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1 Overview of the Field

This workshop brought together two distinct communities, mathematicians working on operator structures
and mathematically oriented scientists in several disciplines working in quantum information theory (QIT).
Based on feedback and observations during the workshop, it was extremely successful. There was no percep-
tible decline in attendance at talks or variation with subtopic.

It seems clear that this workshop will lead to an increased role for operator spaces in quantum information
theory, and may be a landmark event. With a few exceptions, their role in QIT has been limited to the
implicit use of a few concepts, such as a type of completely bounded norm, or a particular operator algebra,
without recognition of the larger mathematical structure. The workshop has unequivocally changed this
view. A few days after it ended, several participants posted the paper [64] “Unbounded violation of tripartite
Bell inequalities” demonstrating the value of tools from operator spaces and tensor norms. In addition to
obtaining a striking new result with important physical implications, the authors reformulate a question about
commutative Banach algebras, which has been open for over 30 years, as a question about the types of states
which give unbounded violations of Bell inequalities. At the August BIRS workshop 07w5013 Operator
Spaces and Group Algebras, Ed Effros began with a talk on “Quantized functional analysis and quantum
information theory”.

Because of the varied backgrounds of the participants, the first three mornings were devoted to expository
talks on operator spaces, quantum error correction and quantum Shannon theory. These were extremely
valuable, with considerable demand for copies of the speakers notes and slides. The remaining time was
divided between longer invited talks on important aspects of current research and short reports on recent
results. We also had two sessions on open problems and time for discussion and relaxation.

Two important new results were announced at the workshop, in the talks by Junge [40] and Klappenecker
[45], which are described in Sections 2.1 and 2.3, respectively. Several new collaborations were started
during the workshop; one of these [47] uncovers a new connection between quantum cryptography and error
correction based on complementary channels. A new result [55] was obtained on one of the open problems
during the workshop. (See item D of Section 3.)

In July 2007, counter-examples were found [32, 84] to the so-called multiplicativity conjecture for tensor
products of quantum channels, which had been open for over 5 years. This has significant implications for
another important group of four equivalent ”additivity” conjectures involving tensor products; these conjec-
tures have been open for about 15 years and the different forms were shown to be globally equivalent by Shor
in 2003 [74] As explicitly acknowledged in the announcements [32, 84], these breakthroughs were the result
of the open problem sessions at the workshop and subsequent discussions among some of the participants.
For additional information, see Section 5.6 of [70].
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2 Summary of Scientific Developments Reported

2.1 Operator spaces

Edward Effros and Vern Paulsen gave a pair of well received introductory lectures on the abstract theory
of operator spaces. Effros discussed some of the historical development of the subject, pointed out various
subdisciplines of mathematics in which operator spaces arise, and prepared the audience for some of the
technical complexities which arise in Pisier’sLp version.

Paulsen focussed on concrete operator spaces. He described a technique he had developed and presented
elsewhere, but not written up, to compute completely bounded (CB) norms. In his approach, the CB norm
can also be computed in a different way using the commutant. Although operator algebraists have not been
enthusiastic about this reformulation, it seems likely that it will be useful in QIT where the commutant
describes the algebra associated with the environment. One group [47] has already begun to explore this
approach. Paulsen’s talk was met with an exceptionally high level of interest from researchers in quantum
information, and numerous inquiries from participants motivated Paulsen to write up his notes [62]. This talk
was the genesis for the paper [37].

Ruskai (in discussions and her subsequent short talk) pointed out that in the usual models of quantum
information, the algebra of observables for the environment is the commutant of those for the quantum infor-
mation processing system. This suggests a new interpretation of the physical significance of the commutant
in more abstract settings, and allows one to define concepts like the complement of a channel in these settings.
Moreover, because the interplay between system and environment is important, it is often useful to have an
alternative description in terms of the environment’s algebra, as Paulsen has done for CB norms.1

Both Effros and Paulsen emphasized the important role of the Haagerup tensor product, which was new
to most of the audience and has yet to be exploited in quantum information theory. An underlying theme
of Effros and Paulsen was the notion that any good mathematical concept can be quantized. von Neumann
algebras have long been regarded as quantizations of (single variable) integration theory; operator spaces can
be considered as quantizations of Banach space theory which yield a non-commutative version of vector-
valued integration. Of course, it is not always clear when a quantized version of a mathematical concept
models a physical quantum system, as demonstrated in Neufang’s talk.

Marius Junge then spoke on theLp version of operator spaces. He announced a counter-example (with
Q. Xu) [40] to a convexity conjecture of Lieb and Carlen [13], which was open for over ten years. Their
conjecture can be interpreted as an attempt at a non-commutative generalization of Minkowski’s inequality
to three spaces on which one has a SchattenLp norm with 1 < p < 2. The counter-example establishes

that in non-commutative situations which require mixedLp spaces, the naive formula
(
Tr1(Tr2A

p
12)

q/p
)1/q

does not yield a norm. Thus, one is inevitably led to operator spaces, in particular, the non-commutative
vector-valuedLp spaces for which Pisier defined norms using complex interpolation [39, 65, 66, 67].

Junge also described the CB-entropy, a form of conditional information which arises by differentiating a
suitable CB-norm atp = 1 and can be used to define the minimal CB entropy of a quantum channel. The
minimal CB entropy of the identity channel onMd is− log d which is consistent with the fact that it preserves
maximal entanglement. When one interprets the minimal CB entropy as a measure of optimal entanglement
preservation, the seemingly anomalous fact that the CB norm of the identity map isd1/p 6= 1 becomes quite
natural.

Matthias Neufang gave a talk on quantum groups and an associated class of multiplier algebras, based
on recent joint work with Junge, Ruan, and Spronk. He noted that these algebras yield natural “quantum”
channels for which the minimal CB entropy can be computed explicitly and shown to be positive. Thus, these
channels are “classical” in the sense that they do not preserve enough entanglement to yield even one EPR
pair. Nevertheless, they may have useful properties for quantum error correction, as they appear to have an
abundance of noiseless subsystems, decoherence-free subspaces, and unitarily correctable codes. This may
be less perplexing in view of the fact that some of the most useful quantum codes are derived from known
classical codes.

1Earlier Jencova [36] had simplified the proof of additivity of CB entropy by showing that a particular CB norm could be expressed
as the norm of the channel lifted to the commutant. It seems worth asking whether this is a special case of Paulsen’s result or if both are
special cases of a more general relationship.
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2.2 Quantum Shannon Theory

The concept of a completely positive map on an operator algebra predates operator spaces and plays an
important role in quantum information theory. When the system and environment are initially disentangled,
the effect of noise, which comes from interactions with the environment is described mathematically by a
completely positive, trace preserving (CPT) map on the algebra of the system. The term “quantum channel”
is often used when a CPT map represents noise. Shannon developed the mathematical theory for dealing with
noise in classical communication. Extending this to quantum systems is challenging and much richer because
of the many different types of quantum information processing protocols.

Patrick Hayden gave an introductory overview of the current state of the art in the quantum information
analogue of Shannon’s communication theory. He described Schumacher’s typical subspace theorem and
the recent progress [4] made in quantum distributed compression of correlated sources (quantum Slepian-
Wolf theorem and fully quantum version thereof, aka “mother protocol”), which greatly unify the theory of
entanglement distillation and quantum channel capacities. The information-theoretic significance of these
results lies in their giving operational significance to quantities like the quantum conditional entropy.

Graeme Smith discussed the notorious problem of the non-additivity of the coherent information (with
the implication that the quantum channel capacity is not known except for so-called degradable channels, on
which Mary Beth Ruskai gave an overview with open problems). To approach this problem, he introduced a
single-letter upper bound [77], whose good properties allowed the derivation of the best upper bounds on the
capacity of the depolarising channel to-date.

Ruedi Seiler presented the work of his group in Berlin [8, 9] on the quantum version of Sanov’s theorem,
which is about hypothesis testing of a set of alternatives against a single null hypothesis. As in the classical
case, the optimal rate of discrimination is given by a (minimal) relative entropy; strangely, however, the
optimum is not achieved by a universal strategy. Related to this topic, Arleta Szkola and Koenraad Aundeaert
explained their complementing work on the quantum Chernoff bound, described in Section 2.5. i.e. error-
symmetric distrimination between two hypotheses in the asymptotic regime. The resolution of this problem
relies on a beautiful new trace inequality discovered to evaluate the asymptotics of the optimal test.

Andreas Winter discussed at length an open question originating from joint work with John Smolin and
Frank Verstraete, which they call the ”asymptotic quantum Birkhoff conjecture”. (See Conjecture 13 in [78]
and Problem 30 at [83].) It is well-known that bistochastic quantum channels have more extremal points
than the unitary conjugations. However, there are indications that in the limit of high tensor powers of
a bistochastic channel it becomes asymptotically well approximated by mixtures of unitary conjugations.
Winter’s talk was followed by a vigorous discussion about alternative conjectures. One issue is whether it
is reasonable to expect that unitary conjugations will suffice when the known sets of extreme points include
partial isometries.

2.3 Quantum error correction

The workshop included a series of talks that focussed on mathematical aspects of error correction in quantum
computing. David Kribs started with an introductory lecture on the basic framework for quantum error
correction. In the standard noise model, the state is corrupted by a quantum channel represented by a CPT
mapE . The goal of quantum error correction is to find a subspaceC ⊂ H and a recovery operation,R, also
a CPT map such that(R ◦ E) acts like the identity on the convex set of density matrices associated with the
code subspaceC. If P denotes the projection ontoC, this can be stated formally as

(R ◦ E)(ρ) = ρ ∀ ρ ∈ PB(H)P (1)

When the CPT map is written in the Choi-Kraus operator sum formE(ρ) =
∑

a EaρE∗
a , it is well-known

that Eq. (1) is equivalent to the condition

PE∗
aEbP = λabP (2)

for some complex set of numbersλab andC = PH. The intuition behind this equivalence is best seen by
considering the special case in whichEa = taUa with Ua unitary andt2a interpreted as the probability that
the errorUa : ψ 7→ Uaψ occurs. Thenλab = xaδab says that the different unitary errors map vectors inC
into orthogonal subspaces. The recovery operation can then be thought of as the two-step process
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i) identify the orthogonal subspace,UaC, and

ii) apply the inverse operationU∗
a .

The sufficiency of the condition Eq. (2) can then be regarded as arising from the fact that the operatorsEa

are only determined up to a unitary transformation which can be used to “diagonalize the error operators” so
thatλab = xaδab.

Ruskai initiated a vigorous discussion which clarified some of the limitations of this viewpoint. For
example, there are non-unital qubit channels (of which only the amplitude-damping channel has been studied
extensively) with exactly two (non-unitary) error operationsE1, E2 for which no change of basis can make
one of them the identity. Thus, one can not associate a probability with particular error operator, and the
channel (almost) always changes the state. Nevertheless, any code and recovery process which corrects all
unitary one qubit errors, will correct all one qubit errors, including these non-unital ones. In this case, one
can correct errors that can not even be detected! This is a consequence of the quantum measurement process
which has the effect of either correcting the error or converting it to a detectable one; mathematically, this
can be viewed as a consequence of the fact that the set of correctable errors froms a vector space. (The error
detection condition is given by Eq. (2) withEa = I.)

In most discussions of quantum error code construction, one deals with error models which are even more
specialized than the random unitary model mentioned above. One considers only errors which are tensor
products of the identity and the three Pauli matrices. An Abelian subgroup of the group generated by such
errors is called a stabilizer and the simultaneous eigenspace is called a stabilizer code. Although examples of
codes which do not arise from the stabilizer formalism exist [69, 76] most work has concentrated on stabilizer
codes.

Kribs also discussed the important new framework of “operator quantum error correction” [48, 49]. This
is a unified framework for quantum error correction that includes the standard active framework discussed
above, as well as the fundamental passive techniques for error correction – decoherence-free subspaces and
noiseless subsystems. Technically speaking, a quantum systemA is asubsystemof a Hilbert spaceH if there
is a subsystemB such thatC = A⊗B is a subspace ofH. ThenA is correctable for the action ofE if there
is a CPT mapR such that

∀ρA ∀ρB ∃ τB : (R ◦ E)(ρA ⊗ ρB) = ρA ⊗ τB . (3)

Intuitively, quantum information is encoded into theA subsystem, and the recovery operationR is not con-
cerned with noise acting on the ancilla subsystemB. For this reason, these codes have been popularly called
“subsystem codes”. Simply put, the standard active case corresponds todim A = 1 with generalE , R, and
decoherence-free subspaces (respectively noiseless subsystems) are captured when no recovery is required
(R = identity map) anddimA = 1 (respectivelydim A > 1). Other cases correspond to situations not
recognized in any formal way previously within quantum error correction.

Andreas Klappenecker gave an expository talk on the state of the art for subsystem code constructions.
Because the Pauli matrcies form a basis forM2, any code which can correct all one-qubit Pauli errors can
correct arbitrary one qubit errors, including some very strange ones, as described above. In view of this,
Knill defined a general notion of “nice error bases” in higher dimensions. Klappenecker reviewed his work
with Rötteler [43] in which they found new codes based on these nice error bases, only to find that most of
them could also be realized as stabilizer codes. Then, he described the light at the end of the tunnel in which
the group representation theory which had led to so much frustration finally found a natural place under the
umbrella of subsystem codes [3, 44, 45]. He concluded with the announcement of two new results. First he
gave a negative answer to Poulin’s question [68] of whether a subsystem code might require fewer syndrome
measurements than an optimal stabilizer code. Then he described the construction of a subsystem code which
can beat classical Hamming bound [45].

The expository error correction talks concluded with a discussion by Andrew Cross on the basics of
fault tolerant quantum computing. Cross also presented joint work with Aliferis [1] showing how the use
of a particular subsystem code, the so-called “Bacon-Shor codes” appears to significantly improve threshold
estimates by reducing the number of measurements required in recovery operations. The implications of
subsystem codes for quantum computing are still very much being explored. This was particularly evident at
a Perimeter Institute workshop on fault tolerant quantum computing held in June, 2007, a few months after
the BIRS workshop, in which subsystem codes were a predominant theme in discussions.
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Fault tolerant computation seems to require codes which, at least in principle, permit perfect recovery.
However, in other types of quantum information processing, as in classical information theory, there is a
role for codes which lead to optimal recovery in certain situations [23, 89]. Bernhard Bodmann described
work with Kribs and Paulsen [10] which finds optimal encoding schemes when one subsystem is essentially
noiseless and the other is subject to a phase-damping channel.

Cedric Beny spoke about his recent work with Kempf and Kribs [7] that further generalizes the basic
quantum error correction framework to operator algebras by considering the Heisenberg picture, and how the
new approach provides a formalism for the correction of hybrid classical and quantum information [50].

Holbrook and Zyczkowski described joint work [15, 16, 17, 18] with Choi and Kribs motivated by the
fundamental equation Eq. (2). For a fixed operatorT they seek solutions of the matrix equationPTP = xP
with P a projection andx ∈ C. WhenP is rank one, the set ofx is precisely the numerical range ofU
and is the convex hull of the eigenvalues ofT . Therefore, they call the set ofx for which P has rankk
the “rank-k numerical range ofT ” and conjecture that for normalT this is equal to the intersection of the
convex hulls obtained from all possible choices ofN − k + 1 eigenvalues. They can verify the conjecture
whenT is self-adjoint and reduce the general normal case toT unitary, for which significant partial results
were reported. (See the open problems section for an update.) The long range goal of this work would be to
construct new codes from the compatibility of the allowable projectorsPa for differentTa. Ruskai pointed
out some interesting open problems described in [38] and [75] on which this approach to code construction
could be tested.

2.4 Lattice spin models

The mathematical study of quantum spin models has had close interactions with developments in the theory
of operator algebras for many decades. Many results of physical interest have been rigorously derived in the
operator algebra framework. It is an instance of an almost perfect match between mathematics and physics
where the pursuit of rigor does not require a sacrifice of physical interest. More recently, a new dimension has
been added to this fruitful interaction. The exciting developments in quantum information theory, especially
the study of entanglement, has provided new insight in the structure of physical states of quantum spin
models, particularly their ground states.

Frank Verstraete gave a comprehensive review of new techniques he and others [71, 72, 80, 81] have
created for the computational study of quantum spin models based on new ideas from quantum information
theory. These developments are especially timely because of the impressive progress by experimental physi-
cists in their ability to create strongly correlated and entangled states exhibiting a wide variety of quantum
phase transitions, Bose-Einstein condensation and other exotic states of matter. Matrix Product States (MPS),
also known as Finitely Correlated States (FCS) and their higher-dimensional generalizations called Projected
Entangled Pair States (PEPS) were particularly highlighted. These are special states that have good compu-
tational properties and which form the basis for a host of efficient and very successful algorithms collectively
known as Density Matrix Renormalization Group (DMRG) methods.

Bruno Nachtergaele gave an overview of Lieb-Robinson bounds and applications to quantum information
theory. The original work by Lieb and Robinson [53], dating back to the early seventies, provided a proof
that the Heisenberg dynamics of a translation invariant quantum spin system on a lattice has a bounded
group velocity. The key step is a commutator estimate. Recently, Nachtergaele and Sims [58] found an
improved commutator estimate which enable one to extend Lieb and Robinson’s result to a rather general
class of systems defined on a metric graph, which covers almost any conceivable architecture for a quantum
information processing device. One example of a recent application that was presented is a lower bound for
the time required to establish significant correlations between two regions in space using any local dynamics.
The lower bound is linear in the distance between the regions [12, 21, 60]. Another application is a Lieb-
Schultz-Mattis Theorem in arbitrary dimensions [28, 59], which shows that under certain conditions low-
energy excitations will occur even in the absence of continuous symmetry breaking.

When a spin chain is in a pure state, the entanglement entropySn of a block of lengthn in a pure state
is the entropy of the reduced density matrix of this block. It is called the entanglement entropy because it
corresponds to the standard measure of the entanglement between this block and the rest of the chain. In many
situations, as the length of the chain becomes infinite,1

nSn → 0 which implies thatSn grows sublinearly
with n. Numerical experiments by Vidal,et al [82] suggested logarithmic growthSn ∼ log n at a critical
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point. This was subsequently proved rigorously by Jin and Korepin [35] for the ground state of the XX
model. Although Korepin was originally scheduled to talk about this work, personal circumstances forced
him to cancel. Therefore, Milan Mosonyi included an overview of entanglement entropy for spin chains in
his talk. Mosonyi, then described related work with Fannes and Haegeman [22] in which they showed that
one can construct quasi-free states for whichSn ∼ nα for any0 < α < 1.

For lattices, it has been conjectured that away from a critical point the entanglement entropy obeys scales
like the ”area” of the boundary. This implies a uniform bound away from the critical point in the case of a
spin chain. Subsequently, it was realized that the circumstances under which an area law does or does not
hold depends on additional properties [24] of the lattice model. This topic was touched upon briefly in both
Mosonyi’s and Verstraete’s lecture. Since the workshop, there has been considerable progress [29, 87] on this
topic, exploiting the improved Lieb-Robinson bounds described in Nachtergaele’s lecture.

In quantum statistical mechanics, the use of quasi-local algebras plays an important role in showing that
the infinite volume thermodynamic limit exists for certain types of lattice systems. In generalizing the concept
of cellular automata to quantum systems, one challenge is to allow an initially finite lattice system to grow
without bound in any direction. R. Werner described his approach [73] to quantum cellular automata based
on quasi-local algebras.

2.5 Quantum state discrimination

Two speakers, Szkola and Audenaert, gave talks about their recent work on state discrimination. Taken
together their results determine the quantum Chernoff bound, thereby settling a problem which has been
open for several years. The problem is to find the best measurement for distinguishing two (known) quantum
statesρ andσ. In general this cannot be done with full certainty (unless the states are orthogonal), and so the
goal is to find the minimum errorMinErr(ρ, σ). Assuming that multiple copies of the states are available,
this leads to the question of finding the best way to distinguishρ⊗n andσ⊗n, and hence to find the asymptotic
rate lim

n→∞
1
n log MinErr(ρ⊗n, σ⊗n). The corresponding rate in the classical problem was found by Chernoff,

and there has been a search for the quantum version in recent years. In a major breakthrough in 2006, Szkola
and Nussbaum showed that the rate is lower bounded by the quantitylog

(
min

0≤s≤1
Trρsσ1−s

)
, which is almost

a direct translation of the classical Chernoff bound into quantum language. Szkola described this result in
her talk and discussed its relation to the notion of the quantum Hellinger arc which interpolates between the
statesρ andσ.

At the end of 2006, in another breakthrough, Audenaert and his collaborators proved that this quantity
is also an upper bound for the rate, thereby establishing equality. In his talk Audenaert emphasized the
properties of the quantum Chernoff bound as a measure of the distance between two states, and showed how
it induces a metric on the state space. He explained how the Chernoff bound follows from a new matrix
inequality which states that for positive matricesA,B and all0 ≤ s ≤ 1

1
2 (Tr(A + B)− Tr|A−B|) ≤ TrAsB1−s. (4)

This inequality, which has other applications, allows one to relate the trace-norm distance of two states to
their Renyi relative entropy.

In a related talk on state discrimination, Anna Jencova described her work [26] with Guta on quantum
statistics, which is concerned with using results of measurements to infer properties of quantum states and
systems. In particular she described results about local asymptotic normality. This property applies to a se-
quence of two dimensional random variables whose distributions depend on an (unknown) parameter. When
localized in the neighborhood of some fixed point of the parameter space, the property implies convergence
to a family of Gaussian distributions. Jencova talked about the theory of quantum statistical experiments,
and showed how this leads to a quantum version of local asymptotic normality. For both classical and qubit
systems, it has been shown that weak and strong convergence are equivalent. Whether or not this holds for
general quantum systems is still open. However, Guta and Jencova are able to prove weak convergence for
general quantum systems.
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2.6 Other Topics Covered

Robert Alicki gave a provocative talk based on the assertion that a scalable quantum computer would be a
“perpetuum mobile of the second kind”. The key assumption is that the system is initially in a metastable
state which is almost a KMS state. The talk was punctuated by a vigorous discussion of the validity of these
assumptions. In the end, many participants felt what was presented was a proof by “reductio ad absurdum”
from dubious assumption and that what was needed was an argument based on rigorous bounds.

Jen Eisert reported on some recent work [25, 41] regarding the so-called cluster states, which have high
multi-article entanglement in the sense that entanglement within some subsystems persists after repeated
measurements. These states have important applications in the development of the so-called “one-way”
quantum computer. Eisert described modified protocols which can tolerant some noise or imperfect clusters.

Wolf reported on recent work with Cirac [86] on the question of whether or not a quantum channel can be
written non-trivially as the composition of two other channels. It may be surprising that there are situations
in which this cannot be done; for qubits, these are precisely the channels with exactly three Kraus operators.
More generally, one can ask when a channelT can be written asT = Sn. Even forT very close to the
identity channel, this need not always be possible becauseT completely positive need not imply thatT 1/n

is completely positive. After giving an overview of the various phenomena which can occur in different
situations, Wolf described some of the open questions which remain.

Dennis Kretschmann presented recent work (with Dirk Schlingemann and Reinhard Werner) [46] con-
cerning a continuity theorem for the Stinespring representation of a quantum channel. Stinespring’s Theorem
guarantees that every quantum channel can be represented (non-uniquely) in the Heisenberg picture by an
isometric embedding into a larger space. This suggests that two channels which are ’close’ in some sense
should be representable by isometries which are also close. As Kretschmann and co-authors showed, the
correct notion of closeness for channels in this context is the completely bounded or ’cb’ norm, which is a
regularized version of the operator norm. The authors prove inequalities comparing the cb norm of the differ-
ence of two channels with the minimal operator norm of the difference of the isometries in their Stinespring
representations. These inequalities provide dimension-independent bounds for the information-disturbance
tradeoff inherent in any measurement of a system. The inequalities also allow a continuity estimate for the
no-broadcasting theorem, and a strengthened proof of impossibility for quantum bit commitment.

3 Open problems

One of the highlights of the workshop were two sessions reserved for discussion of open problems, to which
the participants responded enthusiastically. Ruskai started things off by distributing a preliminary draft of
[70]. Many participants described open problems during their talks, as well as in the dedicated sessions.
Participants were asked to write up these problems and send them to R. Werner for inclusion on his open
problem web site. A list of the major problems follows, with comments on recent progress.

List of open problems

A. The first 6 sections in Ruskai’s list [70] were discussed in the workshop. Some contain several related
problems. The 7-th section was outside the scope of the workshop and added later. The main sections
are

1. Extreme points of CPT maps: As a consequence of the workshop, Ruskai showed that what are
sometimes called “quasi-extreme” points which have Choi rankd but are not true extreme points
of the convex set are in the closure of the set of extreme points. This allows a clearer statement
of the open problems.

2. Convex decompositions of CPT maps or A block matrix generalization of Horn’s lemma (with K.
Audenaert).

3. Generalized depolarized channels: The original emphasis was on the generalized Werner-Holevo
channel. However, the developments in [84] suggested a further generalization using any channel
that is very noisy to replace the completely noisy one.
Progress:Michalakis [56] has solved Problem 6 for p = 2. It seems likely that his methods can
be extended to provide some results for Problem 7 and for Problem 12.
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4. Random sub-unitary channels

5. Additivity and multiplicativity conjectures: Very few changes were made to earlier versions of
this section despite the recent breakthroughs. It seemed better to leave things in the original
form to emphasize the impact of that work. One minor modification was the extension of Shor’s
Theorem 3 in Section 5.3 top < 1 by the use of the general form of Klein’s inequality, which
then gives a single simple argument for allp > 0. This may be useful in doing numerical work to
move from existence theorems to explicit counter-examples.

Progress: Section 5.6 describes the current status of counter-examples [31, 32, 84] to multi-
plicativity conjectures and the implications for additivity. It also contains weaker versions of
multiplicativity conjectures. It should again be emphasized that these counter-examples were
stimulated by the open problem session and discussion at the workshop.

6. Coherent information and degradability: This problem was presented in Ruskai’s talk at the work-
shop based on work in [19] which may contain some related open questions.

7. Local invariants forN -representability

B. Entropic uncertainty relations for more than two observables by D. Leung, S. Wehner, and A. Winter

C. Quantum Birkhoff Conjecture. This is conjecture 13 in [78] and Problem 30 at [83]. After Winter’s
talk there was a vigorous discussion as to whether or not it might be necessary to extend the conjecture
to include partial isometries, such as the random sub-unitary maps described in Section 4 of [70]. A
1958 paper [54] entitled “The convex hull of sub-permutation matrices” and related work from that era
might be useful to those who favor including random sub-unitary maps.

D. Best Constant in Norm bounds on Commutators: This problem was posed in [11] and presented to
workshop participants by K. Audenaert along with a summary of known results.

Progress: During the workshop, S. Michalakis [55] solved this problem for the commutator[X, X∗]
by showing that

√
2 is sharp in‖ [X, X∗] ‖2 ≤

√
2‖X‖22.

E. Structure of thenth matrix range of an operator, by V.I. Paulsen.

F. Structure of higher rank numerical ranges, by M.-D. Choi, J.A. Holbrook, D.W. Kribs, K. Zyczkowski,
as outlined above.

Progress: Shortly after this workshop, a flurry of work came to light from mathematicians working
on higher rank numerical ranges. Most importantly, a related convexity conjecture was settled in the
affirmative by Woerdeman [85], and then by Li and Sze [52] using different techniques which they were
able to apply to the normal case. Thus, the door has been further opened for potential applications in
quantum error correction.

4 Appendices attached as pdf files

A. Some open problems in quantum information theory by M.B. Ruskai

B. Entropic uncertainty relations for more than two observables by, D. Leung, S. Wehner, and A. Winter

C. Structure of thenth matrix range of an operator, by V.I. Paulsen.

D. Best Constant in Norm bounds on Commutators by K. Audenaert

E. Abstract of E. Effros for BIRS workshop 07w5013 on Operator Spaces and Group Algebras
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Abstract
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1 Extreme points of CPT maps

In QIT, a channel is represented by a completely-positive trace-preserving (CPT) map
Φ : Md1

7→Md2
, which is often written in the Choi-Kraus form

Φ(ρ) =
∑

k

AkρA
†
k with

∑

k

A
†
kAk = Id1

. (1)

The state representative or Choi matrix of Φ is

Φ(|β〉〈β|) = 1

d

∑

jk

|ej〉〈ek|Φ(|ej〉〈ek|) (2)

where |β〉 is a maximally entangled Bell state. Choi [8] showed that the Ak can be
obtained from the eigenvectors of Φ(|β〉〈β|) with non-zero eigenvalues. The operators
Ak in (1) are known to be defined only up to a partial isometry and are often called
Kraus operators. When a minimal set is obtained from Choi’s prescription using
eigenvectors of (2), they are defined up to mixing of those from degenerate eigenvalues
and we will refer to them as Choi-Kraus operators. Choi showed that Φ is an extreme
point of the set of CPT maps Φ : Md1

7→Md2
if and only if the set {A†

jAk} is linearly
independent in Md1

. This implies that the Choi matrix of an extreme CPT map has
rank at most d1. We will refer to the rank of (2) as the Choi rank of Φ. (Note that
this is not the same as the rank of Φ as a linear operator from Md1

to Md2
.)

It is often useful to consider the set of all CPT maps with Choi rank ≤ d1. In
[44] these were called “generalized extreme points” and shown to be equivalent to
the closure of the set of extreme points for qubit maps. This is true in general. Let
E(d1, d2) denote the extreme points of the convex set of CPT maps from Md1

to Md2
.

Theorem 1. The closure E(d1, d2) of the set of extreme points of CPT maps Φ :
Md1

7→Md2
is precisely the set of such maps with Choi rank at most d1.
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Proof: Let Let Ak be the Choi-Kraus operators for a map Φ : Md1
7→ Md2

with
Choi rank r ≤ d1 which is not extreme, and let Bk be the Choi-Kraus operators for
a true extreme point with Choi-rank d1. When r < d1 extend Ak by letting Am = 0
for m = r+1, r+2, . . . d1 and define Ck(ǫ) = Ak + ǫBk. There is a number ǫ∗ such
that the d2

1 matrices C†
j (ǫ)Ck(ǫ) are linear independent for 0 < ǫ < ǫ∗. To see this,

for each C
†
j (ǫ)Ck(ǫ) “stack” the columns to give a vector of length d2

1 and let M(ǫ)
denote the d2

1 × d2
1 matrix formed with these vectors as columns. Then detM(ǫ) is a

polynomial of degree d4
1, which has at most d4

1 distinct roots. Since the matrcies A†
jAk

were assumed to be linearly dependent, one of these roots is 0; it suffices to take ǫ∗
the next largest root (or +1 if no roots are positive). Thus, the operators C†

j (ǫ)Ck(ǫ)

are linearly independent for ǫ ∈ (0, ǫ∗). The map ρ 7→ ∑
k Ck(ǫ)ρC

†
k(ǫ) is CP, with

∑

k

C
†
k(ǫ)Ck = (1 + ǫ2)I + ǫ(A†

kBk +B
†
kAk) ≡ S(ǫ).

For sufficiently small ǫ the operator S(ǫ) is positive semi-definite and invertible, and
the map Φǫ(ρ) = Ck(ǫ)S(ǫ)−1/2ρS(ǫ)−1/2C

†
k(ǫ) is a CPT map with Kraus operators

Ck(ǫ)S(ǫ)−1/2. Thus, one can find ǫc such that ǫ ∈ (0, ǫc) implies that Φǫ ∈ E(d1, d2).
It then follows from lim

ǫ→0+
Φǫ = Φ that Φ ∈ E(d1, d2). QED

When d1 = 2, one can use the singular value decomposition (SVD) to show that
that the Kraus operators of CPT maps with Choi rank at most two can be written in
the form

A1 =
∑

j=1,2

αj|vj〉〈uj| A2 =
∑

j=1,2

√
1 − α2

j |wj〉〈uj| (3)

where 0 ≤ αj ≤ 1, |uj〉 is pair of orthonormal vectors in C2, and |vj〉, |wj〉 are two

pairs of orthonormal vectors in Cd2
. This gives all CPT maps in E(2, d2). Although it

may seem artificial from a physical point of view to consider d1 6= d2, several reduction
results in quantum Shannon theory require consideration of maps with d1 6= d2.

Problem 1. Characterize, classify and/or parameterize the closure E(d1, d2) of the
set of extreme points of CPT maps Φ : Md1

7→Md2
for d1 > 2 and d2 arbitrary.

Although this problem is of some interest in its own right, we will give additional
motivation in Section 5.5 where we observe that certain conjectures for CPT maps
with d1 = d2 can be reduced to case of the channels in the closure of extreme points
with d1 ≥ d2.
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2 Convex decompositions of CPT maps or

A block matrix generalization of Horn’s lemma

Based on joint work with K. Audenaert

Since the set of CPT map Φ : Md1
7→ Md2

is convex, it can be written as a convex
combination of extreme maps, and one expects that d2

1(d
2
2 − 1) will suffice. For maps

on qubits, it was shown in [44] that if all maps in E(d1, d2) are permitted, then only
two are needed and they can be chosen so that the weights are even. This result
generalizes to any CPT map with qubit output, i.e., for Φ : Md 7→M2 one can write

Φ = 1

2
(Φ1 + Φ2) (4)

where Φ1 and Φ2 have Choi rank ≤ d. We conjecture that this result extends to
arbitrary CPT maps.

Conjecture 2. (Audenaert-Ruskai) Let Φ : Md1
7→Md2

be a CPT map. One can find
d2 CPT maps Φm with Choi rank at most d2 such that

Φ =

d2∑

m=1

1

d2

Φm. (5)

The adjoint or dual of a CPT map is a unital CP map and it is useful to restate
the conjecture in this form.

Conjecture 3. Let Φ : Md2
7→ Md1

be a CP map with Φ(I2) = I1. One can find d2

unital CP maps Φm with Choi rank at most d1 such that

Φ =

d2∑

m=1

1

d2

Φm. (6)

In this form, the conjecture can be viewed as a statement about block matrices,
and it is useful to restate it explicitly in that form.

Conjecture 4. Let A be a d1d2 positive semi-definite matrix consisting of d2 × d2

blocks Ajk each of size d1×d1, with
∑

j Ajj = M . Then one can find d2 block matrices
Bm, each of rank at most d1, such that

∑
j Bjj = M , and

A =

d2∑

m=1

1

d2

Bm (7)
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If Conjecture 4 holds, then Conjecture 3 (and hence Conjecture 2) follows immedi-
ately. One need only let A = Φ(|β〉〈β|) be the Choi matrix of Φ for which M = 1

d2

Id2
.

It would suffice to prove Conjecture 5 for the case M = Id2
. The general case then

follows by multiplying on the right and left by the matrix 1√
d2

√
M ⊗ Id2

. (May be

some subtleties if M is non-singular.)

For d1 = 1, Conjecture 4 is a consequence of Horn’s Lemma1 [23, 24] which says
that a necessary and sufficient condition for the existence of a positive semi-definite
matrix with eigenvalues λk and diagonal elements akk is that λk majorizes akk.

Corollary 2. Let A be a d × d positive semi-definite matrix with TrA = 1. Then
there are d normalized vectors xm such that

A =
d∑

m=1

1

d
xmx†

m (8)

Proof: Note that any set of non-negative eigenvalues λk with
∑

k λk = 1 majorizes
the vector (1

d
, 1

d
, . . . , 1

d
). Therefore, by Horn’s lemma, one can find a unitary U and a

self-adjoint matrix B such that A = UB2U † and the diagonal elements of B2 are all
1

d
. (In fact, U,B can be chosen to have real elements.) Write U =

∑
k uke

†
k where uk

denotes the k-th column of U and ek the standards basis. Let xm =
√
d

∑
j ujbjm.

Then

A =
∑

jk

uj〈ejB
2ek〉u†

k

=
∑

jk

∑

m

uj〈ejBem〉〈em, Bek〉u†
k

=
∑

m

1

d
xmx†

m (9)

and, since the columns of a unitary matrix are orthonormal,

‖xm‖2 = d
∑

jk

u
†
jbjmbkmuk = d

∑

jk

bjmbkmu
†
juk

=
∑

jk

δjkbjmbkm = d(B2)mm = d1

d
= 1. QED (10)

This suggests that we restate the conjecture (7) using vectors of block matrices of
the form X†

m =
(
X

†
1m X

†
2m . . . X

†
d2m

)
with each block d1 × d1.

1See Theorem 4.3.32 of [24]. Note that [23] is by Alfred Horn, but that [24] is co-authored by
Roger A. Horn.
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Conjecture 5. Let A be a d1d2 positive semi-definite matrix consisting of d2 × d2

blocks Ajk each of size d1 × d1, with
∑

j Ajj = M . Then one can find d2 vectors Xm

composed of d2 blocks Xjm of size d1 × d1 such that

A =

d2∑

m=1

1

d2

XmX†
m, and (11)

∑

k

XkmX
†
km = M ∀ m (12)

There is no loss of generality in replacing Bm by XmX†
m with Xm of the above form.

If X is d1d2 × d1d2 with rank d1, then by the SVD it can be written as X = UDV †

with U, V unitary and D diagonal with djj = 0 for j > d. If D̃ retains only the

first d1 columns of D, then X̃ = UD̃ has the desired form and X̃X̃† = XX†. thus,
Conjecture 5 is clearly a generalization of Horn’s lemma to block matrices.

When d2 = 2, the argument in [44] (due to S. Szarek) is easily extended to give a
proof of Conjecture 4 . Then A > 0 is equivalent to

A =

(√
A11 0
0

√
A22

) (
I W

W † I

)(√
A11 0
0

√
A22

)
(13)

with W a contraction. Write the SVD of W as

W = U




cos θ1 0 0 . . . 0
0 cos θ2 0 . . . 0
... 0

. . .
...

0 0 . . . 0 cos θd


V †

= 1

2
U




eiθ1 0 0 . . . 0
0 eiθ2 0 . . . 0
... 0

. . .
...

0 0 . . . 0 eiθd


V † + 1

2
U




e−iθ1 0 0 . . . 0
0 e−iθ2 0 . . . 0
... 0

. . .
...

0 0 . . . 0 e−iθd


V †

= 1

2
(W1 +W2) (14)

with W1 and W2 unitary. When W is a d1 × d1 unitary,

(
I W

W † I

)
has rank d1.

Therefore, substituting (14) into (13) shows that A is the midpoint of two matrices
with rank at most d1 and the same blocks on the diagonal as A.

This argument suggests that one might strengthen the conjecture to require that
each Bm have the same diagonal blocks as A. However, this does not appear to hold
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in the limiting case d1 = 1 with d2 > 2. In the proof of Corollary 2, it is tempting to
replace B by C = BV with V unitary. However, in (10) we would obtain (C†C)mm

which, unlike CC† need not have diagonal elements 1

d
.

The original proof of Horn’s lemma used a complicated induction argument based
on the properties of augmenting a matrix by a row and column. Since we know
that (11) holds when d2 = 2 or d1 = 1, we have the starting points for a (probably
non-trivial) double induction argument. Although Audenaert has found extensive
numerical evidence for the validity of Conjectures 2-5, a proof seems to be elusive.

3 Generalized depolarized channels

3.1 Depolarized Werner-Holevo channels

The Werner-Holevo channel W(ρ) = 1

d−1

(
(Tr ρ) I − ρT

)
has been extensively studied,

especially in connection with the conjectured mutliplicativity of the maximal output
p-norm, defined as νp(Φ) = supρ ‖Φ(ρ)‖p. For d = 3, the maximal output p-norm is
not multiplicative for p > 4.79. However, it is known that νp(W ⊗ (W) = [νp(W)]2

for 1 ≤ p ≤ 2. For larger d one obtains a counter-example to multiplicativity only
for correspondingly large p. In fact, it has been argued [19] that for d > 2p the WH
channel is multiplicative.

W maps any pure state |ψ〉〈ψ| to 1

d−1
E with E = I − |ψ〉〈ψ|. Therefore, when d

is large, W behaves much like the completely noisy map (although it is never EB). It
is natural to consider channels of the form

Φx = xI + (1 − x)W (15)

and ask if they also satisfy the multiplicativity conjecture (24) for 1 ≤ p ≤ 2. Channels
of the form (15) were considered by Ritter [42] in a different context.

Problem 6. Show that the channel Φx = xI + (1− x)W satisfies the multiplicativity
property νp(Φx) ⊗ (Φx) = [νp(Φx)]

2 for 1 ≤ p ≤ 2.

When d = 3 and x = 1

3
, the channel (15) becomes

Φ1/3(ρ) = 1

3

(
I + ρ− ρT ) (16)

which has many interesting properties. It seems to have been first considered by
Fuchs, Shor and Smolin, who published only an oblique remark at the end of [16].
They wrote it in a very different form, which is also given in [28]. Let |1〉, |2〉, |3〉 be

7



an orthonormal basis for C3 and define

|ψ0〉 = 3−1/2
(
|1〉 + |2〉 + |3〉

)

|ψ1〉 = 3−1/2
(
|1〉 − |2〉 − |3〉

)

|ψ2〉 = 3−1/2
(
|1〉 − |2〉 + |3〉

)

|ψ3〉 = 3−1/2
(
|1〉 + |2〉 − |3〉

)
.

Now let Ψ be the channel whose Kraus operators are
√

3

2
|ψk〉〈ψk| for k = 0, 1, 2, 3.

This channel has the following properties:

1. Ψ = Φ1/3 = 1

3
I + 2

3
W. Although this is not obvious, it is easily verified and

implies (16). Thus, Ψ maps every real density matrix to the maximally mixed
state.

2. Ψ is unital and the Holevo capacity satisfies

CHv(Φ) = log 3 − Smin(Φ) (17)

but requires 6 (non-orthogonal) input states to achieve this capacity. It is
not hard to see that Smin(Φ) is achieved on inputs which are permutations of
(1,±i, 0)T .

3. Ψ is an extreme point of the EB channels which is neither CQ nor an extreme
point of the CPT maps [28].

A solution of Problem 6 in the case p = 2 was recently reported by Michalakis [40].

3.2 Further generalizations of depolarization

In [51] channels Mǫ which whose output is always close to a maximally mixed state
in the sense ‖Φ(ρ) − 1

d
I|| < ǫ play an important role. It seems natural to define a

polarization of such channels

Φx,ǫ = xI + (1 − x)Mǫ (18)

For x close to 1, one explects multiplicativity to holds, and it is natural to ask several
questions.

Problem 7. Does Φx,ǫ satisy (24) for 1 ≤ p ≤ 2? For sufficiently small ǫ?
If not, for what values of x and/or p does (24) holds and how do they depend on ǫ?

8



4 Random sub-unitary channels

We now introduce a class of extreme points motivated by the WH channel.

The Kraus operators for the WH channels with d = 3 can be written as

Ak = 1

2
Xk




0 1 0
−1 0 0
0 0 0


 k = 0, 1, 2 (19)

where X is the shift operator X|ej〉 = |ej+1〉. This suggests a natural generalization
to channels with Kraus operators

Ak = 1

2
Xk




u11 u12 0
u21 u22 0
0 0 0



 = 1

2
Xk

(
U 0
0 0

)
k = 0, 1, 2 (20)

with ujk the elements of a 2 × 2 unitary U . The choice U =

(
0 1
1 0

)
does not give

a counterexample to (24), although the effect of a tensor product on a maximally
entangled state is the same as the WH channel. This is because changing −1 to +1
allows a “purer” optimal output for a single use of the channel; to be precise, for +1 the
input 1√

3
(1, 1, 1) yields an output with eigenvalues 2

3
, 1

6
, 1

6
as compared to eigenvalues

1

2
, 1

2
, 0 for −1.

By contrast, the standard generalization of the WH channel to d > 3 involves
(

d
2

)

choices of

(
0 1
−1 0

)
as the only non-zero block of a d × d matrix. It would seem

natural to study channels with d Kraus operators of the form

1

d−1
Xk

(
U 0
0 0

)
k = 0, 1, . . . d−1. (21)

where U is a d−1 × d−1 unitary matrix. Such channels are generically extreme and
always in the closure E(d, d). Limited attempts to find new counter-examples of this
type have found similar behavior to changing +1 to −1; they have outputs which are
“too pure” for a single use of the channel.

Nevertheless, channels with Kraus operators of the form (21) have interesting prop-
erties that makes them worth further study. Moreover, it is not necessary to use the
same U in every Kraus operator. One can choose

Ak = 1

d−1
Xk

(
Uk 0
0 0

)
k = 0, 1, . . . d−1. (22)

9



with Uk any set of unitaries in Md−1. With a few exceptions, channels whose Kraus
operators have the form (22) are extreme points of the CPT maps on Md, and are
always in E(d, d).

The WH channel gives a counter-example to multiplicativity for large p because
maximally entangled states have outputs whose p-norms are relative maxima of
‖(W ⊗ W)(ρ)‖p, Nathanson [41] has shown analytically that for any p the output
of any maximally entangled state gives a critical point, but Shor has found numerical
evidence [49] that this is a relative maximum only for p ≥ 3. This suggests that one
look at other random sub-unitary channels.

Problem 8. Let Φ be a channel with Kraus operators of the form (22). Does the set
of relative maxima of ‖(Φ⊗Φ)(ρ)‖p always include outputs whose input is maximally
entangled? If not, for what p and under what circumstances do maximally entangled
inputs yield outputs which are relative maxima?

Despite the failure of Ruskai’s very limited attempt to find new counter-examples
of this type for d = 4, 5, more extensive numerical investigations, perhaps with differ-
ent, randomly chosen, Uk, could be worthwhile. Further suggestions about numerical
searches are given in Section 5.3. Even a negative result could provide some insight.

Problem 9. Search for new counterexamples to (24) with Φ a channel with Kraus
operators of the form (22).

In addition to looking at the optimal output purity of these channels, one can also
ask about their coherent information and quantum capacity.

Problem 10. What are the properties of the coherent information of random sub-
unitary channels? When are they degradable? When is their coherent information
additive?

Remark: (added 11 August 2007). There has been recent interest in the question of
multiplicativity of minimal output rank [22, 10]. For d = 4, the sub-unitary channel Φ
with 3×3 unitary operators corresponding to the permutations (123), (134), (142), (243)
has minimal output rank 3. The channel Φ⊗Φ acting on a maximally entangled state
has output rank 10, which does not give a violation. However, the behavior of this
channel suggests that numerical investigations of similar examples for somewhat higher
d might be worth investigating for counter-examples to the multplicativity question
for p < 1 as discussed further in Section 5.6.

10



5 Additivity and multiplicativity conjectures

5.1 Prelude

Soon after the 14 June 2007 version of this manuscript was posted on the BIRS web
site, counter-examples were found to the multiplicativity conjectures for all p > 1
[51, 21]. Nevertheless, the additivity conjectures and many related questions remain
open. Therefore, I have made only minor changes to most of this section and discuss
the recent developments and new questions they raise in Section 5.6. Moreover, these
existence of counter-examples also raises new questions. Thus, there may still be value
in some of the old material, such as Theorem 3.

5.2 The conjectures

One of the outstanding open problems in quantum information is the additivity of
minimal output entropy, i.e.,

Smin(Φ ⊗ Ω) = Smin(Φ) + Smin(Ω) (23)

where Smin(Φ) = inf
γ
S[Φ(γ) where the infimum is taken over the set of density matrices

γ so that γ > 0 and Tr γ = 1. This conjecture has considerable importance because
Shor [48] has shown that it is globablly equivalent to the conjectured additivity of
Holevo capacity and several conjectures about entanglement of formation. Shirokov
[45, 46] has even shown that additivity in all finite dimensions would have implications
for certain infinite dimensional channels. Fukuda [17] and Wolf [18] have given some
additional reductions.

Amosov, Holevo and Werner [4] realized that (23) would follow if the following
conjecture holds for p ∈ (1, 1 + ǫ) with ǫ > 0.

νp(Φ ⊗ Ω) = νp(Φ)νp(Ω) (24)

where νp(Φ) = inf
γ
‖Φ(γ)‖p. Although, Werner and Holevo [50] found a counter-example

to (24) for large p, it seems reasonable to conjecture that (24) holds for 1 ≤ p ≤ 2.
This conjecture can be rewritten [1, 21] using the Renyi entropy, which is essentially
the difference quotient at p = 1 of p log ‖γ‖p, i.e.,

Sp(γ) ≡ 1

p−1
log Tr γp. (25)

This expression is meaningful for any p ≥ 0 with the understanding that S0(γ) =
log rank(γ) and S1(γ) the usual von Neumann entropy. Then (24) can be rewritten as

S
p
min(Φ ⊗ Ω) = S

p
min(Φ) + S

p
min(Ω) (26)

with Sp
min

(Φ) = inf
γ
Sp[Φ(γ)].
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5.3 Finding counter-examples

It is surprising that no counter-example to (24) is known other than the WH channel
[50] and very small perturbations of it. Moreover, one has no counter-example for
p < 4.79. Some authors [36] have conjectured that (24) holds for 1 ≤ p ≤ 2. If so, one
would expect to have a family of counter-examples for p > 2. More generally, if the
conjecture holds for 1 < p < pc, one would expect to find counter-examples for p > pc

arbitrarily close to to pc.

Problem 11. Find more counter-examples to (24). Do they suggest that the conjecture
holds for 1 ≤ p ≤ 2?

One strategy for finding new counter-examples, is to first search numerically for
additional counter-examples for very large p using Theorem 3 below. For any new
examples found, study the critical points numerically and determine the values of p
for which one ceases to have a counter-example and for which one ceases to even have
a relative maximum for entangled inputs. Perhaps this will give some insight into the
nature of counter-examples that will allow one to find some in the range 2 < p < 4.79.
The reason for starting with large p is that the algorithm for finding relative maxima
using Theorem 3 is faster and more robust for large p.

The following extension of Shor’s algorithm for finding relative minima of the
minimal ouput entropy (see Appendix of [12]) was proved by C. King using Hölder’s
inequality in the case p > 1. We present a different proof, valid for all p > 0. We first
note that Shor’s argument uses the positivity of relative entropy, which is based on
Klein’s inequality, using the more general form in Ruelle [43] for convex functions

Tr f(A) − Tr f(B) ≥ Tr (A−B)f ′(B) (27)

where A,B are positive semi-definite matrices. Since the function f(x) = xp with
p > 1 is convex, this gives

TrAp − TrBp ≥ p(A− B)Bp−1. (28)

Theorem 3. Let p > 0 and Ω a CPT map with Ω̂ its adjoint with respect to the

Hilbert-Schmidt inner product. For fixed γ = |ψ0〉〈ψ0| and
{
p < 1
p > 1

}
, let ψ1 be

the eigenvector corresponding to the
{

smallest
largest

}
eigenvalue of Ω̂

[
Ω(γ)

]p−1

. Then

‖Ω(|ψ1〉〈ψ1|)‖p

{ ≤
≥

}
‖Ω(|ψ0)〉〈ψ0)|‖p

Proof: First consider p > 1. The max min principle implies that

〈ψ1Ω̂
[
Ω

(
|ψ0〉〈ψ0|

)]p−1
ψ〉 ≥ 〈ψ0Ω̂

[
Ω

(
|ψ0〉〈ψ0|

)]p−1
ψ0〉. (29)
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which can be rewritten as

TrΩ
(
|ψ0〉〈ψ0|

)[
Ω

(
|ψ0〉〈ψ0|

)
]p−1 ≥ Tr

[
Ω

(
|ψ0〉〈ψ0|

)
]p (30)

Then using (28) with A = Ω
(
|ψ1〉〈ψ1|

)
, B = Ω

(
|ψ0〉〈ψ0|

)
gives

Tr
[
Ω

(
|ψ1〉〈ψ1|

)
]p − Tr

[
Ω

(
|ψ0〉〈ψ0|

)
]p

≥ p
(
Tr Ω

(
|ψ0〉〈ψ0|

)[
Ω

(
|ψ0〉〈ψ0|

)
]p−1 − Tr

[
Ω

(
|ψ0〉〈ψ0|

)
]p

)
≥ 0.

where the last inequality follows from (30). Taking p-th roots gives the desired result.

For 0 < p < 1, the function f(x) = xp is concave and the same argument goes
through with all inequalities reversed. QED

Using this result repeatedly with ψk+1 the eigenvector corresponding to the largest

eigenvalue of Ω̂
[
Ω(|ψk〉〈ψk|)

]p−1
, gives a sequence converging to a relative maximum

of ‖Φ(γ)‖p.

5.4 Specific multiplicativity problems

Proving multiplicativity of the depolarized WH channel was already mentioned in Sec-
tion 3.1. Recently, Michalakis reported [40] a proof for p = 2. In view of the fact that
some depolarized WH channels do not satisfy the very unappealing conditions based
on positive entries used in [36, 35], the approach in [40] may be useful in investigating
other classes of channels.

Problem 12. For what classes of channels can (24) be proved for p = 2.

In [41], a class of channels is defined using mutually unbiased bases, with each
basis defining an“axis”. These channels can be described by “multipliers” in a manner
similar to unital qubits channels, and when all multipliers are non-negative they seem
very similar. However, even for a single use of a channel some questions are open. See
Conjecture 9 of [41]. If this conjecture is true, then additivity and multiplicativity can
be reduced to the case of “maximally squashed” channels which are generalizations of
the two-Pauli qubit channel.

Problem 13. Find a proof of multiplicativity for the two-Pauli qubit channel, which
does not use unitary equivalence to channels with negative multipliers.

Since most recent investigations of additivity (23) have approached the problem
through the multiplicativity conjecture, it is worth noting that Amosov has obtained
some results [2, 3] in special cases by a very different approach using the montonicity
of relative entropy. Also recall that Shor’s proof [47] of additivity for entanglement
breaking channels used entropy arguments based on strong subadditivity. Although
these basic properties of entropy are unlikely to suffice for more general channels, they
do demonstrate that multiplicativity is not the only route to additivity.
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5.5 Reduction to extreme points

Although the set of CPT maps Φ : MdA
7→ MdB

is convex, one can not use convexity
to reduce additivity or multiplicativity to that of the extreme channels. One can,
however, use the notion of complementary channels to obtain a kind of global reduction
to extreme channels.

The notion of complementary channel was first used in quantum information theory
in a paper of Devetak and Shor [15] and then studied in detail in [25, 34]. This concept
is equivalent to one obtained much earlier in a more general context by Arveson [6] in
the section on lifting commutants. (See the appendxi to [11] for details.)

If Φ : MdA
7→ MdB

, its complement is a CPT map ΦC : MdA
7→ MdE

with Choi
rank dB. Whenever dB ≤ dA, the complement belongs to the class of generalized
extreme points. Therefore, the results in [25, 34] imply that if we can prove additivity
for all maps in E(d1, d2), it will hold for all CPT maps with dB ≤ dA. Moreover,
Shor’s channel extensions [48] used to establish the equivalence of various additivity
results increase only dA. Hence, additivity for tensor products of all extreme maps
with dA ≥ dB would imply it for all maps with dA = dB.

Problem 14. Identify new classes of extreme CPT maps for which additivity and/or
multiplicativity can be proved.

Problem 15. Can one prove (24) for random sub-unitary channels, at least for p = 2.
If not, do these channels provide additional counter-example?

5.6 New counter-examples and their implications

Very recently (July, 2007), Winter [51] solved Problem 11 by showing the existence of
counter-examples for all p > 2. Moreover, his approach failed at p = 2, which seemed
to provide support for the validity of multiplicativity in the range 1 < p ≤ 2. But
soon after, Hayden [21] showed that there exist counter-examples for 1 < p < 2 and
this was extended to p = 2 by Winter.

Hayden [21] also provided an analysis of his examples that indicates that (23)
still holds for these channels and suggested that one try to establish additivity by
proving (26) for p < 1. King [32] announced that his arguments for multplicativity of
entanglement breaking channels [31] extend to 0 < p < 1. He also observed that the
proofs of (24) for unital qubit channels [29] and depolarizing channels, [30] were basd
on the following inequality of Lieb-Thirring [38]

Tr (AB)p ≤ TrApBp (31)

for p ≥ 1 and A,B positive semi-definite. Since Araki [5] has shown that the reverse
inequality is valid for 0 ≤ p < 1, his results for unital qubit and for general depolarizing
channels should also readily extend to 0 < p < 1.
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However, hopes for validity of (26) for 0 ≤ p < 1 were shattered when Harrow,
Leung and Winter [22] announced counter-examples for p = 0. These examples differ
from those for p > 1. But they are also based on the results and methods introduced
in [22] on the prevalence of nearly maximally entangled states in large dimension.
It seems only a matter of time until counter-examples are shown to exists for any
p ∈ (0, 1).

Nevertheless, it is worth emphasizing that none of the counter-examples are uni-
form in p, i.e., as p approaches 1 the counter-example fails and a new one must be
found with dimension increasing to infinity as p 7→ 1. Thus, the following much weaker
forms of (24) and (26) are not excluded. The validity of any one of the four conjectures
which follow would imply that (23) and all the equivalent additivity conjectures hold.

Conjecture 16. For any fixed pair of channels Φ,Ω, there is a p∗ > 0 such that either

(i) p∗ < 1 and (26) holds for all p ∈ (p∗, 1), or

(ii) p∗ > 1 and (26) holds for all p ∈ (1, p∗).

Conjecture 17. For any fixed integer d there is a pd > 0 such that either

(i) pd < 1 and (26) holds whenever Φ : Md′ 7→Md′ , d
′ ≤ d and pd < p < 1, or

(ii) pd > 1 and (26) holds whenever Φ : Md′ 7→Md′, d
′ ≤ d and 1 < p < pd

For brevity we stated the conjectures above in pairs, but in each case the form (i)
or (ii) is a separate conjecture.

If the additivity conjectures are true, proving either of the above conjectures seems
less likely than proving (23) directly. Moreover, Shor’s channel extension methods
give global equivalences which require consideration of CPT maps Φ : Md 7→Md′ with
d ≥ d′. Thus one should extend the above conjectures to include the case d > d′.
However, we preferred to state them in the simpler form.

Although based on similar techniques, the actual form of the channels giving
counter-examples for p > 1 and p < 1 seems to be different. This leads to

Problem 18. Does there exists a channel or pair of channels that violates (26) for
both some p1 > 1 and some p2 with 0 < p2 < 1?

If the answer is negative, then (23) holds because one can always approach p = 1
from either above or below. This seems a rather unlikely approach to proving (23),
but thinking about it might provde some insight about this additivity conjecture.

The need for large dimensions to find counter-examples raises the question of
whether channels for smaller dimensions might satisfy (26) for two copies, but not
for a large number.
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Problem 19. Find an example of a channel Φ, an integer m and a p > 0 such that
S

p
min(Φ

⊗n) = nS
p
min(Φ) for n < m but Sp

min(Φ
⊗m) < mS

p
min(Φ).

Current results do not even exclude the possibility that a non-unital qubit channel
violates additivity for Φ⊗m. Curiously, (24) has only been proved [33] for non-unital
qubit maps when p = 2 or p ≥ 4.

All of the counter-example results obtained thus far are given as existence theorems.
It would be useful to have explicit counter-examples.

Problem 20. Find explicit examples of channels which violate (24) for p 6= 1.

In the case of Winter’s examples [51] for p > 2, one can show that the so-called
CB entropy [14] is positive and the coherent information is negative. (When the
coherent information is achieved with a maximally entangled state, the CB entropy
and coherent information differ only by a sign change.) Thus, although these channels
are not entanglement breaking (EB), they preserve very little entanglement – not even
enough to allow one to recover a single EPR pair in the sense of Horodecki, Oppenheim
and Winter [27, ?]. The WH counter-examples also have positive CB entropy except
for d = 3 when it is exactly zero. Thus, for p > 2, the known counter-examples suggest
that entanglement does not enhance the optimal output purity until the channel is
very close to EB. One can ask if this holds for other examples, particularly those for
p < 2.

Problem 21. Do all counter-examples to multiplicativity (24) have non-negative CB
entropy and/or zero coherent information?

Finally, one can ask whether or not additivity itself holds. It is worth recalling
that the equivalent capacity conjecture was stated in [7] in a form that seemed to
favor superadditivity. Thus, the ultimate open question is still.

Problem 22. Prove (23) or find a counter-example.

6 Coherent information and degradability

In [11] on degradability several questions were raised of which we mention one.

Problem 23. Find pairs of channels M,N that are mutually degradable in the sense
that there exist channels X ,Y such that

X ◦M = N C Y ◦ N = MC . (32)
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At present, the only examples known have M = I which is universal in the sense
that N is arbitrary. This works because I is universally degradable and its complement
Tr is a universal degrador. Can other examples be found? It may be that when N has
Choi rank d2, one must have M = I. Therefore, it seems worth looking for examples
in which both have lower Choi-rank. It would be particularly interesting to find pairs
in which both have Choi-rank d, but are not individually degradable.

7 Local invariants for N-representability

In the 1960’s a variant of the quantum marginal problem known as N -representability
attracted considerable interest. The question is to find necessary and sufficient con-
ditions on a p-particle reduced density matrix ρ1,2,...t in order that there exists an
anti-symmetric (or symmetric for bosons) N -particle density matrix ρ = ρ1,2...N such
that Trt+1,t+2,...Nρ1,2...N = ρ1,2,...t. The pure N -representability problem, for which
one requires that the preimage ρ1,2...N = |Ψ〉〈Ψ| come from an anti-symmetric (or
symmetric) pure state |Ψ〉 is also of interest.

A full solution was found only to the mixed state problem for the one-particle
density matrix, for which it is necessary and sufficient that the eigenvalues of ρ1 are
≤ 1

N
when Tr ρ1 = 1. Other results were obtained for a few very special situations,

and some reformulations were found. For the two-particle reduced density matrix, a
collection of necessary inequalities were obtained, but little else was known. For over
30 years, there was very little progress until two recent breakthroughs. Klyachko [37]
solved the pure state 1-representability problems. Liu, Christandl and Verstraete [39]
showed that some version are QMA complete.

Although many open questions remain, we consider only one which may be amenable
to quantum information theorists. As Coleman pointed out, N -representability must
be independent of the 1-particle basis used to write the density matrix, i.e., the solution
can be expressed in terms of what one might call local invariants. These are param-
eters which are invariant under transformations of the form U ⊗ U ⊗ . . .⊗ U = U⊗p.
For the 1-matrix, these are just unitary invariants, which are known to be the eigen-
values. For p = 2 the set of local invariants includes the eigenvalues, but must contain
other parameters as well. Surprisingly, no complete set of local invariants in which
N -representability conditions for the 2-matrix can be expressed is known.

Problem 24. Find a minimal complete set of local invariants for an anti-symmetric
(or symmetric) 2-particle density matrix.
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Entropic uncertainty relations for more than two observables
1Contacts: Debbie Leung, wcleung@iqc.ca;

Stephanie Wehner, wehner@cwi.nl;
Andreas Winter, a.j.winter@bris.ac.uk

(Dated: 4th March 2007)

Background. The uncertainty principle is one of the fundamental ideas of quantum mechan-
ics. Since Heisenberg’s uncertainty relations for canonically conjugate variables (formalised by
Robertson for arbitrary observables), it has been one of the staples. This, and later, formulations
are about the tradeoff between the “uncertainties” in the value of non-commuting observables on
the same state preparation; in other words, they are comparing counterfactual situations.

Traditionally, the comparison is between variances of the observables, but it was eventually
realised that other measures of “spread” of the distribution on measurement outcomes can be
used. Arguably the universal such measure is the entropy of the distribution, and Białynicki-
Birula and Mycielski [1] proved an entropic uncertainty relation for systems of n canonical pairs
of position and momentum coordinates Xi and Pi:

H(X1 . . . Xn|ϕ) + H(P1 . . . Pn|ϕ) ≥ n log(eπ),

where H(Q1 . . . Qn|ϕ) refers to the (differential) Shannon entropy of the joint distribution of the
coordinates Q1, . . . Qn when measured on the state ϕ. In [1] it is shown that this relation implies
the Heisenberg uncertainty relation.

After that, following initial work by Deutsch and in response to a conjecture by Karl Kraus, the
following inequality was proved by Maassen and Uffink [2] for observables in finite dimension d

with eigenbases Bj = {|bj
1
〉, . . . , |bj

d〉} (j = 1, 2) and an arbitrary state ϕ:

H(B1|ϕ) + H(B2|ϕ) ≥ − log maxx,y |〈b1
x|b2

y〉|2, (1)

where H(Bj|ϕ) = H
(
{|〈bj

x|ϕ〉|2 : x = 1, . . . , d}
)

is the Shannon entropy of measuring the state ϕ

in basis Bj . In particular, for mutually unbiased bases, i.e. when all the inner products on the right
hand side above are equal to 1/d, we obtain that the entropy sum is lower bounded by log d. This

is tight, as the example of |ϕ〉 = |bj
x〉 shows.

Note that in both cases we get a lower bound on the entropy sum of two non-commuting (and
indeed non-coexistent) observables which is independent of the underlying state. This lower
bound is not necessarily tight (as can be seen rather easily in the case of the general Maassen-
Uffink inequality), but its usefulness lies in the fact that it is in terms of very simple geometric
information of the relative position of the bases.

The problem. Traditionally, uncertainty relations were restricted to pairs of “conjugate” observ-
ables. But the finite-dimensional inequalities, culminating in the Maassen-Uffink one, show that
it is really the property of mutual unbiasedness that makes for maximal uncertainty. Since this
realisation, one could ask for the entropic uncertainty tradeoff between more than two observ-
ables. This may be physically interesting, since there exists in every dimension d a large number
of mutually unbiased bases, up to d + 1 (see problem 13 on these pages).

In [3] it was shown that for k observables in C
d, with eigenbases Bj = {Uj |x〉 : x = 1, . . . , d},

the expression

h(d;U1, . . . , Uk) := min
ϕ

1

k

k∑

j=1

H(Bj |ϕ)
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has information-theoretic significance in the context of “information locking”. Here, H(Bj |ϕ) =

H
(
{|〈x|U∗

j |ϕ〉|2 : x = 1, . . . , d}
)

is the Shannon entropy of the measurement of basis Bj on the

state ϕ.
Note that always

0 ≤ h(d;U1, . . . , Uk) ≤
(

1 − 1

k

)
log d, (2)

and the problem of the entropic uncertainty relations at its most general is to find an expression
for or at least a lower bound on h(d;U1, . . . , Uk) in “simple” terms of the geometry of the set of
bases Bj .

In the applications as the cited one [3], one is interested in maximally unbiased observables,
i.e., in

h(d; k) := maxU1,...,Uk
h(d;U1, . . . , Uk),

and a characterisation of the maximisers. Note that if there exist, in dimension d, k mutually
unbiased bases, then by virtue of (1) and the above (2),

1

2
log d ≤ h(d; k) ≤

(
1 − 1

k

)
log d,

and one would like to have a characterisation of the sets of unitaries attaining the maximum.
Seeing thus the scaling of h(d; k) with log d, and assuming an asymptotic viewpoint of large

dimension, we consider finally the quantity

h(k) := lim
d→∞

1

log d
h(d; k)

[if the limit exists, otherwise take the lim inf], which depends now only on k. For example, h(2) =
1/2, and it is clear that

h(k + k′) ≥ k

k + k′h(k) +
k′

k + k′h(k′),

but we don’t know if h(k) actually strictly grows with k. If so, does it approach the value 1 − 1/k
suggested by the upper bound, or at least 1 − 1/f(k) with some growing function f of k?

Partial results. In [3] (see the eprint version) numerical work on three and more mutually unbi-
ased bases in dimensions up to 29 is reported, which are consistent with a behaviour of 1−O(1/k)
of h(k). The mutually unbiased bases are taken as a subset of the “stabiliser construction” MUBs
in prime power dimension.

That this choice may be significant became obvious only with [4] where it was shown that in
square prime power dimensions d = p2ℓ there exist up to k = pℓ +1 MUBs with h(d;U1, . . . , Uk) =
1

2
log d [8]. Furthermore, in any square dimension d = d2

0 a number k = d1/14.8 of mutually
unbiased bases with the same property can be found. This shows that mutual unbiasedness is
not enough to characterise a large h(d;U1, . . . , Uk). Indeed, Ambainis [5] has shown that any
three bases from the “standard” mutually unbiased bases construction in prime power dimension,
h(d;U1, U2, U3) =

(
1

2
+ o(1)

)
log d, for large dimension, and assuming the Generalised Riemann

Hypothesis. Furthermore, for any 0 ≤ ǫ ≤ 1/2, there always exist k = dǫ many of these bases such
that h(d;U1, . . . , Uk) =

(
1

2
+ ǫ + o(1)

)
log d.
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On the other hand, it was shown in [6] that k = (log d)4 unitaries Uj randomly and indepen-
dently chosen from the Haar measure have h(d;U1, . . . , Uk) ≥ log d − O(1) with high probability,
and for sufficiently large dimension d.

It should be noted that in the application to information locking, one is interested in a small
number of bases; however, for a complete set of mutually unbiased bases in dimension d, Sanchez-
Ruiz [7] has shown that h(d;U1, . . . , Ud+1) ≥ log(d + 1) − 1.

[1] I. Białynicki-Birula, J. Mycielski, “Uncertainty Relations for Information Entropy in Wave Mechanics”,
Comm. Math. Phys. 44, 129-132 (1975).

[2] H. Maassen, J. B. M. Uffink, “Generalized Entropic Uncertainty Relations”, Phys. Rev. Lett. 60(12),
1103-1106 (1988).

[3] D. P. DiVincenzo, M. Horodecki, D. W. Leung, J. A. Smolin, B. M. Terhal, “Locking Classical Correla-
tions in Quantum States”, Phys. Rev. Lett. 92(6). 067902 (2004); quant-ph/0303088.

[4] M. A. Ballester, S. Wehner, “Entropic uncertainty relations and locking: tight bounds for mutually
unbiased bases”, Phys. Rev. A 75, 022319 (2007); quant-ph/0606244.

[5] A. Ambainis, work to appear (dated October 2006).
[6] P. Hayden, D. W. Leung, P. W. Shor, A. Winter, “Randomizing quantum states: Constructions and

applications”, Comm. Math. Phys. 250, 371-391 (2004).
[7] J. Sanchez-Ruiz, “Entropic uncertainty and certainty relations for complementary observables”, Phys.

Lett. A 173, 233-239 (1993).
[8] And many more if one relaxes the condition of mutual unbiasedness to approximate unbiasedness,

using the techniques of [6].



1. A Problem Posed By Vern I. Paulsen

Given an operator T ∈ B(H) it’s n-th matrix range is the set

Wn(T ) = {Φ(T ) : Φ : B(H) → Mn is completely positive and unital}.
This problem is concerned with how well knowledge of matrix ranges for

small values determine them for larger values.
Let

Sn,j(T ) = {A ∈ Mn : W j(A) ⊆ W j(T )}.
Given A ∈ Mn and W ⊆ Mn, we let d(A,W) = sup{‖A−W‖ : W ∈ W}

denote the usual distant between a point and a set and given two sets of
matrices S,W ⊆ Mn we let d(S,W) = sup{d(A,W) : A ∈ S} denote the
usual distance between sets.

Problem 1. Does limj→∞ supn d(Sn,j(T ),Wn(T )) = 0 for every T ∈ B(H)?

This problem turns out to be equivalent to a problem about preserving
what are called essential matrix ranges with compact perturbations.

I bring it up at this meeting because I believe that it could also be at
the heart of some questions about quantum capacity. It is related to the
following vague sort of question. Given a cp map Φ : Mn → Mn if we can
only have knowledge of j × j submatrices, with j << n, how well can we
know the map?

Department of Mathematics, University of Houston, Houston, Texas 77204-
3476, U.S.A.

E-mail address: vern@math.uh.edu
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Best Constant in Norm Bounds on Commutators

Koenraad M.R. Audenaert
k.audenaert@imperial.ac.uk

September 18, 2007

1 Problem

Find the best constant c in the inequality

|| [X, Y ] ||2 ≤ c ||X||2 ||Y ||2, (1)

where X and Y are arbitrary complex d×d matrices, [X, Y ] is their commutator
XY − Y X, and ||A||2 = (Tr[A∗A])1/2 is the Frobenius norm.

2 Background

Commutators come up almost everywhere, in diverse areas of mathematical
physics, including quantum information theory. The actual answer to the above
problem, the value of this best constant, is likely to be irrelevant for most
applications of such bounds. Nevertheless it is quite an intruiging problem,
since it is one of the simplest problems one can ask about commutators, and yet
it has not been answered yet. The hope is that the tools used to solve it will
provide additional handles on the structure of commutators, and may in this
way be helpful to the solution of other problems involving them.

3 Partial Solution

It is well-known and easy to see that the inequality holds for c = 2. This is
a straightforward application of the triangle inequality and submultiplicativity
of unitarily invariant norms. In [2], A. Böttcher and D. Wenzel conjectured
that, actually, c =

√
2 is the best constant (they only consider the real case,

but the complex case most likely gives the same answer). One can certainly not
do better, since c =

√
2 is achieved by two anti-commuting Pauli matrices. Say

X = σx and Y = σz, then [X, Y ] = −2iσy, so that ||[X,Y ]||2 = 2||σy||2 = 2
√

2,
while ||X||2 = ||Y ||2 =

√
2.

One of the matrices can be eliminated from the problem by regarding the
matrices as vectors in a Hilbert space. Let Vec(X) be the operation that “stacks

1



the columns of X on top of each other”, i.e. in terms of the standard matrix
and vector basis elements, Vec(eij) = ei ⊗ ej . Then one easily sees that

Vec([X,Y ]) = (X ⊗ 11− 11⊗XT )Vec(Y ).

Since the Frobenius norm has the special property that ||X||2 is equal to the
Euclidian 2-norm ||.||2 of Vec(X), the norm inequality turns into

||(X ⊗ 11− 11⊗XT )Vec(Y )||2 ≤ c||X||2 ||Vec(Y )||2.

The matrix Y can now be eliminated by noting that

max
y

||Ay||2
||y||2 = ||A||,

where the maximisation is over all vectors and ||A|| denotes the operator norm
of A (largest singular value). Hence, an equivalent form of the problem is finding
the best constant c in

||X ⊗ 11− 11⊗XT || ≤ c ||X||2.

Known results are listed below:

1. When X is normal, the best c is indeed
√

2. Normality of X implies that
X is unitarily diagonalisable. Thus there is a unitary U and diagonal Λ
such that UXU∗ = Λ. By unitary invariance of the operator norm and
Frobenius norm, the inequality can then be converted to the diagonal case,
which is an easy exercise to solve. Two proofs are presented in [2]. When
X is not normal, one could try to exploit the singular value decomposition
X = UΣV ∗, but the problem is that one cannot get rid of both U and V
in the inequality.

2. When X and Y are real, c ≤ √
3; proven in [2].

3. When X and Y are real 2 × 2 matrices, or when one of the matrices is
rank 1, c =

√
2; again, see[2].

4. When X = Y ∗, c =
√

2; this case is due to Spiros Michalakis (unpub-
lished).

A related problem is to see what happens when the right-hand side is based
on other norms. It turns out that this gives rise to “boring” results. Given a
UI norm |||.|||, one can define the corresponding Q-norm ||.||Q by

||X||Q := |||X∗X|||1/2. (2)

Theorem 1 For general complex matrices X and Y , and for any UI norm |||.|||
with corresponding Q-norm ||.||Q, the following inequality holds:

|||[X,Y ]||| ≤ 2||X||Q||Y ||Q. (3)
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Proof. Follows from the triangle inequality and Hölder’s inequality:

|||XY ||| ≤ ||| |X|2 |||1/2 ||| |Y |2 |||1/2

see [1] (IV.42). QED
Despite the siicity of this derivation, the ensuing bound is sharp, as equality

is obtained for X and Y two anticommuting Pauli operators. Take X = σx

and Y = σz, then [X,Y ] = −2iσy, so that |||[X, Y ]||| = 2|||11||| and ||X||Q =
||Y ||Q = |||11|||1/2.

For example, when applied to Schatten p-norms, this gives the bound

||[X, Y ]||p ≤ 2||X||2p||Y ||2p. (4)

As a closing remark, one can replace X by X + Z for any Z that commutes
with Y , since this transformation does not change the commutator. It might,
for example, make sense to replace X and Y by their traceless versions X 7→
X − Tr(X)11/d.

References
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Several aspects of amenability for groupoids
Claire Anantharaman-Delaroche

Abstract : We shall discuss various approaches of amenability for groupoids
(mainly equivalence relations and group actions) and some applications. In partic-
ular we shall compare global and fiberwise amenability, and relate these notions to
asymptotic properties of random walks on groupoids.

Real rank and stable rank of group C*-algebras
Rob Archbold

Abstract : We shall begin with a survey of results concerning real rank and
stable rank for the C*-algebras associated with various classes of locally compact
groups. In the second part of the talk, we shall describe recent results (joint with E.
Kaniuth) on the real rank and stable rank of C*-algebras associated with compact
transformation groups.

Operator algebraic rigidity of higher rank lattices
Bachir Bekka

Abstract : The following analogue of Margulis superrigidity theorem in the context
of operator algebras was suggested by Connes and Jones. If Γ is a discrete group,
view Γ as a subgroup of the unitary group U(L(Γ)) of its von Neumann algebra
L(Γ). Assume that Γ is a higher rank lattice. Let M a type II1 factor and U(M)
its unitary group. Then every homomorphism π : Γ → U(M) with π(γ)′′ = M
extends to a homomorphism U(L(Γ)) → U(M). As we will discuss, the answer
is positive for arithmetic lattices like SLn(Z) for n ≥ 3. As an application, the
full C*algebra of this group has no faithful tracial state; this answers a question of
Kirchberg in relation with Connes embedding problem.

Completely positive and completely bounded maps
on Coxeter groups with applications

Marek Bożejko

Abstract : In our talk we present 2 classes of positive denite functions on Coxeter
groups (W,S) with applications to constructions of a big class of operator spaces
completely isomorphic with R ∩C. In this talk we give also the solution of Bessis-
Moussa-Villani conjecture (BMV conjecture) for the generalized Gaussian random
variables

G(f) = a(f) + a ∗ (f),
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Horn’s inequalities and Connes’ embbeding problem
Ken Dykema

(joint work with Benoit Collins)

Abstract : Connes embedding problem asks whether every separable II1-factor
can be embedded in the ultrapower of the hyperfinite II1-factor; this is equivalent
to asking whether every finite set in every II1-factor has microstates. We relate
this to questions concerning the possible spectral distributions of a + b, where a
and b are self-adjoint elements in a II1-factor having given spectral distributions.
The finite-dimensional version of the spectral distribution question was solved by
Klyatchko, Totaro, Knudson and Tao, in terms of inequalities first formulated by
Horn.

Quantized Functional Analysis and Quantum Information Theory
Edward Effros

Abstract : For much of the Twentieth Century, the theory of quantum mea-
surements consisted of various thought experiments which seemed remote from the
real world. With the advent of devices that can manipulate individual photons and
particles, this situation has drastically changed. Quantum channels are currently
realizable both in and out of the laboratory. It is an ideal area for operator alge-
braists to gain a visceral feeling for the physics of quantum theory. Perhaps the
most surprising mathematical aspect of QIT is the depth of the methods that are
required. This is reflected in the fact that there are still unsolved problems at the
most basic levels.

There have been some truly remarkable applications of quantized functional
analysis to this area. This has been in part due to the remarkable work of Marius
Junge and Mary Beth Ruskai. I will do my best to give a sketch of the physical
and mathematical background for this new area.

Weak amenability of CAT(0) cubical groups
Erik Guentner

Abstract : A CAT(0) cubical complex is a complex in which the cells are Eu-
clidean cubes, the attaching maps are isometries and the intrinsic metric satisfies
the CAT(0) inequality. Basic examples are trees and Euclidean spaces. A group
acting metrically properly on a CAT(0) cubical complex has the Haagerup property
and it is natural to ask whether such a ’CAT(0) cubical group’ is weakly amenable.
In the talk we shall construct uniformly bounded representations of groups which
admit a metrically proper action on a finite dimensional CAT(0) cubical complex.
As a consequence, we can conclude that such groups are weakly amenable. The
talk is based on joint work with Nigel Higson.
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