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Outline of Talk
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§1.1. Polynomial integrable systems

Assumptions:

(P, π): n-dimensional complex Poisson manifold;

{ , }π: Poisson bracket on sheaf of holomorphic functions

{ϕ, ψ}π = (π, dϕ ∧ dψ);

rk(π): maximal dimension of symplectic leaves of (P, π);

Lemma

If ϕ1, . . . , ϕm are holomorphic such that dϕ1 ∧ · · · ∧ dϕm ̸= 0 and

{ϕi , ϕj}π = 0, ∀ i , j = 1, . . . , n,

then

m ≤ n − 1

2
rk(π) =

#of Casimirs︷ ︸︸ ︷
(n − rk(π)) +

1

2
rk(π).
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§1.1. Polynomial integrable systems

Definition: The integer

m = n − 1

2
rk(π)

is called the magic number of (P, π).

Definition

An integrable system on (P, π) is a set (ϕ1, . . . , ϕm) of holomorphic
functions on P such that

1 dϕ1 ∧ · · · ∧ dϕm ̸= 0;

2 {ϕi , ϕj}π = 0, for all i , j = 1, . . . , n.
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§1.1. Polynomial integrable systems

Special case:

g: (finite dimensional) Lie algebra over field k with char(k) = 0;

g∗: dual space of g with linear Poisson structure π0:

{x1, x2}π0 = [x1, x2], x1, x2 ∈ g,

also called a Kirillov-Kostant-Souriau Poisson structure.

Example: Use the isomorphism

gln ≃ (gln)
∗, x 7→

(
y 7→ tr(xy)

)
to regard π0 on (gln)

∗ as on gln with entry coordinates {xij}. Then

{xij , xkl}π0 = δjkxil − δlixkj , i , j , k , l = 1, . . . , n.
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§1.1. Polynomial integrable systems

Mishchenko-Fomenko Conjecture (1981), proved by S. Sadetov (2004):

Theorem

Every (g∗, π0) has an integrable system consisting of polynomial functions.

A natural question:

How to construct concrete polynomial integrable systems on (g∗, π0)?

Well-known method: Thimm’s method.

Our work: A new method for a class of (g∗, π0).
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§1.2. Preview: an example

An example

n := {strictly upper triangular matrices of size n × n}
n− := {strictly lower triangular matrices of size n × n}

n ≃ (n−)
∗, x 7→

(
y 7→ tr(xy)

)
;

For n = 4:

x =

0 x12 x13 x14

0 0 x23 x24

0 0 0 x34

0 0 0 0




Integrable system consists of

f1 = x12, f2 = x13, f3 = x14, f4 = x13x24 − x14x23
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§1.2. Preview: an example

For arbitrary n:

x =

0 x12 x13 x14 x15 x16 · · ·
0 0 x23 x24 x25 x26 · · ·
0 0 0 x34 x35 x36 · · ·
0 0 0 0 x45 x46 · · ·
0 0 0 0 0 x56 · · ·
0 0 0 0 0 0 · · ·
...

...
...

...
...

...
. . .




Claim

The minors indicated above form an integrable system on (n, π0).
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0 0 0 x34 x35 x36 · · ·
0 0 0 0 x45 x46 · · ·
0 0 0 0 0 x56 · · ·
0 0 0 0 0 0 · · ·
...

...
...

...
...

...
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§1.3. Setup and goal of talk

Linearizations of Poisson structures.

Let (P, π) be a complex Poisson manifold, and p0 ∈ P such that

π(p0) = 0.

Then

The cotangent space T ∗
p0M has a Lie bracket given by

[dp0f , dp0g ] := dp0{f , g}π.

Tangent space Tp0P thus carries the linear Poisson structure π0;

Call (Tp0P, π0) the linearization of (P, π) at p0.

Goal: Construct integrable systems on (Tp0P, π0) using (P, π).
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§2.1. A key observation

From (P, π) to (Tp0P, π0):

Let ϕ be any local holomorphic function on P defined near p0.

Choose local holomorphic coordinates z = (z1, . . . , zn) s.t. z(p0) = 0.

Define

ϕlow = lowest order term of ϕ in the Tyalor expansion of ϕ at 0.

Regard ϕlow as a homogeneous polynomial on Tp0P;

Note that ϕlow ̸= 0 if ϕ ̸= 0.

Lemma

ϕlow is independent of the choice of local coordinates (z1, . . . , zn).
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§2.1. A key observation

Lemma

If ϕ and ψ are local holomorphic functions near p0 such that

{ϕ, ψ}π ∈ Cϕψ,

then {ϕlow, ψlow}π0 = 0.

Proof: Compare lowest order terms of expansions of both sides of

{ϕ, ψ}π = λϕψ.

Q.E.D.
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§2.1. A key observation

Definition: For set Φ=(ϕ1, . . . , ϕn) of local holomorphic functions near p0,

say Φ is π-log-canonical if

{ϕi , ϕj}π ∈ Cϕiϕj , ∀ i , j = 1, . . . , n.

say Φ is log-canonical system on (P, π) at p0 if

1 Φ is π-log-canonical;

2 dϕ1 ∧ · · · ∧ dϕn ̸= 0 near p0 (recall n = dimP).

We have proved

Lemma

If (ϕ1, . . . , ϕn) is π-log-canonical, then

{ϕlowi , ϕlowj }π0 = 0, ∀ i , j ∈ 1, . . . , n.
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§2.1. A key observation

Recall: To form a polynomial integrable system on (Tp0P, π0), need

m = n − 1

2
rk(π0) (the magic number)

algebraically independent Poisson commuting polynomials on Tp0P.

A natural question:

Given log-canonical system Φ=(ϕ1, . . . , ϕn) on (P,π) at p0, when does

Φlow def
= (ϕlow1 , . . . , ϕlown )

contain n − 1
2rk(π0) algebraically independent elements?
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§2.2. Main theorem: a sufficient condition

Preparation:

For a non-zero local holomorphic differential k-form µ on P near p0,

use Taylor expansion in local coordinates z = (z1, . . . , zn) to define

µlow =
∑

i1<···<ik

ai1,...,ikdzi1 ∧ · · · ∧ dzik

with all ai1,...,ik homogeneous polynomials in z of degree m. Define

deg(µlow) = m + k.

µlow is a polynomial k-form on Tp0P;

µlow is well-defined, i.e., independent of choice of (z1, . . . , zn).
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§2.2. Main theorem: a sufficient condition

Definition: Given log-canonical system Φ=(ϕ1, . . . , ϕn) on (P, π) at p0,

introduce meromorphic n-form on P

µΦ =
dϕ1 ∧ · · · ∧ dϕn

ϕ1 · · ·ϕn
= d(log ϕ1) ∧ · · · ∧ d(log ϕn),

and call µΦ the log-volume form of Φ;

define rational n-form on Tp0P

µlowΦ =
(dϕ1 ∧ · · · ∧ dϕn)

low

ϕlow1 · · ·ϕlown

;

define

deg(µlowΦ ) = deg((dϕ1 ∧ · · · ∧ dϕn)
low)− deg(ϕlow1 · · ·ϕlown ).

Jiang-Hua Lu The University of Hong Kong (Joint work with Yanpeng Li and Yu Li)Int sys from cluster
Zhejiang University, IASM, October 15, 2024
15 / 39



§2.2. Main theorem: a sufficient condition

Definition: Given log-canonical system Φ=(ϕ1, . . . , ϕn) on (P, π) at p0,

introduce meromorphic n-form on P

µΦ =
dϕ1 ∧ · · · ∧ dϕn

ϕ1 · · ·ϕn
= d(log ϕ1) ∧ · · · ∧ d(log ϕn),

and call µΦ the log-volume form of Φ;

define rational n-form on Tp0P

µlowΦ =
(dϕ1 ∧ · · · ∧ dϕn)

low

ϕlow1 · · ·ϕlown

;

define

deg(µlowΦ ) = deg((dϕ1 ∧ · · · ∧ dϕn)
low)− deg(ϕlow1 · · ·ϕlown ).

Jiang-Hua Lu The University of Hong Kong (Joint work with Yanpeng Li and Yu Li)Int sys from cluster
Zhejiang University, IASM, October 15, 2024
15 / 39



§2.2. Main theorem: a sufficient condition

Definition: Given log-canonical system Φ=(ϕ1, . . . , ϕn) on (P, π) at p0,

introduce meromorphic n-form on P

µΦ =
dϕ1 ∧ · · · ∧ dϕn

ϕ1 · · ·ϕn
= d(log ϕ1) ∧ · · · ∧ d(log ϕn),

and call µΦ the log-volume form of Φ;

define rational n-form on Tp0P

µlowΦ =
(dϕ1 ∧ · · · ∧ dϕn)

low

ϕlow1 · · ·ϕlown

;

define

deg(µlowΦ ) = deg((dϕ1 ∧ · · · ∧ dϕn)
low)− deg(ϕlow1 · · ·ϕlown ).

Jiang-Hua Lu The University of Hong Kong (Joint work with Yanpeng Li and Yu Li)Int sys from cluster
Zhejiang University, IASM, October 15, 2024
15 / 39



§2.2. Main theorem: a sufficient condition

Definition: Given log-canonical system Φ=(ϕ1, . . . , ϕn) on (P, π) at p0,

introduce meromorphic n-form on P

µΦ =
dϕ1 ∧ · · · ∧ dϕn

ϕ1 · · ·ϕn
= d(log ϕ1) ∧ · · · ∧ d(log ϕn),

and call µΦ the log-volume form of Φ;

define rational n-form on Tp0P

µlowΦ =
(dϕ1 ∧ · · · ∧ dϕn)

low

ϕlow1 · · ·ϕlown

;

define

deg(µlowΦ ) = deg((dϕ1 ∧ · · · ∧ dϕn)
low)− deg(ϕlow1 · · ·ϕlown ).

Jiang-Hua Lu The University of Hong Kong (Joint work with Yanpeng Li and Yu Li)Int sys from cluster
Zhejiang University, IASM, October 15, 2024
15 / 39



§2.2. Main theorem: a sufficient condition

Theorem (Li-Li-L 2024)

Given log-canonical system Φ on (P, π) at p0, if

deg(µlowΦ ) ≤ 1

2
rk(π0), equivalently, deg(µlowΦ ) =

1

2
rk(π0),

then Φlow contains a (polynomial) integrable system on (Tp0P, π0).

Definition

A log-canonical system Φ on (P, π) at p0 is said to have Property I if

deg(µlowΦ ) =
1

2
rk(π0).

Thus

Property I =⇒ Φlow contains an integrable system on (Tp0P, π0).
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§3. Polynomial integrable systems from cluster theory

Cluster theory is a source of log-canonical systems!

A Wonderful Lemma:

Suppose that (P, π) carries a compatible cluster structure C. Then
1 every extended cluster in C is a log-canonical system on (P, π);

2 all extended clusters have the same log-volume form, denoted as µC ;

Corollary

Suppose that (P, π) carries a compatible cluster structure C. If

deg(µlowC ) =
1

2
rk(π0), (1)

then every cluster in C gives a polynomial integrable system on (Tp0P, π0).

There are typically infinitely many extended clusters in C!
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§3. Polynomial integrable systems from cluster theory

Let (P, π) be a smooth affine Poisson variety with π(p0) = 0.

Definition

Say a compatible cluster structure C on (P, π) has Property I at p0 if

deg(µlowC ) =
1

2
rk(π0).

Rest of the talk:

Explain compatible cluster structures and the Wonderful Lemma;

Look at three examples from Lie theory.
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§3.1. Compatible cluster structures on Poisson varieties

Cluster structures: Let P be an irreducible rational affine variety over C.

1. Definition of a seed: A seed in C(P) is a triple (Φ, ex,M), where

Φ = (ϕ1, . . . , ϕn) is a transcendental basis of C(P) over C;

ex ⊂ [1, n], non-empty, set of exchange directions;

M ∈ Matn×ex(Z) such that Mex×ex skew-symmetrizable.

Given a seed (ϕ, ex,M) in C(P),

Φ = (ϕ1, . . . , ϕn) is called the extended cluster of the seed;

The functions ϕk , k ∈ ex, are called cluster variables of the seed;

The functions ϕj , j ∈ [1, n]\ex, are called frozen variables;

Jiang-Hua Lu The University of Hong Kong (Joint work with Yanpeng Li and Yu Li)Int sys from cluster
Zhejiang University, IASM, October 15, 2024
20 / 39



§3.1. Compatible cluster structures on Poisson varieties

Cluster structures: Let P be an irreducible rational affine variety over C.

1. Definition of a seed: A seed in C(P) is a triple (Φ, ex,M), where

Φ = (ϕ1, . . . , ϕn) is a transcendental basis of C(P) over C;

ex ⊂ [1, n], non-empty, set of exchange directions;

M ∈ Matn×ex(Z) such that Mex×ex skew-symmetrizable.

Given a seed (ϕ, ex,M) in C(P),

Φ = (ϕ1, . . . , ϕn) is called the extended cluster of the seed;

The functions ϕk , k ∈ ex, are called cluster variables of the seed;

The functions ϕj , j ∈ [1, n]\ex, are called frozen variables;

Jiang-Hua Lu The University of Hong Kong (Joint work with Yanpeng Li and Yu Li)Int sys from cluster
Zhejiang University, IASM, October 15, 2024
20 / 39



§3.1. Compatible cluster structures on Poisson varieties

Cluster structures: Let P be an irreducible rational affine variety over C.

1. Definition of a seed: A seed in C(P) is a triple (Φ, ex,M), where

Φ = (ϕ1, . . . , ϕn) is a transcendental basis of C(P) over C;

ex ⊂ [1, n], non-empty, set of exchange directions;

M ∈ Matn×ex(Z) such that Mex×ex skew-symmetrizable.

Given a seed (ϕ, ex,M) in C(P),

Φ = (ϕ1, . . . , ϕn) is called the extended cluster of the seed;

The functions ϕk , k ∈ ex, are called cluster variables of the seed;

The functions ϕj , j ∈ [1, n]\ex, are called frozen variables;

Jiang-Hua Lu The University of Hong Kong (Joint work with Yanpeng Li and Yu Li)Int sys from cluster
Zhejiang University, IASM, October 15, 2024
20 / 39



§3.1. Compatible cluster structures on Poisson varieties

Cluster structures: Let P be an irreducible rational affine variety over C.

1. Definition of a seed: A seed in C(P) is a triple (Φ, ex,M), where

Φ = (ϕ1, . . . , ϕn) is a transcendental basis of C(P) over C;

ex ⊂ [1, n], non-empty, set of exchange directions;

M ∈ Matn×ex(Z) such that Mex×ex skew-symmetrizable.

Given a seed (ϕ, ex,M) in C(P),

Φ = (ϕ1, . . . , ϕn) is called the extended cluster of the seed;

The functions ϕk , k ∈ ex, are called cluster variables of the seed;

The functions ϕj , j ∈ [1, n]\ex, are called frozen variables;

Jiang-Hua Lu The University of Hong Kong (Joint work with Yanpeng Li and Yu Li)Int sys from cluster
Zhejiang University, IASM, October 15, 2024
20 / 39



§3.1. Compatible cluster structures on Poisson varieties

Cluster structures: Let P be an irreducible rational affine variety over C.

1. Definition of a seed: A seed in C(P) is a triple (Φ, ex,M), where

Φ = (ϕ1, . . . , ϕn) is a transcendental basis of C(P) over C;

ex ⊂ [1, n], non-empty, set of exchange directions;

M ∈ Matn×ex(Z) such that Mex×ex skew-symmetrizable.

Given a seed (ϕ, ex,M) in C(P),

Φ = (ϕ1, . . . , ϕn) is called the extended cluster of the seed;

The functions ϕk , k ∈ ex, are called cluster variables of the seed;

The functions ϕj , j ∈ [1, n]\ex, are called frozen variables;

Jiang-Hua Lu The University of Hong Kong (Joint work with Yanpeng Li and Yu Li)Int sys from cluster
Zhejiang University, IASM, October 15, 2024
20 / 39



§3.1. Compatible cluster structures on Poisson varieties

Cluster structures: Let P be an irreducible rational affine variety over C.

1. Definition of a seed: A seed in C(P) is a triple (Φ, ex,M), where

Φ = (ϕ1, . . . , ϕn) is a transcendental basis of C(P) over C;

ex ⊂ [1, n], non-empty, set of exchange directions;

M ∈ Matn×ex(Z) such that Mex×ex skew-symmetrizable.

Given a seed (ϕ, ex,M) in C(P),

Φ = (ϕ1, . . . , ϕn) is called the extended cluster of the seed;

The functions ϕk , k ∈ ex, are called cluster variables of the seed;

The functions ϕj , j ∈ [1, n]\ex, are called frozen variables;

Jiang-Hua Lu The University of Hong Kong (Joint work with Yanpeng Li and Yu Li)Int sys from cluster
Zhejiang University, IASM, October 15, 2024
20 / 39



§3.1. Compatible cluster structures on Poisson varieties

Cluster structures: Let P be an irreducible rational affine variety over C.

1. Definition of a seed: A seed in C(P) is a triple (Φ, ex,M), where

Φ = (ϕ1, . . . , ϕn) is a transcendental basis of C(P) over C;

ex ⊂ [1, n], non-empty, set of exchange directions;

M ∈ Matn×ex(Z) such that Mex×ex skew-symmetrizable.

Given a seed (ϕ, ex,M) in C(P),

Φ = (ϕ1, . . . , ϕn) is called the extended cluster of the seed;

The functions ϕk , k ∈ ex, are called cluster variables of the seed;

The functions ϕj , j ∈ [1, n]\ex, are called frozen variables;

Jiang-Hua Lu The University of Hong Kong (Joint work with Yanpeng Li and Yu Li)Int sys from cluster
Zhejiang University, IASM, October 15, 2024
20 / 39



§3.1. Compatible cluster structures on Poisson varieties

Cluster structures: Let P be an irreducible rational affine variety over C.

1. Definition of a seed: A seed in C(P) is a triple (Φ, ex,M), where

Φ = (ϕ1, . . . , ϕn) is a transcendental basis of C(P) over C;

ex ⊂ [1, n], non-empty, set of exchange directions;

M ∈ Matn×ex(Z) such that Mex×ex skew-symmetrizable.

Given a seed (ϕ, ex,M) in C(P),

Φ = (ϕ1, . . . , ϕn) is called the extended cluster of the seed;

The functions ϕk , k ∈ ex, are called cluster variables of the seed;

The functions ϕj , j ∈ [1, n]\ex, are called frozen variables;

Jiang-Hua Lu The University of Hong Kong (Joint work with Yanpeng Li and Yu Li)Int sys from cluster
Zhejiang University, IASM, October 15, 2024
20 / 39



§3.1. Compatible cluster structures on Poisson varieties

Cluster structures: Let P be an irreducible rational affine variety over C.

1. Definition of a seed: A seed in C(P) is a triple (Φ, ex,M), where

Φ = (ϕ1, . . . , ϕn) is a transcendental basis of C(P) over C;

ex ⊂ [1, n], non-empty, set of exchange directions;

M ∈ Matn×ex(Z) such that Mex×ex skew-symmetrizable.

Given a seed (ϕ, ex,M) in C(P),

Φ = (ϕ1, . . . , ϕn) is called the extended cluster of the seed;

The functions ϕk , k ∈ ex, are called cluster variables of the seed;

The functions ϕj , j ∈ [1, n]\ex, are called frozen variables;

Jiang-Hua Lu The University of Hong Kong (Joint work with Yanpeng Li and Yu Li)Int sys from cluster
Zhejiang University, IASM, October 15, 2024
20 / 39



§3.1: Compatible cluster structures on Poisson varieties

2. Definition of seed mutation:

Mutation of (Φ, ex,M=(mi ,j)) in the direction k∈ex is (Φ′, ex,M ′), where

Φ′ = (ϕ1, . . . , ϕk−1, ϕ
′
k , ϕk+1, . . . , ϕn) with

ϕ′k =

∏
mj,k>0 ϕ

mj,k

j +
∏

mj,k<0 ϕ
−mj,k

j

ϕk
. (2)

M ′ is obtained from M by · · · (formula not important).

More importantly,

Numerator in (2) contains no ϕk because mk,k = 0.

Seeds are mutation equivalent if related by sequences of mutations;

Mutation equivalent seeds share the same set of frozen variables.
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§3.1: Compatible cluster structures on Poisson varieties

3. Definitions of cluster algebras/cluster structures:

1 Given a mutation equivalence class C of seeds in C(P) and

inv ⊂ set of frozen variables = {ϕj : j ∈ [1, n]\ex},

the cluster algebra A(C)inv is the sub-algebra of C(P) generated by

all cluster variables in all seeds in C;
all frozen variables ϕj , j ∈ [1, n]\ex;
all ϕ−1

j , for ϕj ∈ inv.

2 A cluster structure on P is a mutation equivalence class C such that

A(C)inv = C[P] for some inv.

Implication: all extended clusters in C consist of regular functions on
P.
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all cluster variables in all seeds in C;
all frozen variables ϕj , j ∈ [1, n]\ex;
all ϕ−1

j , for ϕj ∈ inv.

2 A cluster structure on P is a mutation equivalence class C such that

A(C)inv = C[P] for some inv.

Implication: all extended clusters in C consist of regular functions on
P.
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§3.1: Compatible cluster structures on Poisson varieties

Finally! Let π be a Poisson structure on P.

Definition [Gekhtman-Shapiro-Vainshtein]:

A cluster structure C on P is
compatible with π if every extended cluster in C is π-log-canonical.

Remarks:

Having a cluster structure on a given P is a miracle;

Given a cluster structure on P, checking compatibility with π is an
easy linear algebra check.

Cluster structure are typically of infinite type, i.e., having infinitely
many extended clusters.
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§3.2: Proof of Wonderful Lemma

Lemma (Wonderful Lemma)

If C is a cluster structure on P compatible with π, then

1 every extended cluster in C is a log-canonical system on (P, π);

2 all extended clusters in C have, up to a sign, same log-volume form;

Proof:
1 comes from definition of compatibility;
2 only need to consider one step mutation

Φ = (ϕ1, . . . , ϕn) −→ Φ′ = (ϕ1, . . . , ϕk−1, ϕ
′
k , ϕk+1, . . . , ϕn).

Let α = d(log ϕ1) ∧ · · · d(log ϕk−1) ∧ d(log ϕk+1) ∧ · · · ∧ d(log ϕn).
Since ϕkϕ

′
k = a1 + a2, where a1 and a2 do not contain ϕk , we have

µΦ′ = ±α ∧ d(log ϕ′k) = ±α ∧ (d(− log ϕk) + d(log(a1 + a2))

= ±α ∧ d(log ϕk) = ±µΦ.

Q.E.D.
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§3.2: Proof of Wonderful Lemma

Recap: Let (P, π) be a smooth affine Poisson variety with π(p0) = 0.

Suppose that C is a cluster structure on P compatible with π;

Use any extended cluster Φ = (ϕ1, . . . , ϕn) in C to define

µC = µΦ = d(log ϕ1) ∧ · · · ∧ d(log ϕn).

Assume C has Property I at p0, i.e., deg(µ
low
C ) = 1

2rk(π0).

Then for every extended cluster Φ = (ϕ1, . . . , ϕn), the set

Φlow = (ϕlow1 , . . . , ϕlown )

contains a polynomial integrable system on (Tp0P, π0).
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§3.2: Proof of Wonderful Lemma

Remark: We may need to modify µC to µ̃C by modifying the frozen
variable part to ensure

deg(µ̃lowC ) =
1

2
rk(π0).

In this case we also say that C Property I at p0.
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§4: Three examples from Lie theory

Notation: Fix

G : connected complex semi-simple Lie group with Lie(G ) = g;

(B,B−): pair of opposite Borel sub-groups of G ;

N ⊂ B and N− ⊂ B−: unipotent radicals;

T = B ∩ B−: maximal torus of G ;

Respective Lie algebras g, t, b, b−, n, n−;

W = NG (T )/T : the Weyl group; w0 ∈ W the longest element.

One then has

the standard complex semi-simple Poisson Lie group (G ,πst) with

πst = rLst − rRst ,

where rst ∈ g⊗ g is the standard classical quasi-triangular r -matrix;

(G , πst) is the semi-classical limit of the quantum group Uqg.
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§4.1: Integrable systems on linearization of (G , πst)

Example 1: Integrable systems on linearization of (G , πst) at e ∈ G .

One has πst(e) = 0, where e ∈ G is the identity element;

Every double Bruhat cell Gu,v = BuB ∩ B−vB− ⊂ G is a Poisson
sub-manifold of (G , πst);

Each double Bruhat cell has the Berenstein-Fomin-Zelevinsky (2005)
cluster structure compatible with πst;

The BFZ cluster structure on Gw0,w0 extends to a cluster structure on
G compatible with πst.

Theorem (Li-Li-L. 2024)

The BFZ cluster structure on G has Property I at e ∈ G .

Jiang-Hua Lu The University of Hong Kong (Joint work with Yanpeng Li and Yu Li)Int sys from cluster
Zhejiang University, IASM, October 15, 2024
28 / 39



§4.1: Integrable systems on linearization of (G , πst)

Example 1: Integrable systems on linearization of (G , πst) at e ∈ G .

One has πst(e) = 0, where e ∈ G is the identity element;

Every double Bruhat cell Gu,v = BuB ∩ B−vB− ⊂ G is a Poisson
sub-manifold of (G , πst);

Each double Bruhat cell has the Berenstein-Fomin-Zelevinsky (2005)
cluster structure compatible with πst;

The BFZ cluster structure on Gw0,w0 extends to a cluster structure on
G compatible with πst.

Theorem (Li-Li-L. 2024)

The BFZ cluster structure on G has Property I at e ∈ G .

Jiang-Hua Lu The University of Hong Kong (Joint work with Yanpeng Li and Yu Li)Int sys from cluster
Zhejiang University, IASM, October 15, 2024
28 / 39



§4.1: Integrable systems on linearization of (G , πst)

Example 1: Integrable systems on linearization of (G , πst) at e ∈ G .

One has πst(e) = 0, where e ∈ G is the identity element;

Every double Bruhat cell Gu,v = BuB ∩ B−vB− ⊂ G is a Poisson
sub-manifold of (G , πst);

Each double Bruhat cell has the Berenstein-Fomin-Zelevinsky (2005)
cluster structure compatible with πst;

The BFZ cluster structure on Gw0,w0 extends to a cluster structure on
G compatible with πst.

Theorem (Li-Li-L. 2024)

The BFZ cluster structure on G has Property I at e ∈ G .

Jiang-Hua Lu The University of Hong Kong (Joint work with Yanpeng Li and Yu Li)Int sys from cluster
Zhejiang University, IASM, October 15, 2024
28 / 39



§4.1: Integrable systems on linearization of (G , πst)

Example 1: Integrable systems on linearization of (G , πst) at e ∈ G .

One has πst(e) = 0, where e ∈ G is the identity element;

Every double Bruhat cell Gu,v = BuB ∩ B−vB− ⊂ G is a Poisson
sub-manifold of (G , πst);

Each double Bruhat cell has the Berenstein-Fomin-Zelevinsky (2005)
cluster structure compatible with πst;

The BFZ cluster structure on Gw0,w0 extends to a cluster structure on
G compatible with πst.

Theorem (Li-Li-L. 2024)

The BFZ cluster structure on G has Property I at e ∈ G .

Jiang-Hua Lu The University of Hong Kong (Joint work with Yanpeng Li and Yu Li)Int sys from cluster
Zhejiang University, IASM, October 15, 2024
28 / 39



§4.1: Integrable systems on linearization of (G , πst)

Example 1: Integrable systems on linearization of (G , πst) at e ∈ G .

One has πst(e) = 0, where e ∈ G is the identity element;

Every double Bruhat cell Gu,v = BuB ∩ B−vB− ⊂ G is a Poisson
sub-manifold of (G , πst);

Each double Bruhat cell has the Berenstein-Fomin-Zelevinsky (2005)
cluster structure compatible with πst;

The BFZ cluster structure on Gw0,w0 extends to a cluster structure on
G compatible with πst.

Theorem (Li-Li-L. 2024)

The BFZ cluster structure on G has Property I at e ∈ G .

Jiang-Hua Lu The University of Hong Kong (Joint work with Yanpeng Li and Yu Li)Int sys from cluster
Zhejiang University, IASM, October 15, 2024
28 / 39



§4.1: Integrable systems on linearization of (G , πst)

Example 1: Integrable systems on linearization of (G , πst) at e ∈ G .

One has πst(e) = 0, where e ∈ G is the identity element;

Every double Bruhat cell Gu,v = BuB ∩ B−vB− ⊂ G is a Poisson
sub-manifold of (G , πst);

Each double Bruhat cell has the Berenstein-Fomin-Zelevinsky (2005)
cluster structure compatible with πst;

The BFZ cluster structure on Gw0,w0 extends to a cluster structure on
G compatible with πst.

Theorem (Li-Li-L. 2024)

The BFZ cluster structure on G has Property I at e ∈ G .

Jiang-Hua Lu The University of Hong Kong (Joint work with Yanpeng Li and Yu Li)Int sys from cluster
Zhejiang University, IASM, October 15, 2024
28 / 39



§4.1: Integrable systems on linearization of (G , πst)

linearization (g, π0) of (G , πst) at e ∈ G .

The linear Poisson structure is defined by the Lie algebra

g∗ = {(y− + y0, −y0 + y+) : y− ∈ n−, y0 ∈ t, y+ ∈ n} ⊂ b− ⊕ b

with the non-degenerate bilinear pairing between g and g∗ given by

⟨x , (y1, y2)⟩ = ⟨x , y1 − y2⟩Killingform.

Examples of polynomial integrable systems on (g, π0) consist of
generalized minors.
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§4.2: Integrable systems on linearization of (BwB/B , π)

Example 2: Integrable systems on linearization of (BwB/B, π) at w·B.

Consider now the flag variety G/B of G .

πst on G projects to a well-defined Poisson structure π on G/B;

For every w ∈ W , the Schubert cell

Cw := BwB/B ⊂ G/B

is a Poisson sub-manifold of (G/B, π), and π(w·B) = 0;

Each Cw has a standard cluster structure compatible with π
(Berenstein-Fomin-Zelevinsky, Geiss-Leclerc-Schroder, Goodearl-Yakimov, ...);

Theorem (Li-Li-L. 2024)

The standard cluster structure on each Cw has Property I at w·B ∈ Cw .
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§4.2: Integrable systems on linearization of (BwB/B , π)

Linearization of (Cw , π) at w·B ∈ Cw .

For w ∈ W , let Nw = N ∩ wN−w
−1 and Nw

− = N− ∩ wNw −1, and

nw = Lie(Nw ) and nw− = Lie(Nw
− ).

Tw·BC
w ∼= nw , with linear Poisson structure π0 coming from

T ∗
w·BC

w ≃ nw− (as Lie algebras).

Thus every extended cluster in the standard cluster structure on Cw

gives a polynomial integrable system on (nw , π0).

When w = w0, we have nw0 = n.

Example in §1.2 is an integrable system on (n, π0) for g = sln.
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§4.3: Integrable systems on linearization of (GL∗n, π)

Example 3: Integrable systems on linearization of (GL∗
n, π) at 1n.

Consider (GL∗
n, π), dual Poisson group (GLn, πst). Explicitly,

GL∗
n = {(X ,Y ) ∈ B × B− : the diagonal parts of X ,Y

are inverses of each other}.

Have π(1n) = 0, where 1n = (In, In) ∈ GL∗n;

M. Gekhtman, M. Shapiro, and A. Vainshtein introduced a
generalized clustr structure on GL∗n comptible with π.

Theorem (Li-Li-L. 2024)

The GGV generalized cluster structure on GL∗n has Property I at 1n.
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§4.3: Integrable systems on linearization of (GL∗n, π)

Linearization (gl∗n, π0) of (GL
∗
n, π) at 1n

:

Identify

gln ≃ (gln)
∗, x 7→

(
y 7→ tr(xy)

)
and regard π0 as a linear Poisson structure on gln given by

{xij , xkl}π0 = δjkxil − δlixkj , ∀1 ≤ i , j , k, l ≤ n.

Define F : gln −→ gln by

x 7−→
[
xe1 x2e1 · · · xne1

]
.

Remark: F does not preserve π0 on gln.

Jiang-Hua Lu The University of Hong Kong (Joint work with Yanpeng Li and Yu Li)Int sys from cluster
Zhejiang University, IASM, October 15, 2024
33 / 39



§4.3: Integrable systems on linearization of (GL∗n, π)

Linearization (gl∗n, π0) of (GL
∗
n, π) at 1n

:

Identify

gln ≃ (gln)
∗, x 7→

(
y 7→ tr(xy)

)
and regard π0 as a linear Poisson structure on gln given by

{xij , xkl}π0 = δjkxil − δlixkj , ∀1 ≤ i , j , k, l ≤ n.

Define F : gln −→ gln by

x 7−→
[
xe1 x2e1 · · · xne1

]
.

Remark: F does not preserve π0 on gln.

Jiang-Hua Lu The University of Hong Kong (Joint work with Yanpeng Li and Yu Li)Int sys from cluster
Zhejiang University, IASM, October 15, 2024
33 / 39



§4.3: Integrable systems on linearization of (GL∗n, π)

Linearization (gl∗n, π0) of (GL
∗
n, π) at 1n

:

Identify

gln ≃ (gln)
∗, x 7→

(
y 7→ tr(xy)

)
and regard π0 as a linear Poisson structure on gln given by

{xij , xkl}π0 = δjkxil − δlixkj , ∀1 ≤ i , j , k, l ≤ n.

Define F : gln −→ gln by

x 7−→
[
xe1 x2e1 · · · xne1

]
.

Remark: F does not preserve π0 on gln.

Jiang-Hua Lu The University of Hong Kong (Joint work with Yanpeng Li and Yu Li)Int sys from cluster
Zhejiang University, IASM, October 15, 2024
33 / 39



§4.3: Integrable systems on linearization of (GL∗n, π)

Linearization (gl∗n, π0) of (GL
∗
n, π) at 1n

:

Identify

gln ≃ (gln)
∗, x 7→

(
y 7→ tr(xy)

)
and regard π0 as a linear Poisson structure on gln given by

{xij , xkl}π0 = δjkxil − δlixkj , ∀1 ≤ i , j , k, l ≤ n.

Define F : gln −→ gln by

x 7−→
[
xe1 x2e1 · · · xne1

]
.

Remark: F does not preserve π0 on gln.

Jiang-Hua Lu The University of Hong Kong (Joint work with Yanpeng Li and Yu Li)Int sys from cluster
Zhejiang University, IASM, October 15, 2024
33 / 39



§4.3: Integrable systems on linearization of (GL∗n, π)

Consider the following minors of F (x):

∗ ∗ ∗ · · · ∗ ∗
∗ ∗ ∗ · · · ∗ ∗
...
...
... . .

. ...
...

∗ ∗ ∗ · · · ∗ ∗
∗ ∗ ∗ · · · ∗ ∗
∗ ∗ ∗ · · · ∗ ∗
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§4.3: Integrable systems on linearization of (GL∗n, π)

as well as the following Casimir functions:

cj :=
∑

{i1,··· ,ij}∈(nj)

∆{i1,··· ,ij},{i1,··· ,ij}(x)

= sum of all principal j × j minors of x , j ∈ [1, n].

Fact:

The functions defined above form integrable system on (gln, π0).

Remark: This integrable system is not the Gelfand-Zeitlin system.
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§4.3: Integrable systems on linearization of (GL∗n, π)

For n = 3: dim gl3 = 9,

magic number is 6.

x =

x11 x12 x13
x21 x22 x23
x31 x32 x33



F (x) =

x11 x11x11 + x12x21 + x13x31 ∗
x21 x21x11 + x22x21 + x23x31 ∗
x31 x31x11 + x32x21 + x33x31 ∗


The minors of F (x) constructed above are

f1 = x31, f2 = x221x32 + x21x31x33 − x21x22x31 − x23x
2
31, f3 = x21.

The Casimirs are c1 = tr(x), c3 = det(x), and

c2 = x11x22 + x11x33 − x12x21 − x13x31 + x22x33 − x23x32.
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Thank you!
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