Non-formal deformation quantization and 3-associativity

Rui Loja Fernandes University of Illinois at Urbana-Champaign, USA

Ongoing joint work with Alejandro Cabrera (Rio de Janeiro)

Spoiler alert:

Quantization may require partial algebras.

Spoiler alert:

Quantization may require partial algebras.

 Kontsevich: everything you wanted to know about formal deformation quantization.

Spoiler alert:

Quantization may require partial algebras.

 Kontsevich: everything you wanted to know about formal deformation quantization.

What about non-formal deformation quantization?

Various approaches to non-formal \star_{\hbar} -products:

▶ Convergent \star_h -products: subalgebras $A \subset C^{\infty}(M)$ where \star_h is convergent (very restrictive; see, e.g, survey by S. Waldeman);

Various approaches to non-formal \star_{\hbar} -products:

- Convergent ★_ħ-products: subalgebras A ⊂ C[∞](M) where ★_ħ is convergent (very restrictive; see, e.g, survey by S. Waldeman);
- Strict deformation quantization: (M. Rieffel) *ħ*-families of C*-algebras deforming C[∞](M), not many examples are known;

Various approaches to non-formal \star_{\hbar} -products:

- ▶ Convergent \star_h -products: subalgebras $A \subset C^{\infty}(M)$ where \star_h is convergent (very restrictive; see, e.g, survey by S. Waldeman);
- Strict deformation quantization: (M. Rieffel) ħ-families of C*-algebras deforming C[∞](M), not many examples are known;
- Geometric quantization (E. Hawkins, X. Tang, P. Xu,...)Assumes existence of symplectic groupoid with integral symplectic form

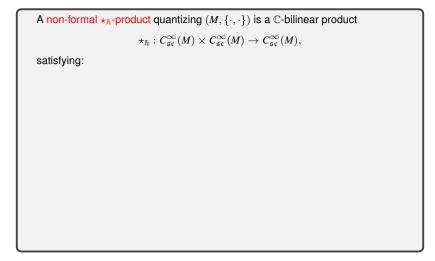
Various approaches to non-formal \star_{\hbar} -products:

- Convergent ★_ħ-products: subalgebras A ⊂ C[∞](M) where ★_ħ is convergent (very restrictive; see, e.g, survey by S. Waldeman);
- Strict deformation quantization: (M. Rieffel) *ħ*-families of C*-algebras deforming C[∞](M), not many examples are known;
- Geometric quantization (E. Hawkins, X. Tang, P. Xu,...)Assumes existence of symplectic groupoid with integral symplectic form
- star-products defined by integral operators (M. Karasev, V. Maslov, A. Weinstein, ...): no general theory is known.

Various approaches to non-formal \star_{\hbar} -products:

- Convergent ★_ħ-products: subalgebras A ⊂ C[∞](M) where ★_ħ is convergent (very restrictive; see, e.g, survey by S. Waldeman);
- Strict deformation quantization: (M. Rieffel) *ħ*-families of C*-algebras deforming C[∞](M), not many examples are known;
- Geometric quantization (E. Hawkins, X. Tang, P. Xu,...)Assumes existence of symplectic groupoid with integral symplectic form
- star-products defined by integral operators (M. Karasev, V. Maslov, A. Weinstein, ...): no general theory is known.

Our approach: use **semi-classical analysis** (closely related to the *symplectic micro-category* of A. Cattaneo, B. Dehrin and A. Weinstein)



A non-formal \star_{\hbar} -product quantizing $(M, \{\cdot, \cdot\})$ is a \mathbb{C} -bilinear product $\star_{\hbar} : C^{\infty}_{\mathfrak{sc}}(M) \times C^{\infty}_{\mathfrak{sc}}(M) \to C^{\infty}_{\mathfrak{sc}}(M),$ satisfying:

(i) if $f_1, f_2 \in C_c^{\infty}(M)$: $f_1 \star_{\hbar} f_2 - f_1 f_2 = O(\hbar)$.

A non-formal \star_{\hbar} -product quantizing $(M, \{\cdot, \cdot\})$ is a \mathbb{C} -bilinear product $\star_{\hbar}: C^{\infty}_{\mathfrak{sc}}(M) \times C^{\infty}_{\mathfrak{sc}}(M) \to C^{\infty}_{\mathfrak{sc}}(M),$

satisfying:

(i) if
$$f_1, f_2 \in C_c^{\infty}(M)$$
: $f_1 \star_{\hbar} f_2 - f_1 f_2 = O(\hbar)$.

(ii) if $f_1, f_2 \in C_c^{\infty}(M)$: $\{f_1, f_2\} - \frac{i}{\hbar}(f_1 \star_{\hbar} f_2 - f_2 \star_{\hbar} f_2) = O(\hbar)$.

A non-formal \star_{\hbar} -product quantizing $(M, \{\cdot, \cdot\})$ is a \mathbb{C} -bilinear product $\star_{\hbar} : C^{\infty}_{\mathfrak{sc}}(M) \times C^{\infty}_{\mathfrak{sc}}(M) \to C^{\infty}_{\mathfrak{sc}}(M),$

satisfying:

(i) if
$$f_1, f_2 \in C_c^{\infty}(M)$$
: $f_1 \star_{\hbar} f_2 - f_1 f_2 = O(\hbar)$.

(ii) if $f_1, f_2 \in C_c^{\infty}(M)$: $\{f_1, f_2\} - \frac{i}{\hbar}(f_1 \star_{\hbar} f_2 - f_2 \star_{\hbar} f_2) = O(\hbar).$

(iii) $\exists W \subset T^*M$ such that if $WF_{\mathfrak{sc}}(f_i) \Subset W$: $f_1 \star_{\hbar} (f_2 \star_{\hbar} f_3) = (f_1 \star_{\hbar} f_2) \star_{\hbar} f_3$.

A non-formal \star_{\hbar} -product quantizing $(M, \{\cdot, \cdot\})$ is a \mathbb{C} -bilinear product $\star_{\hbar}: C^{\infty}_{\mathfrak{sc}}(M) \times C^{\infty}_{\mathfrak{sc}}(M) \to C^{\infty}_{\mathfrak{sc}}(M).$ satisfying: (i) if $f_1, f_2 \in C_c^{\infty}(M)$: $f_1 \star_{\hbar} f_2 - f_1 f_2 = O(\hbar)$. (ii) if $f_1, f_2 \in C_c^{\infty}(M)$: $\{f_1, f_2\} - \frac{i}{\hbar}(f_1 \star_{\hbar} f_2 - f_2 \star_{\hbar} f_2) = O(\hbar)$. (iii) $\exists W \subset T^*M$ such that if $WF_{\mathfrak{sc}}(f_i) \Subset W$: $f_1 \star_{\hbar} (f_2 \star_{\hbar} f_3) = (f_1 \star_{\hbar} f_2) \star_{\hbar} f_3$. (iv) \exists linear maps $L, R : C_c^{\infty}(M) \to \Psi^0_{\mathfrak{sc}}(1, M)$: $\begin{cases} f \star_{\hbar} - = L_f \\ -\star_{\hbar} f = R_f \end{cases}$

A non-formal \star_{\hbar} -product quantizing $(M, \{\cdot, \cdot\})$ is a \mathbb{C} -bilinear product $\star_{\hbar} : C^{\infty}_{\mathfrak{sc}}(M) \times C^{\infty}_{\mathfrak{sc}}(M) \to C^{\infty}_{\mathfrak{sc}}(M),$ satisfying: (i) if $f_1, f_2 \in C^{\infty}_c(M)$: $f_1 \star_{\hbar} f_2 - f_1 f_2 = O(\hbar).$ (ii) if $f_1, f_2 \in C^{\infty}_c(M)$: $\{f_1, f_2\} - \frac{i}{\hbar}(f_1 \star_{\hbar} f_2 - f_2 \star_{\hbar} f_2) = O(\hbar).$ (iii) $\exists W \subset T^*M$ such that if $\operatorname{WF}_{\mathfrak{sc}}(f_i) \Subset W$: $f_1 \star_{\hbar} (f_2 \star_{\hbar} f_3) \stackrel{=}{=} (f_1 \star_{\hbar} f_2) \star_{\hbar} f_3.$ (iv) \exists linear maps $L, R : C^{\infty}_c(M) \to \Psi^0_{\mathfrak{sc}}(1, M)$: $\begin{cases} f \star_{\hbar} - = L_f \\ - \star_{\hbar} f \stackrel{=}{=} R_f \end{cases}$ It is called of SCFI-type if

$$f_1 \star_{\hbar} f_2(x) = \int_M K_{\hbar}(x, x_1, x_2) f(x_1) f(x_2) dx_1 dx_2,$$

with K_{\hbar} a semi-classical Fourier integral distribution.

Theorem 1

If \star_{\hbar} is non-formal of SCFI-type quantizing $(M, \{\cdot, \cdot\})$ then its underlying Lagrangian $\Lambda \subset T^*M \times T^*M \times \overline{T^*M}$ is the graph of multiplication of a local symplectic groupoid integrating $(M, \{\cdot, \cdot\})$.

Theorem 1

If \star_{\hbar} is non-formal of SCFI-type quantizing $(M, \{\cdot, \cdot\})$ then its underlying Lagrangian $\Lambda \subset T^*M \times T^*M \times \overline{T^*M}$ is the graph of multiplication of a local symplectic groupoid integrating $(M, \{\cdot, \cdot\})$.

Open problem: Existence of non-formal \star_{\hbar} -products quantizing $(M, \{\cdot, \cdot\})$.

Theorem 1

If \star_{\hbar} is non-formal of SCFI-type quantizing $(M, \{\cdot, \cdot\})$ then its underlying Lagrangian $\Lambda \subset T^*M \times T^*M \times \overline{T^*M}$ is the graph of multiplication of a local symplectic groupoid integrating $(M, \{\cdot, \cdot\})$.

Open problem: Existence of non-formal \star_{\hbar} -products quantizing $(M, \{\cdot, \cdot\})$.

Theorem 2 The \hbar -Taylor series expansion of $\hbar \mapsto f_1 \star_{\hbar} f_2$ defines a formal \star_{\hbar} -products quantizing $(M, \{\cdot, \cdot\})$.

Theorem 1

If \star_{\hbar} is non-formal of SCFI-type quantizing $(M, \{\cdot, \cdot\})$ then its underlying Lagrangian $\Lambda \subset T^*M \times T^*M \times \overline{T^*M}$ is the graph of multiplication of a local symplectic groupoid integrating $(M, \{\cdot, \cdot\})$.

Open problem: Existence of non-formal \star_{\hbar} -products quantizing $(M, \{\cdot, \cdot\})$.

Theorem 2 The \hbar -Taylor series expansion of $\hbar \mapsto f_1 \star_{\hbar} f_2$ defines a formal \star_{\hbar} -products quantizing $(M, \{\cdot, \cdot\})$.

A formal \star_{\hbar} -product gives a quantization algebra. How about non-formal \star_{\hbar} -products?

Theorem 1

If \star_{\hbar} is non-formal of SCFI-type quantizing $(M, \{\cdot, \cdot\})$ then its underlying Lagrangian $\Lambda \subset T^*M \times T^*M \times \overline{T^*M}$ is the graph of multiplication of a local symplectic groupoid integrating $(M, \{\cdot, \cdot\})$.

Open problem: Existence of non-formal \star_{\hbar} -products quantizing $(M, \{\cdot, \cdot\})$.

Theorem 2 The \hbar -Taylor series expansion of $\hbar \mapsto f_1 \star_{\hbar} f_2$ defines a formal \star_{\hbar} -products quantizing $(M, \{\cdot, \cdot\})$.

A formal \star_{\hbar} -product gives a quantization algebra. How about non-formal \star_{\hbar} -products?

Theorem 3 If (\mathcal{A}_W, \star_h) is a global associative partial algebra, then $(M, \{\cdot, \cdot\})$ integrates to a symplectic groupoid.

¡Thank you!