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Various approaches to non-formal x;-products:

> Convergent x;-products: subalgebras A C C*° (M) where x; is
convergent (very restrictive; see, e.g, survey by S. Waldeman);

> Strict deformation quantization: (M. Rieffel) z-families of C*-algebras
deforming C*°(M), not many examples are known;

» Geometric quantization (E. Hawkins, X. Tang, P. Xu,...)Assumes
existence of symplectic groupoid with integral symplectic form

» star-products defined by integral operators (M. Karasev, V. Maslov,
A. Weinstein, ...): no general theory is known.

Our approach: use semi-classical analysis (closely related to the
symplectic micro-category of A. Cattaneo, B. Dehrin and A. Weinstein)
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Main definition

A non-formal xj-product quantizing (M, {, -}) is a C-bilinear product
*h 2 Coe (M) x CT (M) — €2 (M),

satisfying:

(i) itfi.fo € C(M): fi*xnfo —fifa = O(h).

(i) itfi,fo € CM):  {fi, o} — £(fi *nfo — o *nf2) = O(h).

(III) AW C T*M such that if WFE((ﬁ) e W: fi*p (fz *hf3) f (fl *ﬁfz) *h f3-

o 0 Fran—Tly

(iv) 3linearmaps L,R : C° (M) — ¥ .(1,M): e - R
It is called of SCFI-type if

fionfs) = [ Knxom,xa)f(n)f ()i do,
M

with K, a semi-classical Fourier integral distribution.
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Theorem 2

The h-Taylor series expansion of h — fi xj f> defines a formal xy-products
quantizing (M, {-, -})-

A formal xj,-product gives a quantization algebra. How about non-formal x;-products?

Theorem 3

If (Aw, 1) is a global associative partial algebra, then (M, {-, -}) integrates to
a symplectic groupoid.




i Thank you!




