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Zero-divisors and homological
properties



Ring structure and homological properties

We expect that if a ring is “homologically nice,” then it is
should be “ring-theoretically nice” as well. A famous example:

Theorem (Serre, Auslander-Buschsbaum-Nagata): Let A
be a commutative noetherian local ring. If gldimA < ∞,
then A is a unique factorization domain.

This is common in commutative algebra, but much more
difficult to realize in noncommutative algebra. This is why we
still have open problems like:

Question: If R is a noncommutative local noetherian ring
of finite global dimension, is R a domain?
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Ring structure and homological properties

Famous graded analogue of the question:

Conjecture (Artin-Tate-Van den Bergh 1991): Every Artin-
Schelter regular algebra is a domain.

Special cases are known, mostly by classification:

• Dimension 2: written down by Artin-Schelter, all
noetherian domains.

• Dimension 2 with GKdim(A) = ∞ (non-noetherian):
classified by Zhang, all domains.

• Dimension 3: classified by ATV, all noetherian domains.
• Dimension 4: ATV showed that noetherian implies domain.

Remains open in general, even in the case where A is Koszul.
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Fundamental problem:

How can we deduce good ring-theoretic
properties from good homological properties?
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Greatest hits: “homologically nice” =⇒ domain or prime

Here are some of the best noncommutative results of this type.

Say R is “nearly local” if R/ rad(R) is simple artinian.

Brown-Hajarnavis-MacEachern ’82: R noetherian and nearly
local, then R/

√
0 is a matrix ring over a local domain.

Levasseur ’92: Connected graded, noetherian, “Auslander
regular” algebras are domains.

Stafford-Zhang ’94: Connected graded PI algebras of finite
global dimension are domains.

Teo ’97: Nearly local fully bounded noetherian rings of finite
global dimension are matrix rings over local domains.

Very nice results! Yet each has a strong restriction.
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Piecewise domains

The rings above enjoy a stronger property than being prime.

Def (Gordon-Small ’72): A ring R is a piecewise domain with
respect to orthogonal idempotents 1 = e1 + · · ·+ er if

x ∈ eiRej, y ∈ ejRe`, and xy = 0 =⇒ x = 0 or y = 0.

Remarks:

• prime rings need not be piecewise domains
• piecewise domains need not be prime:

( k k
0 k

)
• Mn(domain) is a prime piecewise domain.
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Today’s topic

This talk: Joint work with Dan Rogalski providing one method
to deduce that a ring is prime or a (piecewise) domain using
homological information.

Advantage: We don’t need to impose strong ring-theoretic
hypotheses. The only homological assumption is that we have
a Koszul algebra.

Trade-off: The homological requirement is more complex. We
need to understand the structure of an Ext algebra associated
to the ring.
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Graded algebras

We’re interested in locally finite, N-graded algebras:
A =

⊕∞
n=0 An with each dimk Ai < ∞. In this case:

• The graded Jacobson radical is J(A) = radA0 ⊕ A≥1
• Denote S = A/J(A), a semisimple f.d. algebra.
• gr. gldiml(A) = pdim(AS) = pdim(SA) = gr. gldimr(A)
• If S is separable, then gldim(A) = gr. gldim(A).

Special case: A is connected if A0 = k (e.g., AS regular algebras).

Then S = k is evidently separable, so all global dimensions are
equal to length of a minimal resolution P• → kA → 0.
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The Ext algebra

If A is a connected graded algebra, then the Ext algebra

E(A) = Ext•A(k, k)

encodes important homological information about A:

• The minimal resolution P• → k→ 0 computes
E(A) ∼= HomA(P•, k)

• If d = gldim(A) < ∞, then d is maximal s.t. E(A)d 6= 0.

Most significantly for us:

Thm (Smith, Lu-Palmieri-Wu-Zhang): A connected graded
algebra A is AS regular if and only if E(A) is Frobenius.
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Koszul algebras

A class algebras A for which E(A) is easier to compute.

Def (Priddy, ’70): A connected graded algebra A is Koszul if
the minimal resolution

· · · → P2 → P1 → P0 → kA → 0

has each Pi generated in degree i.

Fact: A Koszul algebra is always quadratic: can write
A ∼= k〈x1, . . . , xd〉/(r1, . . . , rn) for homogeneous ri of degree 2.
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Koszul duality

Viewing free algebras as tensor algebras k〈x1, . . . , xd〉 = T(V)
(dimk V = d), quadratic means A = T(V)/(L) for L ⊆ V ⊗ V .

Def: The quadratic dual is A! = T(V∗)/(L⊥) where
L⊥ ⊆ V∗ ⊗ V∗ = (V ⊗ V)∗ vanishes on L.

This gives a simple method to compute the Ext algebra:

Theorem (Priddy): If A is Koszul, then E(A) ∼= A!.

Corollary: We also have E(A!) ∼= (A!)! ∼= A.
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Koszul examples

Polynomial algebras: A = k[x1, . . . , xd] is Koszul, whose dual is
famously the exterior algebra on V = kd:

E(A) ∼= A! ∼= Λ(V)

Skew polynomials: A = kq[x, y] are Koszul with

A! = k〈x̂, ŷ〉/(x̂2, ŷ2, ŷx̂ + qx̂ŷ),

and similarly for kq[x1, . . . , xn].
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An approach to proving primeness



Guo’s approach

In the paper [special thanks to Jason Gaddis for sharing!]:

• Jin Yun Guo, On the primeness of Artin-Schelter regular
Koszul algebra, 2005

it was claimed that Koszul AS regular algebras are prime.

Unfortunately, there is an issue with the proof. But the idea
can be adapted to give interesting information.
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Orbital algebras

Fix the following data:

• C = additive category.
• Object M ∈ C.
• F : C → C an additive endofunctor.

The orbital algebra is a graded ring

O(F,M) =
∞⊕
i=0

Hom(FiM,M)

with multiplication defined on f ∈ Hom(FiM,M) and
g ∈ Hom(FjM,M) by composing with Fi(g) : Fi+jM→ FiM,

f ∗ g = f ◦ Fi(g) ∈ Hom(Fi+jM,M).
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Orbital algebras—examples

Certain constructions are secret examples of orbital algebras.

(Note: In these cases, C is the opposite of a familiar category,
as we need Hom(M, FiM) = HomCop(FiM,M)...)

Skew polynomial rings: Fix a ring A and an automorphism σ:

• C = {f.g. projective A-modules}op with object M = A
• F : C → C is the twist F(P) = σP

Then

O(F,M) =
⊕

Hom(A, Fi(A))

=
⊕

Hom(A, σiA)
∼= A[x;σ]
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Orbital algebras—examples

Twisted homogeneous coordinate rings: X = scheme with an
automorphism σ and L an invertible sheaf

• C = Qcoh(X)op with object M = OX

• F : C → C is pullback by σ composed with tensoring:
F(M) = σ∗(L ⊗M)

Then

O(F,OX) =
⊕

Hom(OX, Fi(OX))

∼=
⊕

Γ(X,Lσi ⊗ · · · ⊗ Lσ ⊗ L)

= B(X, σ,L)
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Orbital algebras—examples

Ext algebras: A = abelian category with enough injectives or
projectives

• C = D±(A)op with any object M ∈ A
• F = Σ: C → C is translation

Then

O(Σ,M) =
⊕

Hom(M,ΣiM)
∼=

⊕
ExtiA(M,M)

= Ext•A(M,M).
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A sufficient condition to be a domain

Theorem
Let C and F : C → C be as above. Suppose M ∈ C satisfies:

1. Every nonzero f : Fi(M) → M is an epimorphism;
2. If g : Fi(M) → M is an epimorphism, then each Fj(g) is also
an epimorphism.

Then O(F,M) is a domain.

Proof: Let 0 6= f ,g ∈ O(F,M) be homogeneous with d = deg f
and e = deg g.

By (1), g : FeM→ M is an epimorphism, and
by (2) so is Fd(g). But then f 6= 0 implies

f ∗ g = f ◦ Fd(g) 6= 0.
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Special cases as classical results

Special cases of this theorem recover some well-known results:

Example: For C = {f.g. projective A-modules}op with object
M = A and F = σ(−), we get

A domain, σ injective =⇒ A[x;σ] is a domain.

Example: For C = Qcoh(X)op with object M = OX and
F = σ∗(L ⊗−), we get

X integral, σ auto. =⇒ B(X, σ,L) is a domain.

This isn’t a “better” proof, but it has the potential to generalize
in new directions...
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A sufficient condition to be prime

Theorem (à la Guo)
Let C and F : C → C be as above. Suppose that M is an object
of C with a decomposition M = S1 ⊕ · · · ⊕ Sr in C, and consider
the conditions:

1. every nonzero f : Fd(Sj) → S` is an epimorphism;
2. if g : Fe(Sj) → S` is an epimorphism, then so is Fd(g) for
any d ≥ 0;

3. for j 6= `, there exists a nonzero morphism h : Fi(Sj) → S`
for some i ≥ 0.

If (1) and (2) hold, then O(F,M) is a piecewise domain. If (3)
also holds, then O(F,M) is prime.
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Putting the condition to work



Syzygy modules

Guo’s idea: Take F = Ω to be the syzygy construction from a
projective cover:

0→ Ω(M) → P→ M→ 0.

Then ExtiΛ(M,N) ∼= HomΛ(Ω
i(M),N).

Problem: This is not well-defined on morphisms of graded
modules! Different lifts of f can produce different morphisms…
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Syzygy non-functor

Example: Take the exterior algebra Λ = Λ(V) for V = kx ⊕ ky.

For M = k⊕ k(−1), define f : M→ M by f (a,b) = (λa, µb).

If we try to lift this to a commuting diagram:

0 Ω(M) Λ⊕ Λ(−1) k⊕ k(−1) 0

0 Ω(M) Λ⊕ Λ(−1) k⊕ k(−1) 0

Ω(f ) f̂ f

there are many choices of f̂ : for any z ∈ Λ1 we can take

f̂z(a,b) = (λa, µb+ za).

But then if w ∈ Λ1 we get (w, 0) ∈ ΩM and g(w, 0) = (λw, zw)
depends on f̂z!
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Syzygy functor

So when can we define a functor from Ω? It works well if we
can guarantee that f lifts uniquely:

0 Ω(M) PM M 0

0 Ω(N) PN N 0

Ω(f ) f̂ f

Lemma: If f : M → N is a graded morphism with M and N
both generated in degree 0, then f lifts uniquely to projec-
tive covers and Ω(f ) is well-defined.
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Syzygy functor

A module is Koszul if P• → M→ 0 has Pi generated in degree i.
Then the resolution Q• = P•+1 of Ω(M)

· · · → P2 → P1 → Ω(M) → 0

has its ith term is generated in degree i+ 1.

So if we shift, we
get another Koszul module:

· · · → P2(1) → P1(1) → Ω(M)(1) → 0.

Theorem
The assignment F(M) = Ω(M)(1) defines an endofunctor of
the category C = K(Λ) of Koszul modules.

Furthermore, if 0→ L→ M→ N→ 0 is an exact sequence of
Koszul modules, then so is 0→ F(L) → F(M) → F(N) → 0.
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When the Ext algebra is prime

Theorem
Let M ∈ K(Λ) be Koszul and semisimple, with simple
decomposition M = M1 ⊕ · · · ⊕Mr . Consider the conditions:

1. For every graded f : Fi(Mj) → M` for i ≥ 0 and j, ` arbitrary,
ker f is Koszul.

2. For any j, `, there exists i = i(j, `) such that
ExtiGr-Λ(Mj(i),M`) 6= 0.

Then we have

(1) ⇐⇒ Ext•Gr-Λ(M,M) is a piecewise domain,
(1) and (2) =⇒ Ext•Gr-Λ(M,M) is prime.
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A few applications



Koszul rings

We want to apply this to Koszul algebras, but the tool is
general enough to do a little better.

Defintion (Beilinson-Ginzburg-Soergel ’96): A graded ring
R with S = R0 semisimple is a Koszul ring if the minimal
projective resolution P• → SR → 0 has Pi generated in
degree i.

Fact: As before, can write R = TS(V)/(L) for V = R1 and
L ⊆ V ⊗S V . Can define left and right quadratic duals
R! = TS(V∗)/(L⊥) and !R = TS(∗V)/(⊥L).
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Generalized Koszul duality

Standing assumption: V = R1 has both SV and VS f.g.

Beilinson-Ginzburg-Soergel showed that if R as above is
Koszul, then

Ext•R-Gr(S, S) ∼= R!,
Ext•Gr-R(S, S) ∼= !R.

Also, R ∼= (!R)! ∼= !(R!), so that we can recover R as an Ext
algebra itself: setting Λ = R!, we get

R ∼= !Λ ∼= ExtGr-Λ(S, S).
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First key condition

Continue to denote S = Λ0 and F = Ω(−)(1) as above.

Definition
Let Λ be a Koszul ring, and fix a simple decomposition

S = S1 ⊕ · · · ⊕ Sr.

Then Λ satisfies the Koszul syzygy condition if, for all i ≥ 0
and all graded morphisms

f : Fi(Sj) → S`,

the module ker f is Koszul.
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Second key condition

If R is graded with S = R0 semisimple, write S = S1 ⊕ · · · ⊕ Sr .
This corresponds to an idempotent decomposition

1 = e1 + · · ·+ er.

Each Di = eiSei is a division ring.

Def: The underlying quiver of R has vertices {1, . . . , r} and

#{arrows i→ j} = dimDi ejR1ei.

Def: A quiver Q is strongly connected if there exists a path
between any two vertices of Q.
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When a Koszul ring is prime

Since a Koszul ring R can be viewed as R ∼= Ext•Gr-Λ(S, S) for
Λ = R! ∼= Ext•R(S, S), we can specialize to the following.

Theorem
For R a Koszul ring, consider the conditions:

1. Λ = R! satisfies the Koszul syzygy condition.
2. The underlying quiver of R is strongly connected.

Then we have:

(1) ⇐⇒ R is a piecewise domain,
(1) and (2) ⇐⇒ R is a prime piecewise domain.
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When a Koszul ring is a domain

What condition implies that a Koszul ring is a domain? We
have a similar equivalent characterization.

Theorem
Suppose R is a Koszul ring with S = R0. The following are
equivalent:

1. R is a domain;
2. S is a division ring and Λ = R! satisfies the Koszul syzygy
condition.
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Some applications

Some situations where these results apply:

Theorem
Let A be a (connected gradded) Koszul algebra with
Λ = E(A) ∼= A!. Then A is a domain if and only if Λ satisfies the
Koszul syzygy condition.

Theorem
Let R be a local ring with D = R/J(R), and set Λ = Ext•R(D,D). If
Λ is a Koszul ring and satisfies the Koszul syzygy condition,
then R is a domain.
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Non-connected application: twisted CY-2 algebras

There is a non-connected generalization of AS regular
algebras. The enveloping algebra of A is Ae = A⊗ Ae.
(Ae-modules = (A,A)-bimodules)

Def: An algebra A is twisted Calabi-Yau of dimension d if:

• There is a finite type projective resolution of A in Mod-Ae;
• ExtiAe(A,Ae) = 0 for i 6= d and ExtdAe(A,Ae) = U for an
invertible bimodule U.

If we can take U ∼= A, then A is Calabi-Yau.

Fact: (R.-Rogalski-Zhang ’14) For connected graded algebras,

AS regular ⇐⇒ twisted CY.
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Structure of twisted CY-2 algebras

Some properties known about graded twisted CY-2 algebras:

Thm [R-Rogalski ’22]: A graded twisted CY-2 algebra A is
noetherian if and only if GKdim(A) < ∞.

Thm [R-Rogalski ’19]: Let A = kQ/I be a graded twisted CY-
2 algebra, where kQ has the ordinary grading.
1. A is an algebra with “mesh relations” (I = (ω) for

ω =
∑

a∈Q1 τ(a)a).
2. The incidence matrix M of Q has spectral radius

ρ(M) ≥ 2.
3. GKdim(A) < ∞ if and only if ρ(M) = 2, in which case

GKdim(A) = 2.
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A non-connected application

We can now say in nice cases that such algebras are prime
piecewise domains.

Theorem
Let A = kQ/I be graded twisted Calabi-Yau algebra of
dimension 2, and assume that A is a Koszul ring. Suppose
each vertex of Q is the source of at least two arrows. Then A is
a piecewise domain, and

A is prime ⇐⇒ Q is connected ⇐⇒ Q strongly connected.

Note: Here S = kQ0 , and the underlying quiver is just Q.
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Elements of the proof

The main work is to verify the Koszul syzygy condition for
Λ = Ext•A(S, S). We also have Λ ∼= A! ∼= kQop/(I⊥2 ).

Theorem [Li-Wu ’23]: For Koszul A = kQ/I, A is twisted CY if
and only if Λ is Frobenius.

Recall our favorite functor F = Ω(−)(1).

For Frobenius Λ = S⊕ Λ1 ⊕ Λ2 with enough arrows at each
vertex, we can roughly “classify” the F-orbits of kernels of
maps Fi(S) → S, which shows they are all Koszul.
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Special case: preprojective algebras

For a quiver Γ, its double Γ has the same vertices, all arrows of
Γ, and a new “double” α∗ arrow corresponding to each arrow α

(i.e., Γ1 = Γ1 t Γ∗1 ).

Def: The preprojective algebra of a quiver Γ is

Π(Γ) = kΓ/(
∑
α∈Γ1

αα∗ − α∗α).

These are known to be Calabi-Yau algebras of dimension 2
whenever Γ is not Dynkin.
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Preprojective algebras

Thm (Baer-Geigle-Lenzing ’87): For Γ connected
representation-finite (Euclidean, or “extended Dynkin”), Π(Γ) is
prime and noetherian.

The preprojective algebra for “most” Γ won’t be noetherian.
But the twisted CY-2 result lets us extend this to many more.

Theorem
If Γ is connected and every vertex of its underlying graph has
degree ≥ 2, then Π(Γ) is prime.

Idea: Γ connected implies Q = Γ strongly connected
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Remaining questions

In dimension 2, if we remove the restriction on the number of
arrows at every vertex, the twisted CY algebra may not be a
piecewise domain.

Ex: If Γ has type D̃ or Ẽ then Π(Γ) is not a piecewise domain,
but is still prime by [BGL].

Conjecture: If Q is (strongly) connected, any twisted CY-2
algebras of the form A = kQ/I is prime.

37/39



Remaining questions

Of course, the biggest question is whether this can help us
resolve if Koszul AS regular algebras are domains!

Theorem: A Koszul algebra is a domain if and only if E(A)
satisfies the Koszul syzygy condition.

This translates the Koszul case of ATV’s conjecture to:

all Koszul AS regular
algebras are domains

⇐⇒
all Koszul Frobenius
algebras satisfy the

Koszul syzygy condition.
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Thank you!
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