤ 24 to g ≤ 35 was achieved by Fedorchuk with a completely combinatorial argument.

Other recent work on moduli of curves has made use of combinatorial tools including k-cores of Young
tableaux and the affine symmetric group [40], simplicial complexes [11, 19], parking functions [6] and new
enumerations over trees [25].
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2 Structure of the workshop
The purpose of our workshop, entitled Combinatorics of Moduli of Curves (COMOC), was to bring together
two groups of expert researchers: geometers studying the moduli space of curves who work on combinatorial
questions, and combinatorialists interested in developing solutions to these problems. Participants were split
into working groups of 4-5 people with a mix of mathematical specialties, led by one or two established
researchers with expertise in the moduli space of curves who proposed a problem to work on together. These
teams collaborated in their working group sessions throughout the week. Our main goals were

• to introduce the combinatorialists to new sources of problems, and to expose the geometers to new
relevant combinatorial techniques,

• to spark new collaborations and professional connections across these two groups.

Each of the core aspects of our workshop – the research focus, invited working group leaders and participants,
talks, and other activities – was directed towards these two objectives. Notably:

• To establish a common language among all participants, we provided a resource page on our conference
website with background notes and references on basics about the moduli space of curves. We also
surveyed the participants on their background knowledge pertaining to moduli spaces of curves, and
shared the results with the working group leaders.

• To foster research within each group, we asked each leader to write a project description for a specific
combinatorial problem stemming from their work. We distributed these project descriptions to the par-
ticipants and formed them into working groups. When assigning groups, we balanced considerations
of career stage, research background, and participants’ own preferences collected via a second survey.

• To encourage the transfer of ideas in both directions between combinatorics and geometry, and to set
the stage for our workshop, we opened the week with introductory talks by two of the co-organizers.
The first talk, by Levinson, gave an overview of the ‘zoo’ of objects and constructions that the group
projects would be focusing on during the week: e.g. marked curves, stable graphs, stable maps. It
set up the geometry–combinatorics interplay between these objects, themes that were echoed in later
presentations during the week. The second talk, by Gillespie, introduced the combinatorial technique
of sign-reversing involutions and illustrated how to apply it solve a combinatorial problem inspired
by moduli spaces of marked curves. In a spirited Q&A session after the talk, participants started dis-
cussing the geometric meaning of the calculation, and soon realized that Gillespie and Levinson’s sign-
reversing involution gave a short proof of a formula for the Euler characteristic of the link of M trop

0,n ,
the tropical moduli space of genus zero curves. The talks and ensuing discussions had the intended
affect of sparking a dialogue that crossed the boundary of combinatorics and algebraic geometry, and
that continued throughout the week.

• To further discussion across groups, leaders gave short 5-7 minute descriptions of their projects to the
whole workshop on the morning of the second day. We also held professional development activi-
ties and social activities throughout the week, which helped bring participants together into a cohesive
group: a game night, discussions on communication across geometry and combinatorics and on men-
torship, and a group hike.
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To cap off the workshop, group representatives gave short presentations on the Friday morning about
progress made during the week and plans for continuation of the work. Monday’s ‘zoo’ of objects, spaces
and constructions reappeared in more than one closing presentation:

Many groups also expressed an intention to continue working on the projects. To our knowledge, at least
four of the eight groups have actively pursued the projects begun at COMOC.

Participant feedback. We solicited anonymous feedback from participants following the conclusion of
the conference. We received many positive comments, including:

• I particularly enjoyed the positive and inclusive environment supported by this community.

• In my opinion, it was the right decision to devote almost all of the time to group work, and to allow the
individual groups to structure their time as they saw fit.

• I’ve never participated in a workshop like this, but I am now a super fan. I thought the structure
and format of the conference were fantastic, giving groups a great deal of time to work together and
make progress on their projects. I also think it was really nice to have a common schedule, allowing
participants from different groups to mingle during coffee breaks and meals.

• (In response to ”What future activities would you like to see to further the connections between the
communities we brought together at COMOC?”) More of the same!

3 Project summaries

3.1 PL functions and Minkowski weight on Mtrop
0,n

Project leader: Renzo Cavalieri

There are two natural ways to describe a line bundle on M0,n:

1. as associated to a linear combination of boundary divisors;

2. by specifying the degree of its restriction to each boundary curve.

The two descriptions are related (and equivalent) by Poincaré duality. But it is not so straightforward to go
from one to the other (at least systematically, or for infinite families of line bundles one for each n) because
boundary divisors and boundary curves do not form bases of their respective Chow groups: they generate,
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but there are a ton of WDVV relations. Both description admit a tropical version. Perspective 1 is given by
piecewise linear functions - where the coefficients of the linear combination become the slopes along the cor-
responding ray; Perspective 2 by Minkowski weights, where codimension one cones are given weight equal
to the degree of the restriction to the corresponding boundary stratum. In this project participants explored
how, given a set of balanced Minkowski weights, can one explicitly exhibit a PL function corresponding to
the same line bundle.

Over the course of the week, the group was able to find a combinatorially described basis for Pic(M0,n),
together with a dual basis, where the dual to a particular irreducible boundary divisor is given as a linear
combination of F -curves: a simple combinatorial rule gives the coefficients of this linear combination.

Given these results, the group turned their attention to possible applications; in particular we focused on
the following two:

Hodge classes on admissible covers. We aim to compute the pushforward to M0,n of λ classes, Hurwitz-
Hodge classes and other tautological classes on moduli spaces of admissible covers. A lot has been
done for λ1 and for moduli spaces of cyclic covers, but for either the cases of higher degree lambdas
or admissible covers with a non-abelian structure group, while computing the strata intersections is
reasonably straightforward and the intersections have a lot of symmetry, the complexity of inverting
the intersection matrix is essentially what prevents to give satisfactory answers (i.e. to give systematic
formulas for infinite families of spaces).

Tropical intersection theory. We aim to use tropical intersection theory to compute the intersection num-
bers of the tropicalization of effective divisors that are not dimensionally transverse to the boundary
with all F -curves.

3.2 Moduli Theory of the r-Braid Arrangement
Project leaders: Emily Clader and Dusty Ross

Let A be an arrangement of hyperplanes in CPn, and let LA denote the intersection lattice of A—that
is, the set of all intersections of subsets of A. A wonderful compactification of A is, roughly speaking, a
way of replacing CPn by a different ambient variety in such a way that the complement of the hyperplanes
is preserved but the arrangement A itself is replaced by a divisor with normal crossings. There are a number
of such compactifications, given by blowing up CPn (in a carefully-prescribed order) along subsets G ⊆ LA
known as building sets. The collection of building sets is partially ordered by inclusion, and it has a unique
maximal and minimal element.

In the case where A is the braid arrangement consisting of the hyperplanes

Hij := {[x0 : x1 : · · · : xn] ∈ CPn | xi = xj}

for all 0 ≤ i < j ≤ n, and G is the minimal building set, the resulting wonderful compactification is the
moduli space of curvesM0,n+3. On the other hand, for any positive integer r there is a natural generalization
of the braid arrangement, which we refer to as the r-braid arrangement, consisting of the hyperplanes

Hk
ij := {[x0 : x1 : · · · : xn] ∈ CPn | xi = ζkxj}

for all 0 ≤ i ≤ j ≤ n and all 0 ≤ k ≤ r − 1, where ζ denotes a primitive rth root of unity.

Problem: Describe the wonderful compactification of the r-braid arrangement, with its minimal building
set, as a moduli space of curves.

1. We studied the combinatorics of the intersection lattice of the 2-braid arrangement in order to show
that the desired wonderful compactification can be concretely described as the blow-up of CPn along
all proper subspaces of the form

{[x0 : · · · : xn] ∈ CPn | xi1 = ±xi2 = · · · = ±xi`},

in increasing order of dimension, and we conjectured a similar description for all r.
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2. We gave a candidate description of the moduli problem for which we believe this wonderful com-
pactification to be a fine moduli space, which is closely related to the space constructed in [CDH+22,
CDLR23] parameterizing rational curves with an order-r automorphism under which the marked points
form a collection of orbits.

We also laid out a proposed strategy for proving that the blow-up in item (1) above is indeed a fine moduli
space for the moduli problem in item (2), by re-interpreting the blow-up as a fiber product and using universal
properties to construct the universal family. We plan to continue meeting virtually in the coming months to
carry out this strategy.

References
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3.3 Kleiman and the F-Conjecture
Project Leader: Angela Gibney

Our project concerns an old question about divisors and curves on Mg,n, the moduli space of stable
n-pointed curves of genus g [KM96], [GKM02]. The F-conjecture asserts that every curve on Mg,n is nu-
merically equivalent to a finite effective sum of so-called F-curves. These curves are defined as (numerical
equivalence classes) of the images of certain clutching maps from the one dimensional spaces M0,4 and M1,1.
Another way to state the conjecture is to say that there are finitely many extremal rays of the Mori cone of
curves, each of which is spanned by an F-curve.

One application, given that there would be finitely many extremal rays of the closed cone of curves if the
conjecture holds, would be the potential to classify all morphisms from Mg,n to other projective varieties.
Some researchers believe strongly that the F-conjecture holds on Mg , for all g, as it is known to hold for
g ≤ 35 [GKM02, Gib09, Fed20]. On the other hand, the conjecture is not supported by the main structure
theorems from Mori theory, and there is some doubt about whether the assertion is true more generally as it
has been verified on M0,n only for n ≤ 7 [KM96].

By [24], the conjecture on M0,n+1 is equivalent to the conjecture on M1,n, and recently, in new work from
[Gib24], divisors that contract certain collections of F-curves on M1,n are shown to be nef. In particular, there
is a new reduction of the conjecture to checking nefness of divisors on M1,n that contract certain F-curves.

F-curves, F-divisors, and the tools used to work with them can be given in purely combinatorial terms.
Working in this framework, and using Kleiman’s nefness criteria, our group is looking for support for the
conjecture, or the potential that it fails on M1,7, which is the first unknown case.

To describe the conjecture and our project in more detail, a few definitions will be given.
A divisor on Mg,n that non-negatively intersects all F-curves is called an F-divisor. A divisor is nef if

it non-negatively intersects all curves. F-divisors and nef divisors form cones in Rρ, where ρ is the Picard
number of Mg,n. The F-Conjecture on Mg,n predicts that a divisor on Mg,n is nef if and only if it is an
F-divisor. In other words that the F-Cone is equal to the cone of nef divisors.

Let Fg,n : M0,g+n → Mg,n be the map which associates to a g + n pointed rational curve, the n pointed
curve of genus g obtained by gluing g fixed curves, corresponding to points (E, q) ∈ M1,1, to it, via the
identification of the point q to each marked point. By [24, Theorem 0.3], an F-divisor D on Mg,n is nef
if and only if F∗g,n(D) is nef, and the F-Conjecture on Mg,n is equivalent to an Sg-invariant version of the
F-Conjecture on M0,g+n. So for instance, the F-Conjecture on M0,n+1 is equivalent to the F-Conjecture on
M1,n, and the Sn+1-invariant F-Conjecture on M0,n+1 is equivalent to the the F-Conjecture on Mn+1.

Kleiman’s nefness criteria [Laz04, Theorem 1.4.9], stated in terms of R-divisors, says that a divisor D on
a variety X is nef if and only if Ddim(V) · V ≥ 0 for every closed subvariety V ⊂ X . To apply Kleiman’s
criteria to investigate the F-Conjecture, one can ask if D is an F-divisor, whether the top self-intersection of
D is nonnegative. If so, this lends support for the conjecture, and if not, this shows the conjecture is false. In
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this project we are considering this question on M1,7 for divisors D that lie on extremal faces of the cone of
F-divisors that are not known to be nef via the criteria given in [Gib24].

The goal is to translate the problem to determining the positivity or negativity of an explicit homogeneous
polynomial corresponding to the top self intersection of a given F-divisor. Our approach has two parts: First,
to produce the polynomial, and second, to analyze its positivity using numerical methods.

So far we have produced the homogeneous polynomials for M1,n for n ≤ 7 using the Sage admcycles
package, which produces divisors with polynomial coefficients using Sage’s built in polynomial ring class.
Using non linear programming to search for (local) minima, subject to the inequalities satisfied by an F-
divisor, we aim to look for a negative top self intersection. If the polynomial is always positive, then one
obtains support for the conjecture, and if it is negative, it follows that the conjecture is false.

For example, for n = 5 the top self intersection is given by a homogeneous polynomial of degree 2 in
26 variables. A number of trials using MATLAB in the known cases n = 5 and n = 6, we have found a
variety of (approximate) local minima, some near zero, some bigger, depending on the random starting point.
For n = 7, the first unknown case, one obtains a homogeneous polynomial of degree 5 in 120 variables,
comprised of 88803 monomials. This polynomial is too big for MATLAB to work with. In this case, the
approach is to decrease the number of monomials, and hence the complexity of the polynomial, by assuming
the divisor of interest contracts certain collections of F-curves. The more F-curves that the divisor kills, the
simpler the polynomial.

Choosing which F-curves will be contracted is itself an interesting problem. On the one hand, if the
wrong F-curves are chosen, one risks that the divisor will be nef via [Gib24]. Our group has written code to
generate large collections of curves that avoid such a scenario. For instance, this code produces 301 F-curves
for n = 7, and 966 for n = 8. Although we cannot guarantee that these are maximal collections, we have
used some heuristics and tree-search algorithms aimed at maximization to obtain these lists. On the other
hand, if the divisor is assumed to contract too many F-curves, the corresponding polynomial will be trivial.
Given that the Picard numbers are 121 for n = 7, and 248 for n = 8, if the divisor contracts all curves in
these “maximal” families, it will be trivial.

After experimenting with the known cases, we have zeroed in on a couple of independent families of
F-curves that are small enough, and for which a divisor that contracts them is not obviously nef. For instance,
one family consists of

(
n
2

)
curves, and another has 2n− 3 curves. We are currently studying the positivity of

the associated top self intersection of F-divisors that contract these collections.
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3.4 Connectedness of Type A degeneracy loci
Project Leader: Nathan Pflueger
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3.4.1 Overview of the problem

A famous theorem on degeneracy loci is the following connectedness theorem of Fulton and Lazarsfeld
[FL81]. It concerns the following situation: σ : E → F is a map of vector bundles on a connected variety
X , and we consider the degeneracy loci Dk(σ) ⊆ X where σ has rank at most k. The theorem states that
if Hom(E,F ) is an ample vector bundle, then Dk(σ) is connected provided that its expected dimension is
positive. This theorem has an important application to moduli of linear series on algebraic curves, which
motivated its original proof: for a general curve C, the Brill–Noether locus W r

d (C) is connected when it is
positive-dimensional.

This theorem has a natural generalization, which appears, surprisingly, to be open. In addition to a map
σ : E → F , one also adds the data of flags of subbundles of E and quotients of F :

E1 ⊂ E2 ⊂ · · · ⊂ Er = E
σ−→ Fs � Fs−1 � · · ·� F1.

and imposes bounds on the ranks of all maps Ei → Fj . The data of these ranks are encoded by a permutation
w, and one obtains a degeneracy locus Dw(σ). The geometry of these degeneracy loci is intimately linked
to Schubert polynomial of w [Ful92], and recent work has found similar results relating the K-theory and
motivic classes of such degeneracy loci to Grothendieck polynomials [ACT22a, ACT22b]. The problem is:

Question 1. Assume that Hom(E,F ) is ample, and the expected dimension of Dw(σ) is positive. Are there
suitable hypotheses on the permutation w under which Dw(σ) is connected?

Some geometric motivation comes from [Pfl21], where these degeneracy loci to study a generalization
WΠ(C, p, q) of the classical Brill–Noether loci to curves with two marked points. Here Π is a “dot pattern,”
which is essentially the same as a permutation. That paper establishes several results analogous to the classical
theory of W r

d (C), but not a connectedness theorem. The question above may be able to fill this gap.

Question 2. Are the loci WΠ(C, p, q) connected for general twice-marked curves (C, p, q), under suitable
hypotheses on Π?

3.4.2 Progress during the workshop

The project group mastered the original argument of Fulton and Lazarsfeld, and found appropriate modifi-
cations to it that succeeded in proving connectedness of Dw(σ) for several specific examples of w, subject
to the expected ampleness and dimension hypotheses. The modifications required nontrivial geometric and
combinatorial insight, for which the group’s mixture of backgrounds was essential. After working several ex-
amples, the group concluded that Grassmannian permutations where the most natural class of permutations
to study first. They succeeded in formulating a bound Cw, combinatorial in nature and easy to compute, such
that Hom(E,F ) ample and dimX > Cw implies that Dw(σ) is connected. In most of specific examples
considered, Cw = `(w), the length of w, which is the optimal such bound. Further work is needed to classify
those Grassmannian permutations for which Cw = `(w), improve the bound Cw, or extend beyond Grass-
mannian permutations. The group intends to continue their collaborate after the workshop and write their
results for publication.
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3.5 Piecewise polynomials on moduli of curves
Project Leader: Aaron Pixton

The moduli space of stable curves of genus g with n marked points, Mg,n, admits a stratification by
topological type, called the boundary stratification. In this stratification, each stratum corresponds to a stable
graph Γ, i.e. the dual graph of a stable curve. One way to encode the combinatorial data of this stratification
is via its dual cone complex, the moduli of tropical curves Mtrop

g,n = ΣMg,n
, an analogous object to the

polyhedral fans appearing in toric geometry. This complex ΣMg,n
has one ray for each boundary divisor, one

2-dimensional cone for each codimension 2 boundary stratum, and so on.
A piecewise polynomial on ΣMg,n

is a continuous function that can be given by choosing a (finite poly-
hedral) subdivision of ΣMg,n

and picking one polynomial (over Q) on each cone in the subdivision. There is
a correspondence between (certain) subdivisions of ΣMg,n

and spacesM constructed by repeatedly blowing
upMg,n along boundary strata. It turns out that a piecewise polynomial defined on such a subdivision can
then be interpreted as giving a class in the Chow ring (or cohomology) ofM. This procedure defines a ring
homomorphism (see e.g. Molcho-Pandharipande-Schmitt, 2023)

φ : PP(ΣMg,n
)→ lim−→

M
CH∗(M),

where the left side is the algebra of piecewise polynomials on ΣMg,n
and the right side is the direct limit of

all the Chow rings of suchM (under pullback maps).
We considered three problems about piecewise polynomials on (subdivisions of) ΣMg,n

during the work-
shop. The first was to try to understand the “easy relations” between piecewise polynomial classes: there are
piecewise polynomials that lie in the kernel of φ for simple reasons, essentially dimensional vanishing. We
wrote out some explicit examples of this in the case ofM1,3 and speculated about setting up a filtration of
PP(ΣMg,n

) encoding some of these relations.
One source of interesting elements in PP(ΣMg,n

) is a formula for the logarithmic double ramification
cycle LogDRg(A) (Holmes-Molcho-Pandharipande-Pixton-Schmitt, 2022), where A is an n-tuple of integers
with sum 0. The most complicated part of this formula is simply describing the subdivision of ΣMg,n

that
it uses. This requires some graph theory involving stability conditions for compactified universal Jacobians
(Kass-Pagani, 2019). In the simplest nontrivial case, LogDRg(2,−2), the subdivision can be understood quite
explicitly using 2-edge cuts. The second problem was to see if we could understand what is going on with
the subdivision for LogDRg(3,−3). We thought a bit about what this subdivision looks like on some specific
cones.

The third problem we considered was posed during the workshop - the question is whether one can
write an “efficient” set of generators for the polynomial algebra P(ΣMg,n

) (i.e. the piecewise polynomials
in which no subdivision is used). There is a tempting candidate here, corresponding to the classes of pure
boundary strata, and we checked that these suffice in various small cases. However, we found an example of
a polynomial on ΣM10

that cannot be written as a polynomial in these proposed generators.

3.6 Strata of canonical divisors on algebraic curves
Project Leader: Nicola Tarasca

Spaces of differentials on curves have witnessed an explosion of interest in recent years, motivated by
recent developments in the study of limits of differentials on nodal curves [FP2, BCG+1, BCG+3, BCG+2].
By imposing conditions on zero and pole orders, one obtains a natural stratification of spaces of differentials
on curves. The strata are related to Witten’s r-spin cycles [PPZ, CJRS] and generalize the double ramification
cycle, incarnating fundamental aspects of Gromov-Witten theory [JPPZ]. The strata are in fact the projection
on moduli spaces of curves of incidence varieties living in projectivized Hodge bundles. The proposed
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research project consists of a direct approach to the study of the cohomology classes of the incidence varieties.

To describe the project, start with the k-th Hodge bundle Ekg,n. This is the vector bundle of stable k-
differentials over the moduli spaceMg,n. It is defined as Ekg,n := π∗

(
ω⊗kπ

)
, where π : Cg,n →Mg,n is the

universal curve with relative dualizing sheaf ωπ . Let PEkg,n be the projectivization of Ekg,n. A point of PEkg,n
consists of a stable n-pointed genus g curve together with the class of a nonzero stable k-differential modulo
scaling by units. The space PEkg,n compactifies the moduli space of k-canonical divisors on smooth curves.

Given an n-tuple of integers m = (m1, . . . ,mn) ∈ Zn such that |m| = k(2g − 2), one defines the
incidence variety Hg,m ⊂ PEkg,n as

Hg,m :=

{
(C,P1, . . . , Pn, µ) ∈ PEkg,n

∣∣∣∣∣C is smooth and div (µ) =

n∑
i=1

mi Pi

}
.

The closure of the incidence varieties in PEkg,n has been studied by Bainbridge, Chen, Gendron, Gru-
shevsky, and Möller [BCG+1, BCG+3, BCG+2]. A recursive description of the incidence variety classes on
PEkg,n has been given in Sauvaget [Sau], but no closed formula is known for these classes.

Specific Goal 1. Compute a closed formula for the incidence variety classes on PEkg,n.

A preliminary case of Specific Goal 1 is solved in my work with Iulia Gheorghita. Specifically, we have
computed a closed formula for the restriction of the incidence varieties over the moduli spaceMrt

g,n of curves
with rational tails in the holomorphic case [GT]. Our resulting formula is expressed as a sum over decorated
stable graphs dual to the boundary strata in Mrt

g,n with coefficients enumerating appropriate weightings of
decorated stable graphs.

The solution to Specific Goal 1 could help to make progress toward some open problems on the cohomol-
ogy of moduli spaces of curves [Pan]. The study of cohomological classes on moduli spaces of curves has
been pioneered by Mumford [Mum] and Faber [Fab]. While the whole cohomology is practically unwieldy,
a smaller ring, called the tautological ring, captures most of the desired features [FP1].

Basic questions about the tautological ring remain open. There is an explicit set of generators for the
tautological ring, indexed by decorated stable graphs, but the set of relations between the generators is still
unknown. Some relations are known, but it is unclear whether all the necessary relations are known. There are
currently two competing conjectures [Fab, Pix], with one of them known to be false in some cases [PT, Pet].

The solution to Specific Goal 1 provides a new source of relations. Indeed, the proposed strategy produces
a formula for classes of strata of k-differentials Hg,m onMg,n which naturally vanishes in the tautological
ring when |m| > k(2g − 2), thus yielding a relation.

Specific Goal 2. Determine the classes of the empty strataHg,m inMg,n, and verify whether they contribute
new tautological relations.

Updates from the activities at Banff

During the week at Banff, my group analyzed the recursive structure of incidence variety classes beyond
the locus of curves with rational tails. We performed various computations and investigated what properties
could be used to extend the classes over the larger locus of curves of compact type.
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3.7 Curves in (P1)n of multidegree (1, . . . 1)

Project Leaders: Rohini Ramadas and Rob Silversmith

The goal of this project is to understand the moduli spaces Xn parametrizing rational curves in (P1)n of
(multi-)degree (1, 1, . . . , 1). More precisely we let Xn denote the Kontsevich space of stable maps

M0,0((P1)n, (1, . . . , 1)).

Then Xn has several properties that hint at interesting angles for studying it:

• Xn is irreducible and smooth of dimension 3n− 3.

• Xn admits a system of flat tautological morphisms µ : Xn → Xn′ (or precisely, µS : Xn → X|S| for
each nonempty S ⊆ [n]), analogous to the system of forgetful morphisms M0,n →M0,n′ .
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• Xn has a boundary stratification by smooth divisors with simple normal crossings. The (locally closed)
strata are precisely the orbits of the natural PGL(2)n-action. The open stratum is isomorphic to
PGL(2)n−1 and Xn is a wonderful compactification (i.e. an equivariant compactification with smooth
orbit closures). The closed strata are products of smaller-dimensional spaces Xn′,m (stable maps to
(P1)n

′
with m marked points). Unlike for M0,n, the stratification doesn’t go all the way down to

dimension zero — all minimal strata have dimension n.

Example. X2
∼= P3, and its boundary is a smooth quadric surface.

In [1], cross-ratio degrees are expressed as intersection numbers on Xn. One motivation behind studying
Xn (in particular its intersection theory) is to get new combinatorial information about cross-ratio degrees.
Another motivation is that there seem to be analogies worth investigating with M0,n as well as with Grass-
mannians. (Degree-(1, . . . , 1) curves in (P1)n are not as nice as lines in Pn but not too far off.)

3.7.1 Preliminary questions

We planned to begin by addressing some of the following questions.

1. Describe fibers of µ[n−1]× µ{1,n} : Xn → Xn−1×X2
∼= Xn−1×P3. Is this map an iterated blowup?

Similarly for the map
∏n
i=2 µ{1,i} : Xn → Xn−1

2
∼= (P3)n−1. E.g. is X3 an iterated blow-up of

P3 × P3?

2. Probably using the above, how can we understand the intersection theory of Xn? Are there natural
generators for the Chow ring or Chow groups? Are there nice combinatorial rules for multiplying
them? (Probably all Chow classes are tautological in the sense of Oprea, this may follow from Oprea’s
result, it’s not immediately clear.)

3. What does the Sn action on Xn look like? What is Pic(Xn) as an Sn representation?

4. What is the boundary stratification of Xn?

5. Does Xn have interesting real/positive structure?

6. Does the toric structure of (P1)n play a large role? For example, what is the relationship between Xn
and the (birational) space of log stable maps?

3.7.2 Summary of group discussions at BIRS

During the week at BIRS, we addressed some of the above questions, as well as a few others:

1. We outlined a factorization of the map
∏n
i=2 µ{1,i} : Xn → Xn−1

2
∼= (P3)n−1 as an iterated blow-up

of (P3)n−1. We did this in some detail for n = 3, 4.

2. We used the above description to guess a description of Pic(Xn) over Z and over Q: it is freely
generated over Q by the 2n−1 − 1 boundary divisors, but is not generated over Z by boundary. The
boundary divisors generate a lattice of index 2n−1. We verified in some examples that Pic(Xn,m) is
not generated over Q by boundary once m > 0.

3. We did some basic intersection calculations in the Chow ring, such as computing the pullback of a
boundary divisor along the projection maps µS , and the pullback of the class of a point in (P1)2 along
the evaluation map X2,1 → (P1)2.

4. We studied the boundary complex of Xn,m, a simplicial complex of dimension 3n − 4 + m. We first
showed that the boundary complex has Euler characteristic 1 using sign-reversing involutions, then
refined this result by showing that in fact the boundary complex is contractible for all n ≥ 1 and
m ≥ 0.

5. We talked through the (PGL2)n action on Xn, and sketched a proof that Xn is a wonderful compacti-
fication of a (PGL2)n−1 as a homogeneous (PGL2)n-space. We classified the Borel-fixed points and
Borel-invariant curves, and the torus-fixed points.



15

References
[1] R. Silversmith, Cross-ratio degrees and perfect matchings, Proc. Amer. Math. Soc. 150 (2022), 5057–

5072.

3.8 Constructing fine compactified Jacobians
Project Leader: Orsola Tommasi

Many geometric problems in the theory of algebraic curves deal with pairs (C,L) where C is a curve and
L is a line bundle onC. When the curveC is a smooth curve of genus g, this leads to the study of its Jacobian,
the g-dimensional algebraic variety parametrizing all line bundles of a fixed degree d. Its construction behaves
well in families and leads to the degree d universal Jacobian over the moduli spaceMg of smooth curves of
genus g. However, as soon as the curve over which one works has singularities, the Jacobian, defined as the
moduli space of line bundles, is no longer a projective variety. In the attempt of compactifying it, pathological
behaviour appears.

In this project, we deal with nodal curves. Compactifying their Jacobian involves having to add degenera-
tions of line bundles (torsion-free coherent sheaves of rank 1). These sheaves will not be locally free at some
of the nodes of the curve, which we will call the singular locus of the sheaf. The combinatorial information
needed to encode such a torsion-free sheaf F consists of:

• the dual graph Γ of C;

• the connected subgraph G of Γ obtained by removing the edges of the dual graph that correspond to
the singular locus of the sheaf;

• the multidegree D = (dv)v∈V (Γ). The sheaf F is the push-forward of a line bundle at the partial nor-
malization of C at the nodes in the singular locus of F ; each dv represents the degree of the restriction
of this line bundle to the preimage of the component of C corresponding to the vertex v.

Each choice of a pair (G,D) gives a locally closed stratum in the moduli space of rank 1 torsion-free
sheaves on C. To construct a well-behaved compactification of the Jacobian we have to glue together strata
in such a way that their union is proper (e.g. projective, compact) and at the same time open in the moduli
space of torsion-free sheaves.

In joint work with Nicola Pagani we found necessary and sufficient conditions on how to choose the
strata, involving the action of the twister group (or chip-firing group) of the graph Γ and of its subgraphs on
the multidegrees D. However, a classification of these compactified Jacobians has been obtained so far only
in few cases.

The aim of the project was to work out some more cases, in the pursuit of new examples of compactified
Jacobians. We started by looking at single nodal curves. We reviewed the results for curves of genus 1
and developed new ways to visualize and rephrase the known constructions. Afterwards we considered the
compactification induced by working with the so-called break divisors of the dual graph. Furthermore, a
participant implemented an algorithm that should allow to look for examples of compactified Jacobians for a
given graph of arbitrary genus.

4 Other activities
On Monday evening, after admiring the Elk visiting the Banff Centre that evening, we broke into groups
mixed according to mathematical background to discuss similarities and differences between the mathemati-
cal communities present at the workshop, particularly related to mathematical communication within geome-
try and combinatorics. By remixing the groups halfway through the hour, we ensured that the majority of the
participants had had a substantive conversation with most other participants by the end of the first day. This
discussion served as an effective icebreaker for the conference; we observed a high level of mixing between
participants at meals and coffee breaks across the week.

Wednesday afternoon saw most of the participants take part in the informal hike to Hoodoos.
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In the evening we got to briefly sample the concert In a Landscape: Classical Music in the Wild (thanks
to the concert organizers for the loan of headsets) before breaking into groups mixing career stages for a
mentoring session. The demographics of the workshop meant that many participants were either supervising
their first PhD student or PhD students themselves, so much of the conversation was about what made a good
PhD student/supervisor relationship.

A major aim of this workshop was to bring together two different communities: algebraic geometers
working on the moduli space of curves, and combinatorialists with potentially useful skills. The last session
on Thursday was devoted to discussing potential future interactions, and which forms of activity would be
best to deepen these connections. Many participants commented that they would love to attend another
workshop structured identically to COMOC; others proposed summer schools and conferences based on
exposing geometers to combinatorial techniques (or vice versa).


