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- Compare two versions of a derivative-free trust-region
algorithm:
- One version employs a calculus approach to build the model

function.
- The second version employs a non-calculus approach to build the

model function.
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Establishing the context

e The optimization problem considered is

in F(x
/3, F)

where
- F:R" — R is obtained by manipulating two blackboxes with a
similar degree of expensiveness,

- Fis C? on the box,

- the inequalities ¢ < x < u are taken component-wise
(&SX[SU,‘ VIE{,I,,H})



Form of F considered

In this presentation, we consider two different cases for F:

1. Fisthe product of two blackboxes f; and f; :

F:ﬁ'fb
wherefi:R" = R e C? f, :R" - R € C?

2. Fis the quotient of two blackboxes f; and f; :

_h

f2’
wherefi :R" =R e C? f, : R" — R € C? and f,(x) # 0 for any x
in the box.

F



What is a blackbox?

A blackbox is any process that returns an output whenever we provide
an input, but the mechanism of the process is not analytically available
to the optimizer.

Input: x output: f(x)
— 5| ? N

e Example: Computer simulations, laboratory experiments.
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The main algorithm

e It is a derivative-free trust-region algorithm.

e Itisinspired by the the pseudo-code presented in [Conn,
Scheinberg and Vicente, 2009] and [Hough and Roberts, 2022].

e It has been adapted for box constrained optimization problems by
considering the projected gradient onto the box.

e The convergence theory may be derived from the recent paper by
Hough and Roberts: Model-based derivative-free methods for
convex-constrained optimization (2022).



Details on the model function

e The model m at iteration k, denoted m*, has the form
M) = FO) 4 (%) (= X0) 5 0= x) THAx = X0,
where

- x®is the incumbent solution,
- g*is an approximation of the gradient VF(x¥),

- H®is a symmetric approximation of the Hessian V2F(x").



Model function continued

o Letting x = x* + sf, where s® € R" is a step direction, the model
can be written as

(! 4 5) = FXP) 4 (1) Ts* + 5 (1) THS"



How do we build g* and H*?

e Let Qr(x*) be a quadratic interpolation function of F at x® using the
(n+1)(n+ 2)/2 distinct sample points

X, xfeohld, x*®hldohld

where h # 0.



How do we build g* and H*?

e Let Qr(x*) be a quadratic interpolation function of F at x® using the
(n+1)(n+ 2)/2 distinct sample points

X, xfeohld, x*®hldohld

where h # 0.

Non-calculus approach

HF: 1t is V2Qr(xF), the Hessian of the quad. interpolation function Q.

gk : Itis VQr(x*), the gradient of the quad. interpolation function Q.



Calculus approach

e When F=f;-f,,
HE = F) 7205 (6") + V03 () (Vs ()

£ V0,0 (V) + AO)VEQL (),

and

g = AX*)V Q5 (x*) + (X )V (X°).



Calculus approach

e When F:J):i,
2

= W [BOOPV205 () = FiGR () V25 ()

+2f (X VA (X)V Qs () T
—H(") (V05 ()W ()T + V05 () v ()T

and

g = H(x*)V Qs () — LX)V Qs (x*)
()P '
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Calculus approach

e When F Jff

= W [BOOPV205 () = FiGR () V25 ()
+2f (Xk)Vsz (Xk)Vsz (Xk)T

—H(") (V05 ()W ()T + V05 () v ()T
and
g = HF)VE, () — AV, (<)
()P

e For both approaches, H* and g* are obtained with (n +1)(n +2)/2
function evaluations.
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Accuracy of the techniques

- The Hessian of Qr is a O(h) accurate approximation of the
Hessian at x*.

- The gradient of Qr is O(h?).



Accuracy of the techniques

- The Hessian of Qr is a O(h) accurate approximation of the
Hessian at x*.

- The gradient of Qr is O(h?).
e The calculus approach to approximate the Hessian and the
gradient are also

- O(h) and O(h?) respectively [Chen, Hare, Jarry-Bolduc, 2022].
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Theoretical advantages of the calculus approach

The non-calculus approach:
If f1,f> are linear functions, then g* and H* are perfectly accurate.

We can do better than that with the calculus based approach!

The calculus approach:
If f1, > are quadratic functions, then H* and g are perfectly accurate.

(A calculus approach also allows to use different approximation
techniques depending on the sub-function).

e Will it make a significant difference in an algorithm?



Numerical experiments




Implementation

e Two versions of a derivative-free trust-region algorithm have been
implemented in Matlab2021b.

e The initial values for the parameters have been influenced by
preliminary numerical results and the values proposed in Trust
region methods, Chapter 6.
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The values of the parameters

AY =1 (initial trust-region radius),
At max = 14+ 03 (maximal trust-region radius),
A2 =1 (Initial sampling radius),
As min = 16 — 03 (minimal sampling radius),
A max =1 (maximal sampling radius),
n = 0.1 (parameter for accepting the trial point),
m = 0.9 (parameter for the trust-region radius update),
~=0.5 (parameter to decrease trust-region radius),
Yine = 2 (parameter to increase the trust-region radius),
€stop = 1€ — 05 (parameter to verify optimality),
m=1 (parameter to verify the size of the trust-region radius).



More details on the model function

e Note: the sampling points are allowed to be taken out of the box
constraint.

e Every time the incumbent solution x* is updated, H® and g* are
computed again so that the the model is always fully linear on the
trust region ball.

e This requires (n +1)(n 4 2)/2 function evaluations.
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Trust-region subproblem

e To solve the trust-region subproblem in Matlab, we use the
quadprog with the algorithm trust-region reflective.



Comparison

Using data profiles with 7 = 1e — 01, 1e — 03, Te — 05, we compare two
versions of our derivative-free trust-region algorithm:

- Version 1 builds the model with a non-calculus approach.

- Version 2 builds the model with a calculus approach.

e To check if our algorithms are not that bad compared to
well-established algorithms, we include fmincon in the comparisons.



Details on the experiments

e f;and f, are taken to be linear functions or quadratic functions
with random dimensions n between 1 and 30.

e The coefficients in f; and f, are generated randomly with randi
(integers in [-10,10]).

e The starting point xX° € R" is generated with randi ( each
component is in [-5,5])

e The lower bound ¢ is setto ¢ =x? —1forallie {1,...,n}
e The upper bound u is set to u; :X,Q + 1foralli.

e We repeat 100 times each experiment.
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Experiment 1: product

e First, we investigate the case F = f; - f, for the 3 following
situations:

- f1: linear, f,: linear,
- f1: quadratic, f,: linear,
- f1: quadratic, f,: quadratic.

20



Data profiles, F fo, fi linear, f, linear

’ T=1e-01 ; =1e-03 ’ m=1e-05
0.8} “ ]
0.6 1
|
0.4} 1
0.2 |
—calculus
—no calculus
0 —fmincon
0 200 400 200 400 200 400
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Data profiles, F = f; - f, f quadratic, f, linear

=1e-01 ] m=1e-03 ] m=1e-05

0.2} —calculus
—nocalculus
~—fmincon

0

0 500
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Data profiles, F = f; - f,, f1 quadratic, f, quadratic

=1e-01

—calculus
—nocalculus
— fmincon

200 400 0 200 400 0 200 400
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Experiment 2: easy quotient

e Second, we investigate the case F = % for the following 4
situations:

- f1: linear, f>: linear,

- f1: quadratic,  fo: linear,

- f1: linear, f>: quadratic,
- f1: quadratic, f,: quadratic.

e f, and the box are built so that there are no roots of f, close to the
box.
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Data profiles, F = %‘ fi linear, f, linear

f.

=1e-01 ] =1e-03 7=1e-05
—calculus
—nocalculus
— fmincon

200 400 200 400 200 400
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Data profiles, F = %‘ fi linear, f, quadratic

f.

m=1e-01 ] m=1e-03 ] m=1e-05

—calculus
—nocalculus
— fmincon

200 400

200 400
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Data profiles, F = %,ﬁ quadratic, f, linear

=1e-01

—calculus
—nocalculus
— fmincon

200 400

=1e-03

200 400

200

400
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Data profiles, F = %, f1 quadratic, f, quadratic

m=1e-01 ] m=1e-03

—calculus
—nocalculus
— fmincon

200 400

200 400 0 200 400
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Experiment 3: hard quotient

e \We repeat the experiments for F = % but this time,
we let a root of f, be near the box constraint.
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Data profiles, F = %,ﬁ linear, f, linear

7 =1e-01 ] =1e-03 ] =1e-05

08
06

040

0.2r —calculus
—nocalculus
—fmincon
0
0 500 500
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Data profiles, F = %‘ fi linear, f, quadratic

f.

m=1e-01 ] m=1e-03

0.2r( —calculus
I —nocalculus
— fmincon
0 L I

0 200 400

0 200 400
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Data profiles, F = %,ﬁ quadratic, f, linear

=1e-01

—calculus
—nocalculus
— fmincon

0 200 400

=1e-03

0 200 400

0 200 400
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Data profiles, F = %, f1 quadratic, f, quadratic

m=1e-01 ] m=1e-03

0.2}/ —calculus
—nocalculus
— fmincon

0 200 400 0 200 400 0 200 400
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Analyzing the results

e The calculus approach is as good or better than the non-calculus
approach on all experiments.

e The calculus approach is significantly better when F = ﬂ and f>
has a root near the box constraint.
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Conclusion

e A calculus approach seems to improve the efficiency and
robustness of our derivative-free trust-region algorithm.
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Conclusion

e A calculus approach seems to improve the efficiency and
robustness of our derivative-free trust-region algorithm.

e A calculus approach is not more difficult to implement than a
non-calculus approach.

e Another advantage of a calculus approach is that it allows to use
different approximation techniques depending on the sub-function
and/or different sample points.
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Future research directions

e Consider other test sets.
e Integrate techniques to reuse sampling points.

e Find and solve a real-world problem that has this structure
(product of two blackboxes or quotient of two blackboxes).
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Papers related to this talk

[CHJ21] Y. Chen, W. Hare, and G. Jarry-Bolduc. “Error Analysis of
Surrogate Models Constructed through Operations on
Sub-models”. In: arXiv preprint arXiv:2112.08411 (2021).

[HJP20] W. Hare, G. Jarry-Bolduc, and C. Planiden. “Hessian
approximations”. In: arXiv preprint arXiv:2011.02584 (2020).

37



Thank you!



Details on the sampling radius

e Fach time a model m* is built, it is fully linear on the trust region
ball B(x*; AF) since the sampling radius to build g* and H* is set to

Al min{AF AR}
e To ensure that the sampling radius is not too big, we then set

AF — min{AF Agmax}.

e To decrease the risk of numerical errors, we finally set

AF — max{AF, As min}.
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