The ring of differential operators on
a monomial curve is a Hopf algebroid
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Part 1: Ingredients
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k[ X]

Q Fixafield k 2Q and py,...,ps € N with gcd(py,...,pq) = 1,
i.e. such that there are nq,...,ng € Z with nipy + - - - + ngpg = 1.

@ The monoid spany(pi, - .., pg) is called a numerical semigroup.
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k[ X]

Q Fixafield k 2Q and py,...,ps € N with gcd(py,...,pq) = 1,
i.e. such that there are nq,...,ng € Z with nipy + - - - + ngpg = 1.

@ The monoid spany(pi, - .., pg) is called a numerical semigroup.
@ The k-algebra A = k[X] = k[tP, ..., tP/] < k[t] is the coordinate
ring of a cuspidal curve. For example, for p; = 2, pp = 3, we have

X ={(x,y)e k| x*=y*}

from the title page.
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The main result

Theorem («, Mahaman 2024)

The ring D(A) of differential operators on A is a (left) Hopf algebroid.

@ Thatis: If M, N are D(A)-modules, then M ®4 N and
Homa(M, N) carry natural D(A)-module structures so that
D(A)-Mod is closed monoidal.

@ The theorem could be derived from one by Smith and Stafford, or
from one by Ben-Zvi and Nevins, but we use a result on the descent
of Hopf algebroid structures applied to A — k[t, t71].
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Augmented A-rings

@ An A-ring is a ring morphism n7: A — H.
@ An augmentation is an A-linear splitting

e:H—> A con=idg

for which kere < H is a left ideal.
@ Simplest case: A< H < Endi(A), e(h) := h(1).
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Augmented A-rings

@ An A-ring is a ring morphism n7: A — H.
@ An augmentation is an A-linear splitting

e:H—> A con=idg

for which kere € H is a left ideal.
@ Simplest case: A< H < Endi(A), e(h) := h(1).
@ View H as A-module via multiplication from the left.
© Assume now that H carries an A-linear coassociative coproduct

AZH—>H®AH, h'—>h(1)®Ah(2)

which is counital with counit given by ¢.
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Bialgebroids ( x s-bialgebras)

Q Note: (g®ah)(x®ay) = (gx ®a hy) makes no sense on H ®4 H,

(g ®ah)(ax®ay) = gax @a hy # gx @a hay = (g ®a h)(x ®a ay).
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Bialgebroids ( x s-bialgebras)

Q Note: (g®ah)(x®ay) = (gx ®a hy) makes no sense on H ®4 H,

(g ®a h)(ax ®ay) = gax ®a hy # gx ®a hay = (g ®a h)(x ®a ay).

@ Solution (Sweedler 1974): Assume the coproduct is an algebra map
A:H—>Hx,H<S H®aH,

where H x4 H is the set of >.. g ®a hi € H®a H for which

Zgia®A h; = Zgi®A hia, aeA.
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Hopf algebroids

@ It is less obvious how to define Hopf algebroids. We will use:

Definition (Schauenburg 1999)

H is a (left) Hopf algebroid if g ®4 h — g1) ®4 g2)h is bijective.
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Hopf algebroids

@ It is less obvious how to define Hopf algebroids. We will use:

Definition (Schauenburg 1999)

H is a (left) Hopf algebroid if g ®4 h — g1) ®4 g2)h is bijective.

@ This does not imply the existence of an antipode, but corresponds
to a closed monoidal category structure on H-Mod compatible with
the forgetful functor to A-Maod.

@ Variations with antipodes satisfying various axioms were formulated
by Lu, Bohm-Szlachany, and by Bohm.
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D(A)

@ The inclusion A < End,(A) identifies the elements a € A with the
multiplication operators

A— A b~ ab.

By definition, these are the differential operators of order O:
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D(A)

@ The inclusion A < Endi(A) identifies the elements a € A with the
multiplication operators

A— A b~ ab.

By definition, these are the differential operators of order O:

Definition
The A-ring D(A) of k-linear differential operators over A is the
filtered k-subalgebra D(A) = |,y P(A)" < End(A), where

@ DA = A,
© D(A)" = {D e End(A) | Da— aD € D(A)"1Vae A} for n > 1.
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D(A)!

@ In particular: D € D(A)! iff for all a € A there exists ¢ € A with

Da — aD = c in Endi(A) < D(ab) — aD(b) = cb Vb e A.
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D(A)!

@ In particular: D € D(A)! iff for all a € A there exists ¢ € A with

Da — aD = c in Endi(A) < D(ab) — aD(b) = cb Vb e A.

@ Define d(a) := ¢ = (D — D(1))(a). This is a derivation:

d(ab) = D(ab) — D(1)ab = aD(b) + d(a)b— D(1)ab = ad(b) + d(a)b.

There is an A-linear iso D(A)! — Dery(A) ® A, D — (D — D(1), D(1)).
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D(A)!

@ In particular: D € D(A)! iff for all a € A there exists ¢ € A with

Da — aD = c in Endi(A) < D(ab) — aD(b) = cb Vb e A.

@ Define d(a) := ¢ = (D — D(1))(a). This is a derivation:

d(ab) = D(ab) — D(1)ab = aD(b) + d(a)b— D(1)ab = ad(b) + d(a)b.

There is an A-linear iso D(A)! — Dery(A) ® A, D — (D — D(1), D(1)).

@ In general, the A-linear embedding D(A)"~! = D(A)" does not split!
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The descent theorem

Q Let G < Endi(K) be a Hopf algebroid over K 2 A and set
H:={he G| h(a) e AVae A},
R:={H — A, hHZah ) | aj, bj € A}

@ We call H R-locally projective over A if for all h e H there is
T=>,:r®ag € R®aH < Enda(H) with w(h) = >.. ri(h)g; = h.
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The descent theorem

Q Let G < Endi(K) be a Hopf algebroid over K 2 A and set

H:={he G| h(a) e AVae A},
R:={H — A, hHZah ) | aj, bj € A}

@ We call H R-locally projective over A if for all h e H there is
T=>,:r®ag € R®aH < Enda(H) with w(h) = >.. ri(h)g; = h.

Theorem (<, Mahaman 2024)

If H is R-locally projective and K ®a H — G, b ®a h — bh is an
isomorphism, then the Hopf algebroid structure of G restricts to H.
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Part 2: Motivation
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The Nakai conjecture |

Theorem (Grothendieck 1967, Sweedler 1974)

If X is smooth, we have D(k[X]) = U(k[X], Derx(k[X])).

@ Here the right hand side is the universal enveloping algebra of the
Lie-Rinehart algebra (k[X], Der(k[X])).
@ This is the universal k[X]-ring which contains Der,(k[X]) as Lie
algebra over k such that
00 — 00 =[0,6], 0,0 € Dery(k[X]),
with ad being the k[X]-module structure on Der,(k[X]), and with
da—ad = d(a), 0e Derg(k[X]),ace k[X].

IASM October 2024
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The Nakai conjecture |l

@ Example: For A = k[t], D(A) is the Weyl algebra

Kt, %>/<(%) - t(%) _1), D- Z a,(%)i, 5 e kt].

@ Again: In general, the order is not a grading (even for smooth X)!

Conjecture (Nakai 1961, sort of)

D(k[X]) = U(k[X], Derk(k[X])) holds if and only if X is smooth.

@ By now, this is known for curves and a few more examples.
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The Zariski-Lipman conjecture

@ If | is the kernel of the multiplication map k[X]| ®x k[X] — k[X]
and QY(X) = 1/1? is the k[X]-module of Kahler differentials, then
Der(k[X]) = Hom4(Q2}(X), k[ X]), and we have:

Theorem (Hochschild-Kostant-Rosenberg 19627)

X is smooth iff Q1(X) is a projective k[ X]-module of rank dim(X).

@ In particular: If X is smooth, then Der,(k[X]) is a finitely generated
projective k[X]-module.
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The Zariski-Lipman conjecture

@ If | is the kernel of the multiplication map k[X]| ®x k[X] — k[X]
and QY(X) = 1/1? is the k[X]-module of Kahler differentials, then
Der(k[X]) = Hom4(Q2}(X), k[ X]), and we have:

Theorem (Hochschild—Kostant—Rosenberg 19627)

X is smooth iff Q1(X) is a projective k[ X]-module of rank dim(X).

@ In particular: If X is smooth, then Der,(k[X]) is a finitely generated
projective k[ X]-module. The Nakai conjecture would imply:

Conjecture (Zariski, Lipman 1965)
This is an if and only if.

Ulrich Krahmer (TU Dresden) onomial curves IASM October 2024



One motivation for our theorem

@ U(A, L) is for all Lie-Rinehart algebras a Hopf algebroid.
© There is an extension of Cartier-Milnor-Moore:

Theorem (Moerdijk, Mréun 2010)

The cocommutative conilpotent left Hopf algebroids H that are graded
projective as A-modules are precisely those of the form U(A,L).
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One motivation for our theorem

@ U(A, L) is for all Lie-Rinehart algebras a Hopf algebroid.
© There is an extension of Cartier-Milnor-Moore:

Theorem (Moerdijk, Mr¢un 2010)

The cocommutative conilpotent left Hopf algebroids H that are graded
projective as A-modules are precisely those of the form U(A,L).

Gutt feeling: For D € D(A), there should be E;, F; € D(A) with
D(ab) = > .. Ei(a)Fi(b), and this fit into a coproduct with
A(D) =Y, Ei®a F; so that

D(ab) = D)(a) D) (b).
But is this really true? And does D(A) have an antipode?
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Another motivation

@ If H-Mod is closed monoidal with internal hom Homa(M, N), then
Homy(M, N) = Homy(A®a M, N) = Hompy(A, Homa(M, N)).
@ Hence if M is A-projective, we have
Ext},(M, N) = Ext},(A, Homa(M, N))

which answers a question from Tuesday.
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Part 3: Formulas
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The formulas: generators

@ Abbreviate from now on A := k[t?, t3] € K := k[t,t7!] and

d . _
0 =—: K-> K, tw—j
dt ) .I

@ The following are differential operators of A:

Dy = t&, D, = tzﬁe D(A)17
E :=t?—0, E,:=0°— %a e D(A)?,

Es:=0— %a"‘ + %a e D(A).
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The formulas: relations

Proposition (Smith 1981)

The ring D(A) is generated as an algebra over k by the elements
x,y, Dy, E_ 5, E_3, satisfying the following relations:

[x,y] =0, x*=y% [E9Es]=0, E,= EE37

xE_y = Do(Do —3), E_ox = (Do +2)(Dy—1), yE_»= Di(Dy—3),
E oy = Dl(Do + 3), xE_3 = E_l(Do — 4), E_3x = E_l(Do + 2),
YE_3 = Do(Dy — 2)(Do —4), E_sy = (Do+3)(Do+1)(Dp —1),
[Do,X] = 2X, [Do,y] == 3y, [Do, E_2] == —2E_2, [Do, E_3] = —3E_37

where D1 = _)/(DO — ].)E_2 — X2E_3 and E_1 = X(DO — ].)E_3 — _yEEQ
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The formulas: A and S

Q@ A:D(A) - D(A) x4 D(A) is the morphism of A-rings such that
A (Do) = Dy®a 1+ 1®a Dy,
A(E)) =E,®@41+2Dy®a(Dy—1)E_» —2D1 @aE_3+1®a E_»,
A(E3)=E 3®a1+3E,®1E 1 —3E1®aE
+ 6Dy ®a (Do — 1)E_ 3 — 6D1 @4 E?, + 1 ®4 E_3,
@ S: D(A) — D(A) is the involutive A-ring morphism such that
S(Dy) =1— Dy, S(E.) =E., S(Es)=—E.s
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Postludium: Symmetric numerical semigroups
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Symmetric numerical semigroups

@ Consider 3N + 8N (underlined numbers are in):
0,1,2,3,4,5,6,7,8,9,10,11, 12,13, 14, 15,16, 17, . ..
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Symmetric numerical semigroups

@ Consider 3N + 8N (underlined numbers are in):
0,1,2,3,4,5,6,7,8,9,10,11, 12,13, 14, 15,16, 17, . ..

@ The coin problem is to find the largest number f (the Frobenius
number of 3N + 8N) which is not in, which is 13.
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Symmetric numerical semigroups

@ Consider 3N + 8N (underlined numbers are in):
0,1,2,3,4,5,6,7,8,9,10,11, 12,13, 14, 15,16, 17, . ..

@ The coin problem is to find the largest number f (the Frobenius
number of 3N + 8N) which is not in, which is 13.
Q@ 3N + 8N is symmetric: / < 13 is in iff 13 — / is out.
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Symmetric numerical semigroups

@ Consider 3N + 8N (underlined numbers are in):
0,1,2,3,4,5,6,7,8,9,10,11, 12,13, 14, 15,16, 17, . ..

@ The coin problem is to find the largest number f (the Frobenius
number of 3N + 8N) which is not in, which is 13.
Q@ 3N + 8N is symmetric: / < 13 is in iff 13 — / is out.

Theorem (Sylvester 1884)

If p, q are coprime, pN + gN is symmetric with f = (p —1)(q — 1) — 1.
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Symmetric numerical semigroups

@ Consider 3N + 8N (underlined numbers are in):
0,1,2,3,4,5,6,7,8,9,10,11, 12,13, 14, 15,16, 17, . ..

@ The coin problem is to find the largest number f (the Frobenius
number of 3N + 8N) which is not in, which is 13.

Q@ 3N + 8N is symmetric: / < 13 is in iff 13 — / is out.

Theorem (Sylvester 1884)

If p, q are coprime, pN + gN is symmetric with f = (p —1)(q — 1) — 1.

@ Kunz: The semigroup is symmetric iff A is Gorenstein. In this case,
D(A) is a full Hopf algebr0|d (has an antipode).
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CIMPA
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