Cohomology for Some Unimodular Poisson Polynomial Algebras in Three Variables

Xin Tang

Fayetteville State University

"Poisson Geometry and Artin-Schelter Regular Algebras" IASM, Hangzhou, China Oct. 13 – 18, 2024

Joint with Hongdi Huang, Xingting Wang & James J. Zhang

イロト イヨト イヨト イヨト

Definition of Poisson Algebras

Definition

Fix k to be a field of characteristic zero. A comm. k-algebra A is called a Poisson algebra if there exists a skew-symmetric bilinear map $\{\cdot, \cdot\}: A \times A \longrightarrow A$ such that

$$\{ab,c\}=a\{b,c\}+b\{a,c\}$$

and

$$\{a, \{b, c\}\} + \{b, \{c, a\}\} + \{c, \{a, b\}\} = 0$$

for all $a, b, c \in A$.

イロト イヨト イヨト イヨト

Examples of Poisson Algebras

• $\mathbb{k}[x, y]$ is a Poisson algebra under the bracket $\{x, y\} = f(x, y)$ for any $f(x, y) \in \mathbb{k}[x, y]$.

イロト イポト イヨト イヨト

크

Examples of Poisson Algebras

- $\mathbb{k}[x, y]$ is a Poisson algebra under the bracket $\{x, y\} = f(x, y)$ for any $f(x, y) \in \mathbb{k}[x, y]$.
- For any Ω ∈ k[x, y, z], A_Ω: = k[x, y, z] is a Poisson algebra under the following bracket

$$\begin{array}{lll} \{x,y\} &=& \displaystyle \frac{\partial\Omega}{\partial z} = \Omega_z, \\ \{y,z\} &=& \displaystyle \frac{\partial\Omega}{\partial x} = \Omega_x, \\ \{z,x\} &=& \displaystyle \frac{\partial\Omega}{\partial y} = \Omega_y. \end{array}$$

イロト イポト イヨト イヨト

크

Examples of Poisson Algebras

- $\mathbb{k}[x, y]$ is a Poisson algebra under the bracket $\{x, y\} = f(x, y)$ for any $f(x, y) \in \mathbb{k}[x, y]$.
- For any Ω ∈ k[x, y, z], A_Ω: = k[x, y, z] is a Poisson algebra under the following bracket

$$\{x, y\} = \frac{\partial \Omega}{\partial z} = \Omega_z,$$

$$\{y, z\} = \frac{\partial \Omega}{\partial x} = \Omega_x,$$

$$\{z, x\} = \frac{\partial \Omega}{\partial y} = \Omega_y.$$

 Set A_{sing} = k[x, y, z]/(Ω_x, Ω_y, Ω_z). A potential Ω is said to have an isolated singularity at the origin if dim_k (A_{sing}) < ∞.

Poisson Cohomology Groups

For any Poisson algebra $(A, \{\cdot, \cdot\})$, denote by $\mathfrak{X}^{\bullet}(A) = \bigoplus_{i=0}^{\infty} \mathfrak{X}^{i}(A)$, the set of skew-symmetric multi-derivations of A. For $q \ge 0$, the *q*-th Poisson cohomology of A is defined to be the *q*th-cohomology of the cochain complex $(\mathfrak{X}^{\bullet}(A), \delta^{\bullet})$ with $\delta^{q}(f)(a_{0}, \ldots, a_{q})$ defined as

$$\sum_{i=0}^{q} (-1)^{i} \{a_{i}, f(a_{0}, \dots, \widehat{a}_{i}, \dots, a_{q})\} + \sum_{0 \le i < j \le q} (-1)^{i+j} f(\{a_{i}, a_{j}\}, a_{0}, \dots, \widehat{a}_{i}, \dots, \widehat{a}_{j}, \dots, a_{q})$$

for any $a_0, a_1, \ldots, a_q \in A$. That is, $PH^q(A) := \ker(\delta^q) / \operatorname{im}(\delta^{q-1})$.

Poisson Homology Groups

Let us denote by $\Omega^{\bullet}(A)$: $= \bigoplus_{k=0}^{\infty} \Omega^{k}(A)$ the *A*-module of all (Kähler) differential forms with $\Omega^{0}(A) = A$. Denote by *d* the exterior differential and define the boundary operator $\partial_{k}: \Omega^{k}(A) \longrightarrow \Omega^{k-1}(A)$ as follows:

$$\partial_k (f_0 df_1 \wedge \cdots \wedge df_k) = \sum_{i=1}^k (-1)^{i+1} \{f_0, f_i\} df_1 \wedge \cdots \wedge \widehat{df_i} \wedge \cdots \wedge df_k$$
$$+ \sum_{1 \leq i < j \leq k} (-1)^{i+j} f_0 df (\{f_i, f_j\}) df_1 \wedge \cdots \wedge \widehat{df_i} \wedge \cdots \wedge \widehat{f_j} \wedge \cdots \wedge df_k.$$

The homology of the chain complex $(\Omega^{\bullet}(A), \partial_{\bullet})$ is called the Poisson homology of A. There is a duality between the Poisson homology and cohomology when A is a unimodular (Luo-Wang-Wu, '15). Note that A_{Ω} is unimodular.

Cohomology for Poisson Polynomial Algebra A_{Ω}

The Hilbert series for the Poisson cohomology groups have been computed for ${\cal A}_\Omega$ by

• Van den Bergh ('94): for $\Omega = x^3 + y^3 + z^3 + \lambda xyz$ with $\lambda^3 \neq -27;$

イロン イヨン イヨン イヨン

크

Cohomology for Poisson Polynomial Algebra A_{Ω}

The Hilbert series for the Poisson cohomology groups have been computed for A_Ω by

- Van den Bergh ('94): for $\Omega = x^3 + y^3 + z^3 + \lambda xyz$ with $\lambda^3 \neq -27;$
- Pichereau ('06): for weighted homogeneous Ω with an isolated singularity at the origin;

3

Cohomology for Poisson Polynomial Algebra A_{Ω}

The Hilbert series for the Poisson cohomology groups have been computed for A_Ω by

- Van den Bergh ('94): for $\Omega = x^3 + y^3 + z^3 + \lambda xyz$ with $\lambda^3 \neq -27;$
- Pichereau ('06): for weighted homogeneous Ω with an isolated singularity at the origin;
- T-Wang-Zhang ('22): for $\Omega = x^3 + y^2 z$ and $x^3 + x^2 z + y^2 z$.

イロト イポト イヨト イヨト

3

Cohomology for Poisson Polynomial Algebra A_{Ω}

The Hilbert series for the Poisson cohomology groups have been computed for A_Ω by

- Van den Bergh ('94): for $\Omega = x^3 + y^3 + z^3 + \lambda xyz$ with $\lambda^3 \neq -27;$
- Pichereau ('06): for weighted homogeneous Ω with an isolated singularity at the origin;
- T-Wang-Zhang ('22): for $\Omega = x^3 + y^2 z$ and $x^3 + x^2 z + y^2 z$.
- When deg(x) = deg(y) = deg(z) = 1, the only irreducible degree 3 potentials Ω are

$$x^{3} + y^{3} + z^{3} + \lambda xyz(\lambda^{3} \neq -27), \quad x^{3} + y^{2}z, \quad x^{3} + x^{2}z + y^{2}z.$$

<ロ> (四) (四) (三) (三) (三)

Classification of Weighted Potentials $\Omega \in \Bbbk[x, y, z]$

Theorem

(Huang-T-Wang-Zhang, '23) Let $A = \Bbbk[x, y, z]$ with deg(x) = a, deg(y) = b, deg(z) = c for $1 \le a \le b \le c$. Let Ω be a nonzero homogeneous polynomial of degree n: = a + b + c. Up to a graded automorphism of A, all the potentials Ω can be explicitly listed. A_{Ω} is twist-rigid (that is, rgt(A) = 0) if and only if Ω is irreducible. Potentials with isolated singularity only exist in the case where (a, b, c) = (1, 1, 1) or (1, 1, 2) or (1, 2, 3).

Remark

The classification of Ω in the case a = b = c is well-known (Dufour and Haraki, Donin-Makar and Limanov, Z.-J. Liu and Xu).

Some Notation

After making the identification:

$$\mathfrak{X}^{0}(A) \xrightarrow{\sim} A, \quad \mathfrak{X}^{1}(A) \xrightarrow{\sim} A^{\oplus 3}, \quad \mathfrak{X}^{2}(A) \xrightarrow{\sim} A^{\oplus 3},$$

we can write the differentials δ in the complex:

$$0 \longrightarrow \mathfrak{X}^{0}(A) \longrightarrow \mathfrak{X}^{1}(A)[w] \longrightarrow \mathfrak{X}^{2}(A)[2w] \longrightarrow \mathfrak{X}^{3}(A)[3w] \longrightarrow 0$$

where $w = \deg(\Omega) - a - b - c$ in a compact form

$$\begin{split} \delta^{0}(f) &= \overrightarrow{\nabla} f \times \overrightarrow{\nabla} \Omega, \quad \text{for } f \in A, \\ \delta^{1}(\overrightarrow{f}) &= -\overrightarrow{\nabla}(\overrightarrow{f} \cdot \overrightarrow{\nabla} \Omega) + \text{Div}(\overrightarrow{f}) \overrightarrow{\nabla} \Omega, \quad \text{for } \overrightarrow{f} \in A^{\oplus 3}, \\ \delta^{2}(\overrightarrow{f}) &= -\overrightarrow{\nabla} \Omega \cdot (\overrightarrow{\nabla} \times \overrightarrow{f}) = -\text{Div}(\overrightarrow{f} \times \overrightarrow{\nabla} \Omega), \quad \text{for } \overrightarrow{f} \in A^{\oplus 3}. \end{split}$$

イロン 不同 とくほと 不良 とう

크

More Notation

For any graded vector space $M = \bigoplus_{i \in \mathbb{Z}} M_i$ that is locally finite, we use $h_M(t) = \sum_{i \in \mathbb{Z}} \dim_{\mathbb{K}}(M_i) t^i$ to denote the *Hilbert series* of M. The Hilbert series of A is given by

$$h_A(t) \;=\; rac{1}{(1-t^a)(1-t^b)(1-t^c)}.$$

The Poisson cohomology groups $HP^{\bullet}(A)$ are graded vector spaces. Denote their Hilbert series as $h_{HP^{\bullet}(A)}(t)$, then we have

$$\sum_{i=0}^{3} (-t^{-w})^{i} h_{PH^{i}(A)}(t) = -\frac{1}{t^{3w+a+b+c}} \frac{(1-t^{w+a})(1-t^{w+b})(1-t^{w+c})}{(1-t^{a})(1-t^{b})(1-t^{c})}$$

イロン 不良 とくほど 不良 とう

Hilbert Series for Poisson Cohomology

Theorem

(Huang-T-Wang-Zhang, '23) Let A_{Ω} be a connected graded Poisson algebra with $\deg(x) = a$, $\deg(y) = b$, and $\deg(z) = c$ defined by a potential Ω of degree n. Suppose that $Z_P(A) = \Bbbk[\Omega]$ and A is H-ozone and A has a degree zero Poisson derivation that is not ozone and A has no non-zero Poisson derivation of degree -n. The Hilbert series of the Poisson cohomology groups of A_{Ω} are given by

(1)
$$h_{PH^{0}(A)(t)} = \frac{1}{1-t^{n}}$$
 and $h_{PH^{1}(A)}(t) = \frac{1}{1-t^{n}}$.
(2) $h_{PH^{2}(A)}(t) = \frac{1}{t^{a+b+c}} \left(\frac{(1-t^{n-a})(1-t^{n-b})(1-t^{n-c})}{(1-t^{n})(1-t^{a})(1-t^{b})(1-t^{c})} - 1 \right)$.
(3) $h_{PH^{3}(A)}(t) = \frac{(1-t^{n-a})(1-t^{n-b})(1-t^{n-c})}{t^{a+b+c}(1-t^{n})(1-t^{a})(1-t^{b})(1-t^{c})}$.

E ► < E >

Hilbert Series for Poisson Cohomology

Corollary

(Huang-T-Wang-Zhang, 23) If $\Omega \in \mathbb{k}[x, y, z]$ of degree n = a + b + c is an irreducible potential in the classification that is neither $x^{k} + v^{l}$ nor $x^{k} + z^{l}$ nor $v^{k} + z^{l}$, then the Hilbert series of Poisson cohomology of A_{Ω} are given by (1) $h_{PH^0(A)(t)} = \frac{1}{1-t^n}$. (2) $h_{PH^1(A)}(t) = \frac{1}{1-t^n}$. (3) $h_{PH^2(A)}(t) = \frac{1}{t^n} \left(\frac{(1-t^{a+b})(1-t^{a+c})(1-t^{b+c})}{(1-t^n)(1-t^a)(1-t^b)(1-t^c)} - 1 \right).$ (4) $h_{PH^{3}(A)}(t) = \frac{(1-t^{a+b})(1-t^{a+c})(1-t^{b+c})}{t^{n}(1-t^{n})(1-t^{a})(1-t^{b})(1-t^{c})}$

< ロ > < 同 > < 三 > < 三 >

Some Equivalent Conditions for A_{Ω}

Theorem

(Huang-T-Wang-Zhang, '23) Let A := k[x, y, z] be a connected graded Poisson polynomial algebra. Denote by Z the Poisson center of A_Ω. Then, the following statements are equivalent.
(1) rgt(A) = 0 and any homogeneous Poisson derivation of A with negative degree is zero.

(2) Any graded twist of A is isomorphic to A, and any homogeneous Poisson derivation of A with a negative degree is zero.

イロト イヨト イヨト イヨト

Some Equivalent Conditions for A_{Ω}

Theorem

(3) The Hilbert series of the graded vector space of Poisson derivations of A is $\frac{1}{(1-t^a)(1-t^b)(1-t^c)}$.

(4)
$$h_{PH^1(A)}(t)$$
 is $\frac{1}{1-t^n}$.

(5)
$$h_{PH^1(A)}(t)$$
 is equal to $h_Z(t)$.

- (6) Every Poisson derivation φ of A has a decomposition
 φ = zE + H_a, where z ∈ Z and a ∈ A. Here, z is unique, and
 a is unique up to a Poisson central element.
- (7) Every Poisson derivation of A that vanishes on Z is Hamiltonian.

< ロ > < 同 > < 三 > < 三 >

Some Equivalent Conditions for A_{Ω}

Theorem

(8) A is an unimodular Poisson algebra determined by an irreducible potential Ω that is balanced.

(9)
$$h_{PH^3(A)}(t) - h_{PH^2(A)}(t) = t^{-n}$$
.

(10) A is unimodular and $h_{PH^{2}(A)}(t) = \frac{1}{t^{n}} \left(\frac{(1-t^{a+b})(1-t^{a+c})(1-t^{b+c})}{(1-t^{n})(1-t^{a})(1-t^{b})(1-t^{c})} - 1 \right).$ (11) A is unimodular and $h_{PH^{3}(A)}(t) = \frac{(1-t^{a+b})(1-t^{a+c})(1-t^{b+c})}{t^{n}(1-t^{n})(1-t^{a})(1-t^{b})(1-t^{c})}.$ (12) A is uPH²-vacant.

イロト イポト イヨト イヨト

3

Some Technical Conditions: K_1 -sealed

Let Ω be a homogeneous element of degree n > 0 in the weighted polynomial ring $A := \Bbbk[x, y, z]$. Recall that the *Koszul complex* $K_{\bullet}(\vec{\nabla}\Omega)$ given by the sequence $\vec{\nabla}\Omega := (\Omega_x, \Omega_y, \Omega_z)$ in A is:

$$0 \to A \xrightarrow{\overrightarrow{\nabla}_{\Omega}} \begin{array}{c} A \\ \oplus A \end{array} \xrightarrow{\overrightarrow{\nabla}_{\Omega\times}} \begin{array}{c} A \\ \oplus A \end{array} \xrightarrow{\overrightarrow{\nabla}_{\Omega\times}} \begin{array}{c} A \\ \oplus A \end{array} \xrightarrow{\overrightarrow{\nabla}_{\Omega\cdot}} A \to A/(\Omega_x, \Omega_y, \Omega_z) \to 0.$$

Definition

We say Ω is K_1 -sealed if, for any $\overrightarrow{f} \in A^{\oplus 3}$ with $\overrightarrow{f} \cdot \overrightarrow{\nabla} \Omega = 0$ in Aand $\overrightarrow{\nabla} \cdot \overrightarrow{f} = 0$ when considered as an element in A_{sing} , then $\overrightarrow{f} = \overrightarrow{\nabla} \Omega \times \overrightarrow{g}$ for some $\overrightarrow{g} \in A^{\oplus 3}$.

イロト イヨト イヨト イヨト

э

Some Technical Definitions: *uPH*²-vacant

Definition

Set $M^2(A) := \{ f \pi_{\Omega} + \pi_g \mid f, g \in A \}$ which is a subspace of $\mathfrak{X}^2(A)$. Note that

$$\operatorname{\mathsf{im}}(d^1_{\pi_\Omega})\subseteq M^2(A)\subseteq \operatorname{\mathsf{ker}}(d^2_{\pi_\Omega}).$$

- (1) The upper division of the second Poisson cohomology of A_{Ω} is defined to be $uPH^2(A_{\Omega}) := \ker(d^2_{\pi_{\Omega}})/M^2(A)$.
- (2) The lower division of the second Poisson cohomology of A_{Ω} is defined to be $IPH^2(A_{\Omega}) := M^2(A)/\operatorname{im}(d_{\pi_{\Omega}}^1)$.
- (3) We say A_{Ω} is uPH^2 -vacant if $uPH^2(A_{\Omega}) = 0$, or equivalently $IPH^2(A_{\Omega}) = PH^2(A_{\Omega})$.

< ロ > < 同 > < 三 > < 三 >

э

Some Technical Definitions: *H*-ozone

Definition

Let $A = \Bbbk[x_1, ..., x_n]$ be a connected graded Poisson algebra with its Poisson center denoted by Z.

- (1) $\delta \in Pd(A)$ is called *ozone* if $\delta(Z) = 0$.
- (2) Let *Od*(*A*) denote the Lie algebra of all ozone Poisson derivations of *A*.
- (3) We say A is H-ozone if Od(A) = Hd(A), namely, any ozone derivation is Hamiltonian.
- (4) We say A is PH^1 -minimal if $PH^1(A) \cong ZE$ as graded Z-modules where E is the Euler derivation.

Some Technical Definitions: Balanced-Potentials

Definition

We call an irreducible potential Ω in $\mathbb{k}[x, y, z]$ balanced if $\Omega_x \Omega_y \Omega_z \neq 0$ for any choice of graded generators (x, y, z); otherwise, we call it *non-balanced*.

We have the following:

• Ω is K_1 -sealed $\Rightarrow A_{\Omega}$ is uPH^2 -vacant.

・ 同 ト ・ ヨ ト ・ ヨ ト

Some Technical Definitions: Balanced-Potentials

Definition

We call an irreducible potential Ω in $\mathbb{k}[x, y, z]$ balanced if $\Omega_x \Omega_y \Omega_z \neq 0$ for any choice of graded generators (x, y, z); otherwise, we call it *non-balanced*.

We have the following:

- Ω is K_1 -sealed $\Rightarrow A_{\Omega}$ is uPH^2 -vacant.
- **2** A_{Ω} is uPH^2 -vacant $\Leftrightarrow A_{\Omega}$ is H-ozone.

・ 同 ト ・ ヨ ト ・ ヨ ト

Some Technical Definitions: Balanced-Potentials

Definition

We call an irreducible potential Ω in $\mathbb{k}[x, y, z]$ balanced if $\Omega_x \Omega_y \Omega_z \neq 0$ for any choice of graded generators (x, y, z); otherwise, we call it *non-balanced*.

We have the following:

- Ω is K_1 -sealed $\Rightarrow A_{\Omega}$ is uPH^2 -vacant.
- **2** A_{Ω} is uPH^2 -vacant $\Leftrightarrow A_{\Omega}$ is H-ozone.
- **(3)** A_{Ω} is *H*-ozone $\Leftrightarrow \Omega$ is irreducible and balanced.

(4月) トイヨト イヨト

References

- M. Van den Bergh, Noncommutative homology of some three-dimensional quantum spaces, Proceedings of Conference on Algebraic Geometry and Ring Theory in Honor of Michael Artin, Part III, Antwerp, 1992, vol. 8, 1994, pp. 213–
- A. Pichereau, Poisson (co)homology and isolated singularities, J. Algebra 299 (2006), no. 2, 747–777.
- X. Tang, X.-T. Wang, and J. J. Zhang, Twists of graded Poisson algebras and related properties, https://arxiv.org/abs/2206.05639.
- H.-D. Huang, X. Tang, X.-T. Wang, and J. J. Zhang, Weighted polynomial rings of dimension three, https://arxiv.org/abs/2309.00714.

イロト イポト イヨト イヨト

æ

THANK YOU!

・ロト ・回ト ・ヨト ・ヨト

Ð,