The ring of differential operators on a monomial curve is a Hopf algebroid

Ulrich Krähmer (joint work with Myriam Mahaman)

Ulrich Krähmer (TU Dresden)

Part 1: Ingredients

A = k[X]

- Fix a field $k \supseteq \mathbb{Q}$ and $p_1, \ldots, p_d \in \mathbb{N}$ with $gcd(p_1, \ldots, p_d) = 1$, i.e. such that there are $n_1, \ldots, n_d \in \mathbb{Z}$ with $n_1p_1 + \cdots + n_dp_d = 1$.
- The monoid $\operatorname{span}_{\mathbb{N}}(p_1,\ldots,p_d)$ is called a **numerical semigroup**.

A = k[X]

- Fix a field $k \supseteq \mathbb{Q}$ and $p_1, \ldots, p_d \in \mathbb{N}$ with $gcd(p_1, \ldots, p_d) = 1$, i.e. such that there are $n_1, \ldots, n_d \in \mathbb{Z}$ with $n_1p_1 + \cdots + n_dp_d = 1$.
- The monoid $\operatorname{span}_{\mathbb{N}}(p_1,\ldots,p_d)$ is called a **numerical semigroup**.
- The *k*-algebra $A = k[X] = k[t^{p_1}, \ldots, t^{p_d}] \subseteq k[t]$ is the coordinate ring of a cuspidal curve. For example, for $p_1 = 2, p_2 = 3$, we have

$$X = \{(x, y) \in k^2 \mid x^3 = y^2\}$$

from the title page.

Theorem (K, Mahaman 2024)

The ring $\mathcal{D}(A)$ of differential operators on A is a (left) Hopf algebroid.

- That is: If M, N are $\mathcal{D}(A)$ -modules, then $M \otimes_A N$ and $\operatorname{Hom}_A(M, N)$ carry natural $\mathcal{D}(A)$ -module structures so that $\mathcal{D}(A)$ -**Mod** is closed monoidal.
- So The theorem could be derived from one by Smith and Stafford, or from one by Ben-Zvi and Nevins, but we use a result on the descent of Hopf algebroid structures applied to $A \rightarrow k[t, t^{-1}]$.

Augmented A-rings

- An *A*-**ring** is a ring morphism $\eta: A \to H$.
- An augmentation is an A-linear splitting

$$\varepsilon \colon H \to A, \quad \varepsilon \circ \eta = \mathrm{id}_A$$

for which ker $\varepsilon \subseteq H$ is a left ideal.

Simplest case: $A \subseteq H \subseteq \operatorname{End}_k(A)$, $\varepsilon(h) := h(1)$.

Augmented A-rings

- An *A*-ring is a ring morphism $\eta: A \to H$.
- An augmentation is an A-linear splitting

$$\varepsilon \colon H \to A, \quad \varepsilon \circ \eta = \mathrm{id}_A$$

for which ker $\varepsilon \subseteq H$ is a left ideal.

- Simplest case: $A \subseteq H \subseteq \operatorname{End}_k(A)$, $\varepsilon(h) := h(1)$.
- View *H* as *A*-module via multiplication from the left.
- Solution Section 2. Se

$$\Delta \colon H \to H \otimes_A H, \quad h \mapsto h_{(1)} \otimes_A h_{(2)}$$

which is counital with counit given by ε .

Bialgebroids (\times_A -bialgebras)

• Note: $(g \otimes_A h)(x \otimes_A y) = (gx \otimes_A hy)$ makes no sense on $H \otimes_A H$,

 $(g \otimes_A h)(ax \otimes_A y) = gax \otimes_A hy \neq gx \otimes_A hay = (g \otimes_A h)(x \otimes_A ay).$

Bialgebroids (\times_A -bialgebras)

- Note: $(g \otimes_A h)(x \otimes_A y) = (gx \otimes_A hy)$ makes no sense on $H \otimes_A H$, $(g \otimes_A h)(ax \otimes_A y) = gax \otimes_A hy \neq gx \otimes_A hay = (g \otimes_A h)(x \otimes_A ay).$
- Solution (Sweedler 1974): Assume the coproduct is an algebra map

$$\Delta\colon H\to H\times_A H\subseteq H\otimes_A H,$$

where $H \times_A H$ is the set of $\sum_i g_i \otimes_A h_i \in H \otimes_A H$ for which

$$\sum_i g_i a \otimes_A h_i = \sum_i g_i \otimes_A h_i a, \quad a \in A.$$

• It is less obvious how to define Hopf algebroids. We will use:

Definition (Schauenburg 1999)

H is a (left) Hopf algebroid if $g \otimes_A h \mapsto g_{(1)} \otimes_A g_{(2)}h$ is bijective.

• It is less obvious how to define Hopf algebroids. We will use:

Definition (Schauenburg 1999)

H is a (left) Hopf algebroid if $g \otimes_A h \mapsto g_{(1)} \otimes_A g_{(2)}h$ is bijective.

- This does not imply the existence of an antipode, but corresponds to a closed monoidal category structure on *H*-Mod compatible with the forgetful functor to *A*-Mod.
- Variations with antipodes satisfying various axioms were formulated by Lu, Böhm–Szlachány, and by Böhm.

• The inclusion $A \subseteq \operatorname{End}_k(A)$ identifies the elements $a \in A$ with the multiplication operators

$$A \rightarrow A$$
, $b \mapsto ab$.

By definition, these are the differential operators of order 0:

• The inclusion $A \subseteq \operatorname{End}_k(A)$ identifies the elements $a \in A$ with the multiplication operators

$$A \rightarrow A$$
, $b \mapsto ab$.

By definition, these are the differential operators of order 0:

Definition

The *A*-ring $\mathcal{D}(A)$ of *k*-linear differential operators over *A* is the filtered *k*-subalgebra $\mathcal{D}(A) = \bigcup_{n \in \mathbb{N}} \mathcal{D}(A)^n \subseteq \operatorname{End}_k(A)$, where • $\mathcal{D}(A)^0 = A$,

1 In particular: $D \in \mathcal{D}(A)^1$ iff for all $a \in A$ there exists $c \in A$ with

Da - aD = c in $\operatorname{End}_k(A) \Leftrightarrow D(ab) - aD(b) = cb \ \forall b \in A.$

() In particular: $D \in \mathcal{D}(A)^1$ iff for all $a \in A$ there exists $c \in A$ with

$$Da - aD = c$$
 in $\operatorname{End}_k(A) \Leftrightarrow D(ab) - aD(b) = cb \ \forall b \in A$.

2 Define
$$\partial(a) := c = (D - D(1))(a)$$
. This is a derivation:

$$\partial(ab) = D(ab) - D(1)ab = aD(b) + \partial(a)b - D(1)ab = a\partial(b) + \partial(a)b.$$

Lemma

There is an A-linear iso $\mathcal{D}(A)^1 \to \operatorname{Der}_k(A) \oplus A, D \mapsto (D - D(1), D(1)).$

() In particular: $D \in \mathcal{D}(A)^1$ iff for all $a \in A$ there exists $c \in A$ with

$$Da - aD = c$$
 in $\operatorname{End}_k(A) \Leftrightarrow D(ab) - aD(b) = cb \ \forall b \in A$.

2 Define
$$\partial(a) := c = (D - D(1))(a)$$
. This is a derivation:

$$\partial(ab) = D(ab) - D(1)ab = aD(b) + \partial(a)b - D(1)ab = a\partial(b) + \partial(a)b.$$

Lemma

There is an A-linear iso
$$\mathcal{D}(A)^1 \to \operatorname{Der}_k(A) \oplus A, D \mapsto (D - D(1), D(1)).$$

(a) In general, the A-linear embedding $\mathcal{D}(A)^{n-1} \subseteq \mathcal{D}(A)^n$ does not split!

• Let $G \subseteq \operatorname{End}_k(K)$ be a Hopf algebroid over $K \supseteq A$ and set

$$H := \{h \in G \mid h(a) \in A \, \forall a \in A\},\$$
$$R := \{H \to A, h \mapsto \sum_{i} a_{i}h(b_{i}) \mid a_{i}, b_{i} \in A\}.$$

• We call *H R*-locally projective over *A* if for all $h \in H$ there is $\pi = \sum_i r_i \otimes_A g_i \in R \otimes_A H \subseteq \operatorname{End}_A(H)$ with $\pi(h) = \sum_i r_i(h)g_i = h$.

• Let $G \subseteq \operatorname{End}_k(K)$ be a Hopf algebroid over $K \supseteq A$ and set

$$H := \{h \in G \mid h(a) \in A \, \forall a \in A\},\$$
$$R := \{H \to A, h \mapsto \sum_{i} a_{i}h(b_{i}) \mid a_{i}, b_{i} \in A\}.$$

② We call *H R*-locally projective over *A* if for all *h* ∈ *H* there is $\pi = \sum_{i} r_i \otimes_A g_i \in R \otimes_A H \subseteq \text{End}_A(H)$ with $\pi(h) = \sum_{i} r_i(h)g_i = h$.

Theorem (ĸ, Mahaman 2024)

If H is R-locally projective and $K \otimes_A H \to G$, $b \otimes_A h \mapsto bh$ is an isomorphism, then the Hopf algebroid structure of G restricts to H.

Part 2: Motivation

The Nakai conjecture I

Theorem (Grothendieck 1967, Sweedler 1974)

If X is smooth, we have $\mathcal{D}(k[X]) \cong U(k[X], \operatorname{Der}_k(k[X]))$.

- Here the right hand side is the universal enveloping algebra of the Lie-Rinehart algebra (k[X], Der_k(k[X])).
- This is the universal k[X]-ring which contains Der_k(k[X]) as Lie algebra over k such that

$$\partial \delta - \delta \partial = [\partial, \delta], \quad \partial, \delta \in \operatorname{Der}_k(k[X]),$$

with $a\partial$ being the k[X]-module structure on $\text{Der}_k(k[X])$, and with

$$\partial a - a \partial = \partial(a), \quad \partial \in \operatorname{Der}_k(k[X]), a \in k[X].$$

The Nakai conjecture II

• Example: For A = k[t], $\mathcal{D}(A)$ is the Weyl algebra

$$k\langle t,rac{d}{dt}
angle /\langle \left(rac{d}{dt}
ight)t-t\left(rac{d}{dt}
ight)-1
angle, \quad D=\sum_i a_i \left(rac{d}{dt}
ight)^i, \quad a_i\in k[t].$$

Solution Again: In general, the order is not a grading (even for smooth X)!

Conjecture (Nakai 1961, sort of)

 $\mathcal{D}(k[X]) \cong U(k[X], \text{Der}_k(k[X]))$ holds if and only if X is smooth.

By now, this is known for curves and a few more examples.

The Zariski-Lipman conjecture

• If *I* is the kernel of the multiplication map $k[X] \otimes_k k[X] \rightarrow k[X]$ and $\Omega^1(X) = I/I^2$ is the k[X]-module of Kähler differentials, then $\text{Der}_k(k[X]) \cong \text{Hom}_A(\Omega^1(X), k[X])$, and we have:

Theorem (Hochschild–Kostant–Rosenberg 1962?)

X is smooth iff $\Omega^1(X)$ is a projective k[X]-module of rank dim(X).

In particular: If X is smooth, then Der_k(k[X]) is a finitely generated projective k[X]-module.

The Zariski-Lipman conjecture

• If *I* is the kernel of the multiplication map $k[X] \otimes_k k[X] \rightarrow k[X]$ and $\Omega^1(X) = I/I^2$ is the k[X]-module of Kähler differentials, then $\text{Der}_k(k[X]) \cong \text{Hom}_A(\Omega^1(X), k[X])$, and we have:

Theorem (Hochschild–Kostant–Rosenberg 1962?)

X is smooth iff $\Omega^1(X)$ is a projective k[X]-module of rank dim(X).

In particular: If X is smooth, then Der_k(k[X]) is a finitely generated projective k[X]-module. The Nakai conjecture would imply:

Conjecture (Zariski, Lipman 1965)

This is an if and only if.

One motivation for our theorem

• U(A, L) is for all Lie-Rinehart algebras a Hopf algebroid.

There is an extension of Cartier-Milnor-Moore:

Theorem (Moerdijk, Mrčun 2010)

The cocommutative conlipotent left Hopf algebroids H that are graded projective as A-modules are precisely those of the form U(A, L).

One motivation for our theorem

• U(A, L) is for all Lie-Rinehart algebras a Hopf algebroid.

There is an extension of Cartier-Milnor-Moore:

Theorem (Moerdijk, Mrčun 2010)

The cocommutative conlipotent left Hopf algebroids H that are graded projective as A-modules are precisely those of the form U(A, L).

Gutt feeling: For $D \in \mathcal{D}(A)$, there should be $E_i, F_i \in \mathcal{D}(A)$ with $D(ab) = \sum_i E_i(a)F_i(b)$, and this fit into a coproduct with $\Delta(D) = \sum_i E_i \otimes_A F_i$ so that

$$D(ab) = D_{(1)}(a)D_{(2)}(b).$$

But is this really true? And does $\mathcal{D}(A)$ have an antipode?

• If *H*-**Mod** is closed monoidal with internal hom $Hom_A(M, N)$, then

 $\operatorname{Hom}_{H}(M,N) \cong \operatorname{Hom}_{H}(A \otimes_{A} M,N) \cong \operatorname{Hom}_{H}(A,\operatorname{Hom}_{A}(M,N)).$

2 Hence if M is A-projective, we have

 $\operatorname{Ext}_{H}^{i}(M, N) \cong \operatorname{Ext}_{H}^{i}(A, \operatorname{Hom}_{A}(M, N))$

which answers a question from Tuesday.

Part 3: Formulas

The formulas: generators

• Abbreviate from now on $A := k[t^2, t^3] \subseteq K := k[t, t^{-1}]$ and

$$\partial := \frac{d}{dt} \colon K \to K, \quad t^j \mapsto jt^{j-1}.$$

O The following are differential operators of *A*:

$$D_0 := t\partial, \ D_1 := t^2\partial \in \mathcal{D}(A)^1,$$

$$E_{-1} := t\partial^2 - \partial, \ E_{-2} := \partial^2 - \frac{2}{t}\partial \in \mathcal{D}(A)^2,$$

 $E_{-3} := \partial^3 - \frac{3}{t}\partial^2 + \frac{3}{t^2}\partial \in \mathcal{D}(A)^3.$

Proposition (Smith 1981)

The ring $\mathcal{D}(A)$ is generated as an algebra over k by the elements $x, y, D_0, E_{-2}, E_{-3}$, satisfying the following relations:

$$\begin{split} & [x,y] = 0, \quad x^3 = y^2, \quad [E_{-2},E_{-3}] = 0, \quad E_{-2}^3 = E_{-3}^2, \\ & xE_{-2} = D_0(D_0-3), \quad E_{-2}x = (D_0+2)(D_0-1), \quad yE_{-2} = D_1(D_0-3), \\ & E_{-2}y = D_1(D_0+3), \quad xE_{-3} = E_{-1}(D_0-4), \quad E_{-3}x = E_{-1}(D_0+2), \\ & yE_{-3} = D_0(D_0-2)(D_0-4), \quad E_{-3}y = (D_0+3)(D_0+1)(D_0-1), \\ & [D_0,x] = 2x, \ [D_0,y] = 3y, \ [D_0,E_{-2}] = -2E_{-2}, \ [D_0,E_{-3}] = -3E_{-3}, \end{split}$$

where $D_1 = y(D_0 - 1)E_{-2} - x^2E_{-3}$ and $E_{-1} = x(D_0 - 1)E_{-3} - yE_{-2}^2$.

The formulas: Δ and S

• $\Delta: \mathcal{D}(A) \to \mathcal{D}(A) \times_A \mathcal{D}(A)$ is the morphism of A-rings such that $\Delta(D_0) = D_0 \otimes_{\mathcal{A}} 1 + 1 \otimes_{\mathcal{A}} D_0.$ $\Delta(E_{-2}) = E_{-2} \otimes_A 1 + 2D_0 \otimes_A (D_0 - 1)E_{-2} - 2D_1 \otimes_A E_{-3} + 1 \otimes_A E_{-2}.$ $\Delta(E_{-3}) = E_{-3} \otimes_A 1 + 3E_{-2} \otimes_A E_{-1} - 3E_{-1} \otimes_A E_{-2}$ $+ 6D_0 \otimes_A (D_0 - 1)E_{-3} - 6D_1 \otimes_A E_{-2}^2 + 1 \otimes_A E_{-3}^2$

2 $S: \mathcal{D}(A) \to \mathcal{D}(A)^{\mathrm{op}}$ is the involutive *A*-ring morphism such that

$$S(D_0) = 1 - D_0, \quad S(E_{-2}) = E_{-2}, \quad S(E_{-3}) = -E_{-3}.$$

Postludium: Symmetric numerical semigroups

• Consider $3\mathbb{N} + 8\mathbb{N}$ (underlined numbers are in):

 $\underline{0}, 1, 2, \underline{3}, 4, 5, \underline{6}, 7, \underline{8}, \underline{9}, 10, \underline{11}, \underline{12}, 13, \underline{14}, \underline{15}, \underline{16}, \underline{17}, \dots$

• Consider $3\mathbb{N} + 8\mathbb{N}$ (underlined numbers are in):

 $\underline{0}, 1, 2, \underline{3}, 4, 5, \underline{6}, 7, \underline{8}, \underline{9}, 10, \underline{11}, \underline{12}, 13, \underline{14}, \underline{15}, \underline{16}, \underline{17}, \dots$

The coin problem is to find the largest number f (the Frobenius number of $3\mathbb{N} + 8\mathbb{N}$) which is not in, which is 13.

• Consider $3\mathbb{N} + 8\mathbb{N}$ (underlined numbers are in):

 $\underline{0}, 1, 2, \underline{3}, 4, 5, \underline{6}, 7, \underline{8}, \underline{9}, 10, \underline{11}, \underline{12}, 13, \underline{14}, \underline{15}, \underline{16}, \underline{17}, \dots$

- The coin problem is to find the largest number f (the Frobenius number of $3\mathbb{N} + 8\mathbb{N}$) which is not in, which is 13.
- **3** \mathbb{N} + 8 \mathbb{N} is symmetric: $i \leq 13$ is in iff 13 i is out.

• Consider $3\mathbb{N} + 8\mathbb{N}$ (underlined numbers are in):

 $\underline{0}, 1, 2, \underline{3}, 4, 5, \underline{6}, 7, \underline{8}, \underline{9}, 10, \underline{11}, \underline{12}, 13, \underline{14}, \underline{15}, \underline{16}, \underline{17}, \dots$

- The coin problem is to find the largest number f (the Frobenius number of $3\mathbb{N} + 8\mathbb{N}$) which is not in, which is 13.
- **3** \mathbb{N} + 8 \mathbb{N} is symmetric: $i \leq 13$ is in iff 13 i is out.

Theorem (Sylvester 1884)

If p, q are coprime, $p\mathbb{N} + q\mathbb{N}$ is symmetric with f = (p-1)(q-1) - 1.

• Consider $3\mathbb{N} + 8\mathbb{N}$ (underlined numbers are in):

 $\underline{0}, 1, 2, \underline{3}, 4, 5, \underline{6}, 7, \underline{8}, \underline{9}, 10, \underline{11}, \underline{12}, 13, \underline{14}, \underline{15}, \underline{16}, \underline{17}, \dots$

- The coin problem is to find the largest number f (the Frobenius number of $3\mathbb{N} + 8\mathbb{N}$) which is not in, which is 13.
- **3** \mathbb{N} + 8 \mathbb{N} is symmetric: $i \leq 13$ is in iff 13 i is out.

Theorem (Sylvester 1884)

If p, q are coprime, $p\mathbb{N} + q\mathbb{N}$ is symmetric with f = (p-1)(q-1) - 1.

Solution Kunz: The semigroup is symmetric iff A is Gorenstein. In this case, $\mathcal{D}(A)$ is a full Hopf algebroid (has an antipode).

Ulrich Krähmer (TU Dresden)

CIMPA

ÉCOLES CIMPA

CIMPA SCHOOLS

SOUTH AFSICA, Patchetritream CURA, La Habasa

ARCENTELS, La Plata & Durres Aires

www.cimpa.info

Centre International de Mathématiques Pures et Appliquées PROMOTING RESEARCH IN MATH WITH DEVELOPING COUNTRIES

Ulrich Krähmer (TU Dresden)

Differential operators on monomial curves