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7, 2024.

1 Overview of the Field
Our work lies in the subfield of number theory that studies Diophantine equations called Thue equations. A
Thue equation is an equation of the form

F (X,Y ) = h (1)

where each of the following holds:

• F (X,Y ) can be written as

F (X,Y ) =

n∑
j=0

ajX
jY n−j

where each aj ∈ Z and n ≥ 3.

• F (X,Y ) is irreducible over Z[X,Y ].

• h is an integer.

Thue equations are named such because Thue proved in 1909 that there only finitely many integer pairs
(x, y) ∈ Z2 which satisfy equation (1) [12]. As a corollary, there are only finitely many integer pair solutions
to the inequality (known as Thue’s inequality)

|F (X,Y )| ≤ h (2)

where the same conditions apply to F (X,Y ) and h (though in this setting, we may as well assume that h is
a positive integer).

The basic questions in the study of Thue equations are:

1. How many integer pair solutions are there to inequality (2)?

2. How can we find the solutions to (2)?
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Indeed, it often suffices to answer these questions for h = 1. Let N(F, h) denote the number of integer
pair solutions to inequality (2). Mahler proved in [8] that if n denotes the degree of F , then N(F, h) is
approximately equal to h2/nN(F, 1). Since estimating N(F, h) often reduces to estimating N(F, 1), we
only focus on N(F, 1) in this project.

2 Recent Developments

2.1 Special Cases
Since proving general results about Thue equations is quite difficult, many mathematicians prove results
about specific families of Thue equations. For example, the following three theorems give upper bounds on
N(F, 1) which depend on the number of summands of F (X,Y ).

Theorem 1 (Bennett, [1]). Let n ≥ 3, and let

F (X,Y ) = aXn − bY n.

Then N(F, 1) ≤ 8 and this is the best possible bound.

Theorem 2 (Knapp, [6]). Let n ≥ 6, and let

F (X,Y ) = aXn + bXkY n−k + cY n.

Then N(F, 1) ≤ 128. If n ≥ 219, then N(F, 1) ≤ 40.

Theorem 3 (Grundman and Wisniewski, [4]). Let n ≥ 9, and let

F (X,Y ) = aXn + rXmY n−m + sXkY n−k + tY n.

Assume some additional restraints on the coefficients and exponents. Then N(F, 1) ≤ 5688. If n ≥ 60, then
N(F, 1) ≤ 296.

Beyond merely fixing the number of summands, one can examine Thue equations where the number of
summands is fixed and the coefficients have a certain form. In particular, in [11], Thomas initiated the study
of Thue equations where F (X,Y ) is one of the “simplest cubic forms” (as defined by Lettl et al. in [7]). The
cubic, quartic, and sextic versions of these simple forms look like

F
(3)
t (X,Y ) = X3 − (t− 1)X2Y − (t+ 2)XY 2 − Y 3

F
(4)
t (X,Y ) = X4 − tX3Y − 6X2Y 2 + tXY 3 + Y 4

F
(6)
t (X,Y ) = X6 − 2tX5Y − (5t+ 15)X4Y 2 − 20X3Y 3 + 5tX2Y 4 + (2t+ 6)XY 5 + Y 6.

Mignotte completed the proof of Thomas’ conjecture in [10] by showing that the Thue equation |F (3)
t (X,Y )| =

1 has only trivial solutions (the solutions with either X = 0 and Y = ±1 or with X = ±1 and Y = 0) when
t ∈ Z and |t| > 3. This implies that N(F

(3)
t , 1) ≤ 4 when |t| > 3. In [3], Gaál et al. give a complete

classification for solutions of the Thue equations |F (4)
t (X,Y )| = 1 and |F (6)

t (X,Y )| = 1, and again, they
prove that when t ∈ Z is sufficiently large, the only solutions are trivial (i.e. N(F

(i)
t , 1) ≤ 4).

2.2 Relative Thue Equations
With the solutions to the simplest cubic/quartic/sextic equations being fully classified, one can now turn to
the so-called “relative” setting. In this setting, we attempt to solve the same Thue equations, but we allow
the coefficients and solutions to come from the ring of integers of an imaginary quadratic number field. The
reason we require the number field to be imaginary and quadratic is that the rings of integers in these fields
share an important property with the rational integers: if K is an imaginary quadratic number field with ring
of integers OK , then any α ∈ OK with α ̸= 0 satisfies |α| ≥ 1. This fact ensures that there are still only
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finitely many (x, y) ∈ O2
K which satisfy F (x, y) = h whenever h ∈ OK and F (X,Y ) is a homogeneous

polynomial of degree at least 3, with coefficients in OK , and which is irreducible over OK [X,Y ]. Hence, we
can study Thue equations over imaginary quadratic number fields in much the same way that we study their
solutions over Z.

Indeed, in [5], Heuberger completely classified the solutions in O2
K to |F (3)

t (X,Y )| = 1 for t ∈ OK

where K is an imaginary quadratic number field. Further, in [3], Gaál et al. classify the solutions in O2
K

to |F (4)
t (X,Y )| = 1 for any rational integer t, but they do not consider other values of t ∈ OK . In [2],

Earp-Lynch et. al prove that there are no nontrivial solutions in O2
K to |F (4)

t (X,Y )| = 1 for any t ∈ OK

with |t| ≥ 100, but they do not consider any values of t with |t| < 100.
The main objective of our project is to complete the classification of solutions in O2

K to |F (4)
t (X,Y )| = 1

for t ∈ OK . While it only remains to check values of t with |t| ≤ 100 (of which there are finitely many),
there are too many such values for a computer search to be practical.

Prior to attending the PIMS/BIRS Team Up visit, we had improved the efficiency of the application of
hypergeometric method in [2] to obtain similar results for |t| ≥ 78. However, this reduction is still not nearly
enough to handle the remaining cases computationally. Additionally, we had reason to believe that there is a
fundamental limitation of the hypergeometric method that would prevent us from improving their results any
further under this approach. As a result, we need a new approach to handle the small values of t.

3 Scientific Progress Made
During our PIMS/BIRS Team Up trip, we first established the following outline for the remainder of the
project:

1. Find a value of k for which we can theoretically prove that there are only trivial solutions (x, y) ∈ O2
K

to |F (4)
t (X,Y )| = 1 whenever |t| ≥ k.

2. For any quadratic imaginary integer t with |t| < k, run a computer search for solutions to |F (4)
t (X,Y )| =

1.

In order to accomplish the steps in this outline, we worked on three primary objectives. First, we wanted
to tailor Baker’s method to our particular setting in order to establish upper bounds on the absolute values
of the coordinates of solutions (x, y) which only depend on t. Second, we wanted to analyze a paper from
Martin which describes an algorithm for producing generalized continued fractions where the components
come from imaginary quadratic number fields. Third, we wanted to produce code which would allow us
to quickly reprove modifications of lemmas in [2] as we adjusted our assumptions in the course of doing
research.

3.1 Applying Baker’s Method
The primary insight during our trip to BIRS is that Baker’s method, combined with an analogue of the results
in Section 7 of [2] should be enough to handle most of the values of t with |t| < 100.

Baker’s method is an approach to solving Thue equations which gives a bound on the size of possible
solutions in terms of the coefficients of the polynomial F (X,Y ). In our setting, a naı̈ve application of
Baker’s method produces a result along the lines of the following: there is an explicit constant YL depending
on t so that any solution (x, y) ∈ O2

K satisfies |y| ≤ YL. Since we may assume that |t| ≤ 100, it might
seem like we could simply use an application of Baker’s method and run a brute force search for solutions to
|F (4)

t (X,Y )| = 1 for every |t| ≤ 100. However, the naı̈ve application of Baker’s method does not produce a
usable value of YL, so we must modify the method to account for our particular polynomial F (4)

t (X,Y ).
Additionally, Baker’s method is well-suited for the classical settings where the coefficients and solutions

of the Thue equation are rational integers, but it must be adapted to handle the relative setting where we are
allowing the coefficients and solutions to be integral in a quadratic imaginary number field. At BIRS, we
modified the approach in [13] in order to account for our family of polynomials in the relative setting.
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3.2 Continued Fractions for Imaginary Quadratic Number Fields
Daniel Martin recently published a paper in which he created an analogue of continued fractions where the
partial numerators come from a finite set, and the partial denominators are ratios where the numerator is
integral and the denominator comes from a finite set [9]. These generalizations of continued fractions share
many of the properties of classical continued fractions, which are often used to solve Thue equations.

At BIRS, we were able to prove that if (x, y) ∈ O2
K is a solution to |F (4)

t (X,Y )| = 1 and |y| ≥ YS (we
have an explicit value of YS that we will oppress in this discussion), then x/y is one of the convergents to
some root of F (4)

t (X, 1) which come from Martin’s generalization of continued fractions. Additionally, there
is an explicit constant XS so that for any solution (x, y) ∈ O2

K with |y| < YS , we also have |x| < XS .
Due to this work, the second step of our outline can be made more efficient. Let YL denote the upper

bound on |y| coming from Baker’s method. We can now search for solutions as follows:

1. Brute force search among pairs (x, y) ∈ O2
K with |y| < YS and |x| < XS to see if (x, y) is a solution

to |F (4)
t (X,Y )| = 1.

2. Generate a list of convergents x/y to the roots of F
(4)
t (X, 1) which satisfy YS ≤ |y| < YL using

Martin’s algorithm. Test each of these pairs (x, y) to see if they satisfy |F (4)
t (X,Y )| = 1.

This new approach is much more efficient than merely searching through all pairs (x, y) which satisfy
|y| < YL (and some appropriate bound on |x|).

3.3 Code for Modifying Existing Lemmas
One of the subtle things about the process of conducting research that is not at all obvious when you read a
complete paper is the decision about what assumptions to make for the lemmas that you need to prove. Step
1 of our outline includes finding a value of k where we can prove that the only solutions to |F (4)

t (X,Y )| = 1
are trivial whenever |t| > k. In order to find such a value of k, however, we need a host of approximation
results along the lines of the following:

Lemma 1. If |t| ≥ 6, then one of the roots α of F (4)
t (X, 1) satisfies |α+ t−1| ≤ 6.9|t|−3.

The constant 6.9 in that result comes from the assumption |t| ≥ 6 and that constant changes if we change
the assumption |t| ≥ 6 to the assumption |t| ≥ 7. Furthermore, we use the constant 6.9 (or its analogue) in
other results that we need to prove.

However, we may not be able to accomplish step 1 from the outline with k = 6. Indeed, we expect
that we will not be able to do so. In order to avoid manually reproving Lemma 1 every time we change
the assumption |t| ≥ 6 to something else, we spent time at BIRS developing Sage code which, on input k,
outputs a value of M for which Lemma 1 holds with |t| ≥ 6 replaced by |t| ≥ k and 6.9 replaced by M .
Additionally, we developed similar code for several other technical lemmas that we will need.

This code is unlikely to ever be published as part of our paper, because it will not aid the reader in
verifying that the proofs are true. However, this code is an invaluable part of the research process, and it will
save us lots of manual effort as we continue to work on completing step 1 of the outline.

4 Outcome of the Meeting
While we do not yet have the results that we seek, our trip to BIRS was pivotal in making progress towards
those results, and providing us with research momentum. We are very grateful to the staff at PIMS, BIRS,
and the Banff Centre for the kindness and flexibility they afforded us for our trip.
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