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Settings

Let Ik be an algebraically closed field of characteristic zero.

Let H be a semisimple Hopf Ik-algebra with coproduct ∆
and counit ε.

Let e ∈ H be the integral of H such that ε(e) = 1.

Let A be an Ik-algebra, and H acts on A from the left.

Invariant subalgebra: AH = {a ∈ A|h · a = ε(h)a,∀h ∈ H}.

smash product
A#H = A⊗ H with product:

(a#h)(b#g) = a(h(1) · b)#h(2)g ,

where ∆(h) = h(1) ⊗ h(2).
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Basic properties

We view A and H as subalgebras of A#H through the
natural inclusion maps. Then e ∈ H is also an idempotent
element of A#H.

There is an algebra isomorphism AH ∼= e(A#H)e.

A can be viewed as an A#H-AH -bimodule, and as an
AH -A#H-bimodule.

As a left (or right) A#H-module, A ∼= (A#H)e (resp.
A ∼= e(A#H)).

If A is noetherian, then so is AH , and A is finitely generated
both as a left and a right AH -module.

> S. Montgomery, Hopf algebras and their actions on rings, CBMS 82, Amer. Math. Soc.,

1993.

Jiwei He Adjunction maps



Basic properties

We view A and H as subalgebras of A#H through the
natural inclusion maps. Then e ∈ H is also an idempotent
element of A#H.

There is an algebra isomorphism AH ∼= e(A#H)e.

A can be viewed as an A#H-AH -bimodule, and as an
AH -A#H-bimodule.

As a left (or right) A#H-module, A ∼= (A#H)e (resp.
A ∼= e(A#H)).

If A is noetherian, then so is AH , and A is finitely generated
both as a left and a right AH -module.

> S. Montgomery, Hopf algebras and their actions on rings, CBMS 82, Amer. Math. Soc.,

1993.

Jiwei He Adjunction maps



Basic properties

We view A and H as subalgebras of A#H through the
natural inclusion maps. Then e ∈ H is also an idempotent
element of A#H.

There is an algebra isomorphism AH ∼= e(A#H)e.

A can be viewed as an A#H-AH -bimodule, and as an
AH -A#H-bimodule.

As a left (or right) A#H-module, A ∼= (A#H)e (resp.
A ∼= e(A#H)).

If A is noetherian, then so is AH , and A is finitely generated
both as a left and a right AH -module.

> S. Montgomery, Hopf algebras and their actions on rings, CBMS 82, Amer. Math. Soc.,

1993.

Jiwei He Adjunction maps



Basic properties

We view A and H as subalgebras of A#H through the
natural inclusion maps. Then e ∈ H is also an idempotent
element of A#H.

There is an algebra isomorphism AH ∼= e(A#H)e.

A can be viewed as an A#H-AH -bimodule, and as an
AH -A#H-bimodule.

As a left (or right) A#H-module, A ∼= (A#H)e (resp.
A ∼= e(A#H)).

If A is noetherian, then so is AH , and A is finitely generated
both as a left and a right AH -module.

> S. Montgomery, Hopf algebras and their actions on rings, CBMS 82, Amer. Math. Soc.,

1993.

Jiwei He Adjunction maps



Basic properties

We view A and H as subalgebras of A#H through the
natural inclusion maps. Then e ∈ H is also an idempotent
element of A#H.

There is an algebra isomorphism AH ∼= e(A#H)e.

A can be viewed as an A#H-AH -bimodule, and as an
AH -A#H-bimodule.

As a left (or right) A#H-module, A ∼= (A#H)e (resp.
A ∼= e(A#H)).

If A is noetherian, then so is AH , and A is finitely generated
both as a left and a right AH -module.

> S. Montgomery, Hopf algebras and their actions on rings, CBMS 82, Amer. Math. Soc.,

1993.

Jiwei He Adjunction maps



Basic properties

We view A and H as subalgebras of A#H through the
natural inclusion maps. Then e ∈ H is also an idempotent
element of A#H.

There is an algebra isomorphism AH ∼= e(A#H)e.

A can be viewed as an A#H-AH -bimodule, and as an
AH -A#H-bimodule.

As a left (or right) A#H-module, A ∼= (A#H)e (resp.
A ∼= e(A#H)).

If A is noetherian, then so is AH , and A is finitely generated
both as a left and a right AH -module.

> S. Montgomery, Hopf algebras and their actions on rings, CBMS 82, Amer. Math. Soc.,

1993.

Jiwei He Adjunction maps



Morita context

An AH -bimodule map

αA,H : A⊗A#H A −→ AH , a⊗A#H b 7→ e(ab);

An A#H-bimodule map

βA,H : A⊗AH A −→ A#H, a⊗AH b 7→ aeb.

Remark.
(AH AA#H , A#HAAH , αA,H , βA,H) forms a Morita context;

The AH -bimodule map αA,H is always surjective;

We call βA,H the adjunction map associated to the H-action
on A.
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Surjectivity of the adjunction map

If βA,H is surjective, then AH and A#H are Morita
equivalent. In this case, the extension A/AH is called a
Hopf Galois extension.

Theorem

Let H be a semisimple Hopf algebra, and A a left H-module
algebra. Then TFAE:

1 A/AH is a Hopf Galois extension;

2 AAH is projective, and A#H ∼= End(AAH ).

> M. Cohen, D. Fishman, S. Montgomery, Hopf Galois extensions, smash products, and

Morita equivalence, J. Algebra 133 (1990), 351–372.
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(II) Cokernel of the adjunction map
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Cofinite case

Recall βA,H : A⊗AH A −→ A#H, a⊗ b 7→ aeb.

Note that Im(βA,H) is an ideal of A#H.

Question 1. When is the algebra A#H/(ImβA,H) finite
dimensional?

Notation:
Assume B is a noetherian algebra.

mod B the category of finitely generated right B-modules

tors B the category of finite dimensional right B-modules

qmod B := mod B/ tors B.
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Cofinite case

Notation:
Let MB be a B-module. An element x ∈ M is a torsion
element if xB is finite dimensional.

Let τ(M) = {x ∈ M|x is torsion}.

Then we obtain a functor τ : Mod B −→ Mod B.

Define depth(M) = min{i |R iτ(M) 6= 0}.
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Cofinite case

Theorem

Let H be a semisimple Hopf algebra, and let A be a noetherian
left H-module algebra. Then TFAE:

1 A#H/ImβA,H is finite dimensional;

2 there is an equivalence of abelian categories
qmod A#H ∼= qmod AH .

Moreover, if the above equivalent conditions are satisfied and
depthAA ≥ 2, then we have an isomorphism

A#H ∼= End(AAH ).

> J.-W. He, F. Van Oystaeyen, Y. Zhang, Hopf dense Galois extensions with applications, J.

Algebra 476 (2017), 134–160.

Jiwei He Adjunction maps



Cofinite case: graded algebras

Notation.
Suppose B is a noetherian Z-graded algebra.

gr B the category of f.g. right graded B-modules

tors B the subcategory of gr B consisting of f.d. graded
modules.

qgr B := gr B/ tors B.
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Cofinite case: graded algebras

Theorem

Let A be an Artin-Schelter regular algebra of global dimension
2. Suppose a semisimple Hopf algebra H acts on A inner
faithfully. Then

1 A#H/ImβA,H is finite dimensional;

2 A#H ∼= End(AAH );

3 qgr A#H ∼= qgr AH .

> K. Chan, E. Kirkman, C. Walton, J.J. Zhang, McKay correspondence for semisimple Hopf

actions on regular graded algebras, I, J. Algebra 508 (2018), 512–538.
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Cofinite case: graded algebras

Let Vn = Ik−1[x1, . . . , xn] be the skew polynomial algebra.

Theorem

Let G be one of the following permutation group, and A the
corresponding skew polynomial algebra. Then
A#IkG/(ImβA,IkG ) is finite dimensional.

1 G = 〈(1 2)(3 4), (1 3)(2 4)〉 and A = V4;

2 G = 〈(1 2)(3 4) · · · (2n − 1 2n)〉 and A = V2n;

3 G = 〈(1 2 · · · 2n)〉 and A = V2n ;

> J. Gaddis, E. Kirkman, W. Moore, W. Frank, Auslander’s theorem for permutation actions

on noncommutative algebras, Proc. Amer. Math. Soc. 147 (2019), 1881–1896.
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Infinite dimensional case

Notation.
Let B be a noetherian graded algebra of GKdimB = n.

gr B the category of f.g. right graded B-modules

grk B the subcategory of gr B consisting of graded modules
of GKdim≤ k .

qgrk B := gr B/ grk B.
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Infinite dimensional case

Theorem

Let A be an Artin-Schelter regular and Cohen-Macaulay of
GKdim= n ≥ 2. A semisimple Hopf algebra H acts on A inner
faithfully. TFAE

1 GKdim(A#H/ImβA,H) = d ≤ n − 2;

2 A#H ∼= End(AAH ).

Moreover, in this case, for any k ≤ n − d ,

qgrn−k A#H ∼= qgrn−k AH .

> Y. Bao, J.-W. He, J.J. Zhang, Pertinency of Hopf actions and quotient categories of

CohenõMacaulay algebras, J. Noncommut. Geom. 13 (2019), 667–710.
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(III) Injectivity of the adjunction map
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Question

Question 2. When is the adjunction map βA,H injective?
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Restriction to finite group action

From now on, G is a finite group

A is a quantum polynomial algebra, i.e.,

A is an Artin-Schelter regular algebra, and

Hilbert series HA(t) =
∑
i≥0

t i dim(Ai ) =
1

(1− t)n
for some n.

Let g ∈ Autgr (A) be an automorphism.

Definition

The trace of g is defined to be

TrA(g , t) :=
∑
n≥0

tr(g |An)tn,

where tr(g |An) is the usual trace function.

> P. Jørgensen, J.J. Zhang, Gourmet’s guide to Gorensteinness, Adv. Math. 151 (2000),

313–345.

Jiwei He Adjunction maps



Restriction to finite group action

From now on, G is a finite group

A is a quantum polynomial algebra, i.e.,

A is an Artin-Schelter regular algebra, and

Hilbert series HA(t) =
∑
i≥0

t i dim(Ai ) =
1

(1− t)n
for some n.

Let g ∈ Autgr (A) be an automorphism.

Definition

The trace of g is defined to be

TrA(g , t) :=
∑
n≥0

tr(g |An)tn,

where tr(g |An) is the usual trace function.

> P. Jørgensen, J.J. Zhang, Gourmet’s guide to Gorensteinness, Adv. Math. 151 (2000),

313–345.

Jiwei He Adjunction maps



Quasi-reflections

Definition

Let A be a quantum polynomial algebra of global dimension n. An
automorphism g ∈ Autgr (A) is called a quasi-reflection if

TrA(g , t) =
1

(1− t)n−1(1− λt)
, λ 6= 1.

> E. Kirkman, J. Kuzmanovich, J.J. Zhang, Rigidity of graded regular algebras, T. AMS 360

(2008), 6331-6369.
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Restriction to finite group action

Theorem

Let A be a quantum polynomial algebra of global dimension n.
Assume g is a quasi-reflection of A. If g is of finite order, then
g is in one of the following cases:

1 There is a basis {x1, . . . , xn} of A1 such that

g(x1) = λx1, g(xj) = xj for j ≥ 2.

2 The order of g is 4, and there is a basis {x1, . . . , xn} of A1 such
that

g(x1) = ix1, g(x2) = −ix2, g(xj) = xj for j ≥ 3.

> E. Kirkman, J. Kuzmanovich, J.J. Zhang, Rigidity of graded regular algebras, T. AMS 360

(2008), 6331-6369.
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Injectivity of adjunction maps

Let A be a quantum polynomial algebra, and let g be a
quasi-reflection of A. Let G = 〈g〉.

Proposition

The adjunction map βA,IkG is injective.

Theorem

Let A be a quantum polynomial algebra, and let G ⊆ Autgr (A) be
a finite abelian subgroup. If G is generated by quasi-reflections,
then the adjunction map βA,IkG is injective.

> J.-W. He, The injectivity of the adjunction map associated to a finite group action, in

preparation.
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Recollements of triangulated categories

Let T , T ′, T ′′ be triangulated categories. A recollement of
T relative to T ′ and T ′′ is a diagram of triangulated
categories and triangle functors:

T ′ i∗=i! // T
i !

ll
j∗=j ! //

i∗rr

T ′′,
j!rr

j∗
ll

such that
(i) (i∗, i∗ = i!, i

!) and (j!, j
∗ = j !, j!) are adjoint triple, i.e, i∗ is

left adjoint to i∗, and i∗ is left adjoint to i ! etc.;
(ii) i !j∗ = 0;
(iii) i∗, j∗, j! are full embeddings;
(iv) any object T in T admits triangles

i! i
!T −→ T −→ j∗j

∗T −→ i! i
!T [1], j!j

!T −→ T −→ i∗ i
∗T −→ j!j

!T [1].

> A.A. Beilinson, J. Berstein, P. Deligne, Faisceaux pervers, in: Analyse et topologie sur les

espaces singuliers, Astérisque 100 (1982), 1–172.
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Recollements obtained from an idempotent

Theorem

Let B be an algebra, and let e ∈ B be an idempotent. Then
there is a differential graded algebra R and a recollement of
derived categories

D(R) i∗=i! // D(B)

i !
mm

j∗=j ! //
i∗qq

D(eBe),

j!qq

j∗
mm

such that

1 R is negative, i.e., R i = 0 for i ≥ 1;

2 H0(R) ∼= B/BeB.

> M. Kalck, D. Yang, Relative singularity categories I: Auslander resolutions, Adv. Math.

301 (2016), 973–1021.
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Infinite dimensional case

Question 3. When do we have R ∼= B/BeB?
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Stratifying action

Definition

Let A be a noetherian connected graded algebra, and let G be a
finite subgroup acting on A homogeneously. We say that the
G -action is stratifying if the following conditions are satisfied:

1 TorA
G

n (A,A) = 0 for all n ≥ 1,

2 the adjunction map βA,G is injective.

Proposition

Let A be a quantum polynomial algebra. Let G ⊆ Autgr (A) be a
finite abelian subgroup. If G is generated by quasi-reflections,
then the G -action is stratifying.
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Recollement

Let e = 1
|G |

∑
g∈G g ∈ IkG .

Theorem

Let A be a quantum polynomial algebra, and let G ⊆ Autgr (A) be
a finite abelian subgroup. Set B = A#IkG and C = B/AeA. Then
the following are equivalent.

(i) G is generated by quasi-reflections.

(ii) There is a recollement

Db(Gr C) i∗=i!
// Db(Gr B)

i!
mm

j ∗=j! //
i∗qq

Db(Gr AG ).

j!qq

j∗
mm

> J.-W. He, The injectivity of the adjunction map associated to a finite group action, in

preparation.
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Remark

Remark. Shephard-Todd-Chevalley Theorem

Let A be a quantum polynomial algebra, and let G be an
abelian finite subgroup of Autgr (A). Then AG is regular if
and only if G is generated by quasi-reflections.

> Kirkman, J. Kuzmanovich, J.J. Zhang, Shephard-Todd-Chevalley Theorem for skew

polynomial rings, Algebra Represent. Theory 13 (2010), 127–158.
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Example

Let A = Ik〈x , y〉/(x2 − y2), and let G = 〈g〉, where

g(x) =
√
−1x , g(y) = −

√
−1y .

Then
AG = Ik[xy , yx ].

The McKay quiver of B := A#IkG is the following:

Γ : e0

x1

��

y3
))
e3x0

oo

y2

��
e1

x2 //

y0

II

e2

x3

OO

y1
ii

B is the path algebra of Γ subject to the relations:

xjxj+1 − yj+2yj+1, for all 0 ≤ j ≤ 3.
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Eample

C = B/BeB is the following algebra:

Q : e1

x2 ))
e2

x3 ))

y1
ii e3

y2
ii

C ∼= IkQ/(x2x3, y2y1).
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Thank you for your attention!
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