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Definition of Poisson Algebras

Definition
Fix k to be a field of characteristic zero. A comm. k-algebra A is
called a Poisson algebra if there exists a skew-symmetric bilinear
map {·, ·} : A × A −→ A such that

{ab, c} = a{b, c} + b{a, c}

and
{a, {b, c}} + {b, {c, a}} + {c, {a, b}} = 0

for all a, b, c ∈ A.
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Examples of Poisson Algebras

k[x , y ] is a Poisson algebra under the bracket {x , y} = f (x , y)
for any f (x , y) ∈ k[x , y ].

For any Ω ∈ k[x , y , z ], AΩ : = k[x , y , z ] is a Poisson algebra
under the following bracket

{x , y} = ∂Ω
∂z = Ωz ,

{y , z} = ∂Ω
∂x = Ωx ,

{z , x} = ∂Ω
∂y = Ωy .

Set Asing = k[x , y , z ]/(Ωx , Ωy , Ωz). A potential Ω is said to
have an isolated singularity at the origin if dimk (Asing) < ∞.
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Poisson Cohomology Groups

For any Poisson algebra (A, {·, ·}), denote by X•(A) = ⊕∞
i=0X

i(A),
the set of skew-symmetric multi-derivations of A. For q ≥ 0, the
q-th Poisson cohomology of A is defined to be the qth-cohomology
of the cochain complex (X•(A), δ•) with δq(f )(a0, . . . , aq) defined
as

q∑
i=0

(−1)i{ai , f (a0, . . . , âi , . . . , aq)}

+
∑

0≤i<j≤q
(−1)i+j f ({ai , aj}, a0, . . . , âi , . . . , âj , . . . , aq)

for any a0, a1, . . . , aq ∈ A. That is, PHq(A) := ker(δq)/im(δq−1).
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Poisson Homology Groups
Let us denote by Ω•(A) : = ⊕∞

k=0Ωk(A) the A-module of all
(Kähler) differential forms with Ω0(A) = A. Denote by d the
exterior differential and define the boundary operator
∂k : Ωk(A) −→ Ωk−1(A) as follows:

∂k(f0df1 ∧ · · · ∧ dfk) =
k∑

i=1
(−1)i+1{f0, fi}df1 ∧ · · · ∧ d̂fi ∧ · · · ∧ dfk

+
∑

1≤i<j≤k
(−1)i+j f0df ({fi , fj})df1 ∧ · · · ∧ d̂fi ∧ · · · ∧ f̂j ∧ · · · ∧ dfk .

The homology of the chain complex (Ω•(A), ∂•) is called the
Poisson homology of A. There is a duality between the Poisson
homology and cohomology when A is a unimodular
(Luo-Wang-Wu, ’15). Note that AΩ is unimodular.
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Cohomology for Poisson Polynomial Algebra AΩ

The Hilbert series for the Poisson cohomology groups have been
computed for AΩ by

Van den Bergh (’94): for Ω = x3 + y3 + z3 + λxyz with
λ3 ̸= −27;

Pichereau (’06): for weighted homogeneous Ω with an
isolated singularity at the origin;
T-Wang-Zhang (’22): for Ω = x3 + y2z and x3 + x2z + y2z .
When deg(x) = deg(y) = deg(z) = 1, the only irreducible
degree 3 potentials Ω are

x3 + y3 + z3 + λxyz(λ3 ̸= −27), x3 + y2z , x3 + x2z + y2z .
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Classification of Weighted Potentials Ω ∈ k[x , y , z ]

Theorem
(Huang-T-Wang-Zhang, ’23) Let A = k[x , y , z ] with
deg(x) = a, deg(y) = b, deg(z) = c for 1 ≤ a ≤ b ≤ c. Let Ω be a
nonzero homogeneous polynomial of degree n : = a + b + c. Up to
a graded automorphism of A, all the potentials Ω can be explicitly
listed. AΩ is twist-rigid (that is, rgt(A) = 0) if and only if Ω is
irreducible. Potentials with isolated singularity only exist in the
case where (a, b, c) = (1, 1, 1) or (1, 1, 2) or (1, 2, 3).

Remark
The classification of Ω in the case a = b = c is well-known
(Dufour and Haraki, Donin-Makar and Limanov, Z.-J. Liu and Xu).
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Some Notation

After making the identification:

X0(A) ∼−→ A, X1(A) ∼−→ A⊕3, X2(A) ∼−→ A⊕3,

we can write the differentials δ in the complex:

0 −→ X0(A) −→ X1(A)[w ] −→ X2(A)[2w ] −→ X3(A)[3w ] −→ 0

where w = deg(Ω) − a − b − c in a compact form

δ0(f ) = −→
∇f ×

−→
∇Ω, for f ∈ A,

δ1(
−→
f ) = −

−→
∇(

−→
f ·

−→
∇Ω) + Div(

−→
f )−→∇Ω, for

−→
f ∈ A⊕3,

δ2(
−→
f ) = −

−→
∇Ω · (−→∇ ×

−→
f ) = −Div(

−→
f ×

−→
∇Ω), for

−→
f ∈ A⊕3.
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More Notation

For any graded vector space M = ⊕i∈ZMi that is locally finite, we
use hM(t) =

∑
i∈Z dimk(Mi) t i to denote the Hilbert series of M.

The Hilbert series of A is given by

hA(t) = 1
(1 − ta)(1 − tb)(1 − tc) .

The Poisson cohomology groups HP•(A) are graded vector spaces.
Denote their Hilbert series as hHP•(A)(t), then we have

3∑
i=0

(−t−w )ihPH i (A)(t) = − 1
t3w+a+b+c

(1 − tw+a)(1 − tw+b)(1 − tw+c)
(1 − ta)(1 − tb)(1 − tc) .
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Hilbert Series for Poisson Cohomology

Theorem
(Huang-T-Wang-Zhang, ’23) Let AΩ be a connected graded
Poisson algebra with deg(x) = a, deg(y) = b, and deg(z) = c
defined by a potential Ω of degree n. Suppose that ZP(A) = k[Ω]
and A is H-ozone and A has a degree zero Poisson derivation that
is not ozone and A has no non-zero Poisson derivation of degree
−n. The Hilbert series of the Poisson cohomology groups of AΩ
are given by
(1) hPH0(A)(t) = 1

1−tn and hPH1(A)(t) = 1
1−tn .

(2) hPH2(A)(t) = 1
ta+b+c

(
(1−tn−a)(1−tn−b)(1−tn−c)
(1−tn)(1−ta)(1−tb)(1−tc) − 1

)
.

(3) hPH3(A)(t) = (1−tn−a)(1−tn−b)(1−tn−c)
ta+b+c(1−tn)(1−ta)(1−tb)(1−tc) .

Xin Tang Cohomology of Poisson Polynomial Algebras



Background
Existing Results

Main Results
Acknowledgements

Hilbert Series for Poisson Cohomology

Corollary
(Huang-T-Wang-Zhang, 23) If Ω ∈ k[x , y , z ] of degree
n = a + b + c is an irreducible potential in the classification that is
neither xk + y l nor xk + z l nor yk + z l , then the Hilbert series of
Poisson cohomology of AΩ are given by
(1) hPH0(A)(t) = 1

1−tn .
(2) hPH1(A)(t) = 1

1−tn .

(3) hPH2(A)(t) = 1
tn

(
(1−ta+b)(1−ta+c)(1−tb+c)
(1−tn)(1−ta)(1−tb)(1−tc) − 1

)
.

(4) hPH3(A)(t) = (1−ta+b)(1−ta+c)(1−tb+c)
tn(1−tn)(1−ta)(1−tb)(1−tc) .
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Some Equivalent Conditions for AΩ

Theorem
(Huang-T-Wang-Zhang, ’23) Let A := k[x , y , z ] be a connected
graded Poisson polynomial algebra. Denote by Z the Poisson
center of AΩ. Then, the following statements are equivalent.
(1) rgt(A) = 0 and any homogeneous Poisson derivation of A

with negative degree is zero.
(2) Any graded twist of A is isomorphic to A, and any

homogeneous Poisson derivation of A with a negative degree
is zero.
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Some Equivalent Conditions for AΩ

Theorem
(3) The Hilbert series of the graded vector space of Poisson

derivations of A is 1
(1−ta)(1−tb)(1−tc) .

(4) hPH1(A)(t) is 1
1−tn .

(5) hPH1(A)(t) is equal to hZ (t).
(6) Every Poisson derivation ϕ of A has a decomposition

ϕ = zE + Ha, where z ∈ Z and a ∈ A. Here, z is unique, and
a is unique up to a Poisson central element.

(7) Every Poisson derivation of A that vanishes on Z is
Hamiltonian.
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Some Equivalent Conditions for AΩ

Theorem
(8) A is an unimodular Poisson algebra determined by an

irreducible potential Ω that is balanced.
(9) hPH3(A)(t) − hPH2(A)(t) = t−n.

(10) A is unimodular and
hPH2(A)(t) = 1

tn

(
(1−ta+b)(1−ta+c)(1−tb+c)
(1−tn)(1−ta)(1−tb)(1−tc) − 1

)
.

(11) A is unimodular and hPH3(A)(t) = (1−ta+b)(1−ta+c)(1−tb+c)
tn(1−tn)(1−ta)(1−tb)(1−tc) .

(12) A is uPH2-vacant.
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Some Technical Conditions: K1-sealed

Let Ω be a homogeneous element of degree n > 0 in the weighted
polynomial ring A := k[x , y , z ]. Recall that the Koszul complex
K•(−→∇Ω) given by the sequence −→

∇Ω := (Ωx , Ωy , Ωz) in A is:

A A
0 → A

−→
∇Ω−−→ ⊕A

−→
∇Ω×−−−→ ⊕A

−→
∇Ω·−−−→ A → A/(Ωx , Ωy , Ωz)→0.

⊕A ⊕A.

Definition
We say Ω is K1-sealed if, for any

−→
f ∈ A⊕3 with

−→
f ·

−→
∇Ω = 0 in A

and −→
∇ ·

−→
f = 0 when considered as an element in Asing , then

−→
f = −→

∇Ω × −→g for some −→g ∈ A⊕3.
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Some Technical Definitions: uPH2-vacant

Definition
Set M2(A) := {f πΩ + πg | f , g ∈ A} which is a subspace of X2(A).
Note that

im(d1
πΩ) ⊆ M2(A) ⊆ ker(d2

πΩ).

(1) The upper division of the second Poisson cohomology of AΩ is
defined to be uPH2(AΩ) := ker(d2

πΩ)/M2(A).
(2) The lower division of the second Poisson cohomology of AΩ is

defined to be lPH2(AΩ) := M2(A)/im(d1
πΩ).

(3) We say AΩ is uPH2-vacant if uPH2(AΩ) = 0, or equivalently
lPH2(AΩ) = PH2(AΩ).
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Some Technical Definitions: H-ozone

Definition
Let A = k[x1, . . . , xn] be a connected graded Poisson algebra with
its Poisson center denoted by Z .
(1) δ ∈ Pd(A) is called ozone if δ(Z ) = 0.
(2) Let Od(A) denote the Lie algebra of all ozone Poisson

derivations of A.
(3) We say A is H-ozone if Od(A) = Hd(A), namely, any ozone

derivation is Hamiltonian.
(4) We say A is PH1-minimal if PH1(A) ∼= ZE as graded

Z -modules where E is the Euler derivation.
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Some Technical Definitions: Balanced-Potentials

Definition
We call an irreducible potential Ω in k[x , y , z ] balanced if
ΩxΩy Ωz ̸= 0 for any choice of graded generators (x , y , z);
otherwise, we call it non-balanced.

We have the following:
1 Ω is K1-sealed ⇒ AΩ is uPH2-vacant.

2 AΩ is uPH2-vacant ⇔ AΩ is H-ozone.
3 AΩ is H-ozone ⇔ Ω is irreducible and balanced.
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