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Randomized Clinical Trials with Treatment Switching

Treatment switching is an intercurrent event commonly occurring in clinical
trials designed to assess the effect of a treatment on the incidence of a
disease

Often switching is a prognosis-related choice

ICH E9(R1) addendum provides guidelines on estimands and sensitivity
analyses in clinical trials with treatment switching (ICH, 2019)

There are various types of switching possibilities:

X Control subjects may be allowed to start taking the active treatment

X Treated subjects may be allowed to stop taking the active treatment
X Subjects are allowed to start a non-trial treatment

Focus on clinical trials with one-sided switching behavior

2



Motivating Study: Concorde Clinical Trial
(Concorde Coordinating Committee, 1994)

Randomized controlled clinical trial involving patients with asymptomatic HIV infection

Treatment variable: Immediate versus deferred treatment with zidovudine

X In the control arm, treatment with zidovudine was deferred until the onset of
symptoms of HIV/AIDS

Outcome: Time-to-disease progression (time to ARC or AIDS) or death

Some patients in the deferred arm switched to the active treatment starting
zidovudine before the onset of symptoms of HIV/AIDS on the basis of low CD4 cell
counts and other evidences of disease progression

Synthetic data-set closely mimicking the Concorde trial (White et al., 2002)

X The synthetic Concorde data do not include any pre-treatment variable
X N = 1 000 patients: N/2 = 500 patients are randomly assigned to immediate

treatment with zidovudine; and N/2 = 500 patients are randomly assigned to
deferred treatment with zidovudine
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Observed Synthetic Concorde Data
Treatment actually assigned

Zi = 1 (Immediate zidovudine) and Zi = 0 (Deferred zidovudine)

Let Yobs
i and Sobs

i denote the survival time and the switching time under the actual
treatment assigned without censoring

The survival time and the switching time are subject to censoring
X The trial lasted 3 years, with staggered entry over the first 1.5 years

Censoring time: Ci ∈ [1.5, 3]

Observed survival time: Ỹobs
i = min{Yobs

i ,Ci}
Observed switching status
X For a patient i with Zi = 1, S̃obs

i = Sobs
i = S, where S is a non-real value

X For a patient i with Zi = 0:

S̃obs
i =

{
Sobs

i if Sobs
i ∈ R+ and Sobs

i ≤ Ci

Ci if (Sobs
i ∈ R+ and Sobs

i > Ci) or Sobs
i = S
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Synthetic Concorde Data: Descriptive Statistics

Mean
Variable All Zi = 0 Zi = 1

Sample size (1000) (500) (500)

Treatment assignment (Zi) 0.5 0 1

I{S̃obs
i = Cobs

i } − 0.62 −

Switching time (S̃obs
i ) − 1.55 −

I{Ỹobs
i = Cobs

i } 0.69 0.66 0.71

Survival time (Ỹobs
i ) 1.93 1.89 1.97

Survival functions by assignment Zi:
kaplan-Meier estimates 

Time−to−event
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Existing Approaches to Treatment Switching

Intention-to-Treat analysis

Hypothetical strategy: Reconstructing the outcome a unit would have had if
s/he had not switched (ICH, 2019)

X Naive approaches: Censoring at switch (as-treated analysis); Excluding
switchers (per-protocol analysis); Treatment as a time-varying covariate
(See Morden et al., 2011 for a review)

X More sophisticated approaches: Rank-preserving structural failure time
model (Robins and Tsiatis 1991; Robins 1994; White et al. 1997, 1999;
White 2006); Inverse-probability of censoring weighting (Robins and
Finkelstein, 2000) and Marginal structural models (Hernán et al., 2000)

Time-varying treatment approach: Clinical trials with treatment switching as
longitudinal causal studies with a time-varying treatment (Petersen et al.,
2014)
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Our Contribution
We propose to re-define the problem of treatment switching using principal
stratification (Frangakis and Rubin 2002)
X The principal stratification approach is recognized in the ICH E9(R1) addendum

as a strategy to deal with intercurrent events

Causal estimands: principal causal effects for patients belonging to subpopulations
defined by the switching behavior under the control treatment
X Allow switching time to be nonignorable and to characterize treatment effect

heterogeneity w.r.t. switching time

Treatment switching can be viewed as a general form of noncompliance
X Non-switchers are a specific type of compliers, because they will be exposed to

treatment and control according to the protocol

We use a Bayesian approach for inference, which allows us to properly take into
account that
X switching happens in continuous time generating a continuum of principal strata;
X switching time is not defined for units who never switch in a particular study; and
X both survival time and switching time are subject to censoring
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Treatment Switching with Censoring: Potential Outcomes
Patients: i = 1, . . . ,N

Binary treatment: z ∈ {0, 1} = {Control Treatment,Active Treatment}

The Stable Unit Treatment Value Assumption (SUTVA) is assumed

Yi(z) = Survival time given assignment to treatment z, z = 0, 1

X Yi(z) is a positive real number and may be right censored

Ci(z) = Censoring time given assignment to treatment z, z = 0, 1

X Assumption: For i = 1, . . . ,N, Ci(0) = Ci(1) = Ci

Si(z) = Switching status given assignment to treatment z, z = 0, 1

X Si(1) = S and Si(0) ∈ R+ ∪ {S}
X Si(0) might be right censored with censoring time Ci

Natural constraint: Si(0) ≤ Yi(0), the switching time is censored by death with
censoring event defined by Yi(0)
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Principal Stratification w.r.t. Switching Behavior

The switching behavior is defined by Si(0) ∈ R+ ∪ {S}

Basic principal strata

X Non-switchers = {i : Si(0) = S}: Units who would not switch to the active
treatment if assigned to control no matter how long the follow-up is

X Switchers = {i : Si(0) = s, s ∈ R+}: Units who would switch to the active
treatment if assigned to control at a given time point s ∈ R+

All switchers = ∪s∈R+{i : Si(0) = s}

10



Treatment Switching with Censoring: Principal Causal Effects
Average principal causal effects

ACE(s) = E [Yi(1) | Si(0) = s]− E [Yi(0) | Si(0) = s] , (s ∈ {S} ∪ R+)

Distributional principal causal effects for non-switchers

DCE(y | S) = P
{

Yi(1) > y | Si(0) = S
}
− P

{
Yi(0) > y | Si(0) = S

}
, (y ∈ R+)

Conditional distributional principal causal effects for switchers

cDCE(y | s) = P {Yi(1) > y | Yi(1) ≥ Si(0), Si(0) = s}−P {Yi(0) > y | Yi(1) ≥ Si(0), Si(0) = s}
= P {Yi(1) > y | Yi(1) ≥ s, Si(0) = s}−P {Yi(0) > y | Yi(1) ≥ s, Si(0) = s} ,

(y, s ∈ R+)

If Yi(1) ≥ Yi(0), then Yi(1) ≥ Si(0) and

cDCE(y | s) = DCE(y | s) ≡ P {Yi(1) > y | Si(0) = s}−P {Yi(0) > y | Si(0) = s} (y, s ∈ R+)

with cDCE(y | s) = DCE(y | s) = 0 for y ≤ s
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Observed Data Pattern and Possible Latent Principal Strata

Zi S̃obs
i Ỹobs

i Principal strata Principal stratum label

0 Ci Yobs
i ∈ [0,Ci) {i : Si(0) = S} Non-switchers

0 Sobs
i ≤ Ci Yobs

i ∈ [Sobs
i ,Ci] {i : Si(0) = Sobs

i } Switchers at time Sobs
i

0 Sobs
i ≤ Ci Ci {i : Si(0) = Sobs

i } Switchers at time Sobs
i

0 Ci Ci
{

i : Si(0) = S
}

or Non-switchers or
{i : Si(0) = s ∈ (Ci,+∞)} Switchers at some time s > Ci

1 S Yobs
i ∈ [0,Ci]

{
i : Si(0) = S or Si(0) ∈ R+

}
Non-switchers or Switchers

1 S Ci
{

i : Si(0) = S or Si(0) ∈ R+

}
Non-switchers or Switchers
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Identification Issues under Randomization

Xi: Vector of pre-treatment covariates

Completely Randomized Experiment

P {Zi | Si(0),Yi(0),Yi(1),Ci,Xi} = P {Zi}

Ignorability of the Censoring Mechanism

P {Ci | Si(0),Yi(0),Yi(1),Xi} = P {Ci}

Randomization and ignorability of the censoring mechanism help inference,
but the identification of average and distributional principal causal effects
requires further structural and/or distributional assumptions
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Bayesian Approach to Inference

The Bayesian approach does not require full identification

X “Weak identifiability” of partially identified parameters

The Bayesian approach allows us to deal with all complications – missing
data, truncation by death, censoring – simultaneously in a natural way

In Bayesian analysis inferences are directly interpretable in probabilistic terms
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Bayesian Principal Stratification

Under exchangeability, randomization, and ignorability of censoring:

P {C,S(0),Y(0),Y(1),X}

=

∫ n∏
i=1

P {Ci, Si(0),Yi(0),Yi(1),Xi | θ}P(θ)dθ

=

∫ n∏
i=1

P {Xi | θ}P {Ci | Xi;θ}P {Si(0) | Ci,Xi;θ} ×

P {Yi(0) | Si(0),Ci,Xi;θ}P {Yi(1) | Yi(0), Si(0),Ci,Xi;θ}P(θ)dθ

∝
∫ n∏

i=1

P {Si(0) | Xi;θ}P {Yi(0) | Si(0),Xi;θ}P {Yi(1) | Yi(0), Si(0),Xi;θ}P(θ)dθ
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Bayesian Approach to Inference: Parametric Assumptions
Sub-model for the Switching Behavior: A two-part model

π(Xi) = E[I{Si(0) = S | Xi}] = P
{

Si(0) = S | Xi
}

=
exp(η0 + X′

iη)

1 + exp(η0 + X′
iη)

η0 ∈ R,η ∈ RK ,

and

(Si(0) | Si(0) ∈ R+,Xi) ∼Weibull (αS, βS + X′
iηS) , αS > 0, βS ∈ R,ηS ∈ RK

Sub-models for Yi(0)|Si(0),Xi,(
Yi(0) | Si(0) = S,Xi

)
∼Weibull

(
ᾱY , β̄Y + X′

i η̄Y
)
,

(Yi(0) | Si(0) ∈ R+,Xi) ∼ Si(0) + Weibull (αY , βY + λ0 log(Si(0)) + X′
iηY) ,

with ᾱY > 0, β̄Y ∈ R, η̄Y ∈ RK and αY > 0, βY , λ0 ∈ R,ηY ∈ RK

Sub-models for Yi(1)|Si(0),Yi(0),Xi,(
Yi(1) | Si(0) = S,Yi(0),Xi

)
∼ κYi(0) + Weibull

(
ν̄Y , γ̄Y + X′

i ζ̄
)
,

(Yi(1) | Si(0) ∈ R+,Yi(0),Xi) ∼ κYi(0) + Weibull (νY , γY + λ1 log(Si(0)) + X′
iζ) ,

with κ ∈ [0, 1], ν̄Y > 0, γ̄Y ∈ R, ζ̄ ∈ RK and νY > 0, γY , λ1 ∈ R, ζ ∈ RK

16



Identification of Some Model Parameters
Dependence between Yi(1) and Yi(0)

The parameter κ characterizes the dependence between Yi(1) and Yi(0) given
Si(0) and Xi

X If κ = 0 then Yi(1) ⊥ Yi(0) | Si(0),Xi and If κ = 1 then Yi(1) ≥ Yi(0)

The parameter κ can be viewed as a sensitivity parameter

Association between Yi(1) and Si(0)

The parameter λ1 describes the association between Yi(1) and Si(0) given
Yi(0) and Xi for switchers
X Because Si(0) is never observed for treated units, the observed data

provide no information about the association between Yi(1) and Si(0)
given Yi(0) and Xi

Parametric assumption: λ0 = λ1 ≡ λ
X Because Si(0) and Yi(0) are jointly observed for some control patients, we

have some information on λ
17



Sensitivity Checks

The parameters λ and κ are not identifiable nonparametrically

Under our parametric assumptions, λ and κ enter the observed data
likelihood, and thus enter the Bayesian posterior inference

Sensitivity analysis with respect to the prior specification for λ

Sensitivity analysis by varying κ within the range [0, 1]
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Prior Distribution and Posterior Distribution

We assume that the parameters are a priori independent

Prior distribution

X Normal prior distributions (mean = 0 and SD = 100) for the parameters of
the logistic regression model for the probability of being a non-switcher,
and for the intercept and the slope parameters of the Weibull distributions

X Gamma prior distributions with parameters 1 and 10 000 for the shape
parameters of the Weibull distributions

X Normal and uniform prior distributions for the parameter λ

X Dirac delta priors for κ concentrated at a pre-fixed value κ0 ∈ [0, 1]

Posterior distribution: MCMC Algorithm with Data Augmentation
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Synthetic Concorde Clinical Data: Bayesian Principal Stratification Analysis (κ = 0)

Posterior medians and 95% posterior credible intervals for
principal causal effects for non-switchers

95% PCI
Estimand Median 0.025 0.975

E[Yi(0) | Si(0) = S] 2.02 1.44 2.97

E[Yi(1) | Si(0) = S] 3.85 2.41 6.94

ACE(S) 1.78 0.39 4.78

DCE(y | S)
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Posterior medians and 95% PCI of Posterior medians of cDCE(y | s)
ACE(s), s ∈ R+ for s = 0.25, 0.50, . . . , 2.50, 2.75

Switching time
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Sensitivity Analyses and Bayesian Posterior Predictive P-Values

Sensitivity Analyses: Inference appears to be robust w.r.t. the prior
specification for λ; some sensitivity w.r.t. the value of κ

Bayesian PPPVs

Variable Deviance Signal Noise Signal to noise
Survival time 0.810

Non-Switchers 0.333 0.542 0.329
Switchers 0.429 0.725 0.372

Switching time 0.478 0.398 0.336 0.568

PPPV for BIC : 0.553
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Discussion

Clinical trials with treatment discontinuation

The Role of the Pre-treatment Covariates

X Conditioning on covariates makes structural and parametric assumptions
more credible

X Covariates usually lead to more precise inferences

X In the principal stratification analysis, relevant information could also be
obtained looking at the distribution of baseline characteristics within each
principal stratum

Extention: Treatment switching with non-ignorable censoring
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