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Outline of Talk

§1: Introduction to polynomial integrable systems;

§2: A general construction of polynomial integrable systems;

§3: Polynomial integrable systems from cluster structures;

@ 34: Three examples.

Jiang-Hua Lu The University of Hong Kong Int sys from cluster 2/39



§1.1. Polynomial integrable systems

Assumptions:

Jiang-Hua Lu The University of Hong Kong Int sys from cluster 3/39



§1.1. Polynomial integrable systems

Assumptions:

e (P,m): n-dimensional complex Poisson manifold;

Jiang-Hua Lu The University of Hong Kong Int sys from cluster 3/39



§1.1. Polynomial integrable systems

Assumptions:
e (P,m): n-dimensional complex Poisson manifold;

e {, }x: Poisson bracket on sheaf of holomorphic functions

{0, ¢}r = (7, do A dy);

Jiang-Hua Lu The University of Hong Kong Int sys from cluster 3/39



§1.1. Polynomial integrable systems

Assumptions:
e (P,m): n-dimensional complex Poisson manifold;

e {, }x: Poisson bracket on sheaf of holomorphic functions

{0, ¢}r = (7, do A dy);

@ rk(m): maximal dimension of symplectic leaves of (P, );

Jiang-Hua Lu The University of Hong Kong Int sys from cluster 3/39



§1.1. Polynomial integrable systems

Assumptions:
e (P, m): n-dimensional complex Poisson manifold;
e {, }x: Poisson bracket on sheaf of holomorphic functions
{¢,0}r = (7, dd A dib);

@ rk(m): maximal dimension of symplectic leaves of (P, );

If $1,...,¢m are holomorphic such that d¢1 A\ --- AN d¢m # 0 and
{¢i,¢j}r =0, Vi j=1,...,n,

Jiang-Hua Lu The University of Hong Kong Int sys from cluster



§1.1. Polynomial integrable systems

Assumptions:
e (P, m): n-dimensional complex Poisson manifold;
e {, }x: Poisson bracket on sheaf of holomorphic functions
{¢,0}r = (7, dd A dib);

@ rk(m): maximal dimension of symplectic leaves of (P, );

If $1,...,¢m are holomorphic such that dps A --- A dom # 0 and

{¢i,¢j}r =0, Vi j=1,...,n,

s # of Casimirs

1 — 1
m<n— Erk(ﬂ') = (n— rk(m)) + §rk(7r).
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§1.1. Polynomial integrable systems

Definition: The integer

1
m=n-— Erk(w)

is called the magic number of (P, ).

Definition
An integrable system on (P, ) is a set (¢1, ..., ®m) of holomorphic
functions on P such that

Q dpi A---Ndom #0;
Q@ {¢i,j}r =0, foralli,j=1,...,n

Jiang-Hua Lu The University of Hong Kong Int sys from cluster



§1.1. Polynomial integrable systems

Special case:

e g: (finite dimensional) Lie algebra over field k with char(k) = 0;

Jiang-Hua Lu The University of Hong Kong Int sys from cluster 5/39



§1.1. Polynomial integrable systems

Special case:

e g: (finite dimensional) Lie algebra over field k with char(k) = 0;

@ g*: dual space of g with linear Poisson structure 7g:

Jiang-Hua Lu The University of Hong Kong Int sys from cluster 5/39



§1.1. Polynomial integrable systems

Special case:
e g: (finite dimensional) Lie algebra over field k with char(k) = 0;
@ g*: dual space of g with linear Poisson structure 7g:

{X17X2}7To - [X17X2]7 X1,X2 € g,

also called a Kirillov-Kostant-Souriau Poisson structure.

Jiang-Hua Lu The University of Hong Kong Int sys from cluster 5/39



§1.1. Polynomial integrable systems

Special case:
e g: (finite dimensional) Lie algebra over field k with char(k) = 0;
@ g*: dual space of g with linear Poisson structure 7g:

{X17X2}7To - [X17X2]7 X1,X2 € g,

also called a Kirillov-Kostant-Souriau Poisson structure.
Example: Use the isomorphism
gl, ~ (gl,)", x— (y — tr(xy)>

to regard mo on (gl,)* as on gl, with entry coordinates {x;}.
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§1.1. Polynomial integrable systems

Special case:

e g: (finite dimensional) Lie algebra over field k with char(k) = 0;
@ g*: dual space of g with linear Poisson structure 7g:

{X17X2}7To - [X17X2]7 X1,X2 € g,

also called a Kirillov-Kostant-Souriau Poisson structure.

Example: Use the isomorphism
ahy = (@l x = (1 1)
to regard mp on (gl,)* as on gl, with entry coordinates {x;}. Then

{xijs Xui Yo = Ojxit — Opixuj, 0, j,k, [ =1,...,n.
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§1.1. Polynomial integrable systems

Mishchenko-Fomenko Conjecture (1981), proved by S. Sadetov (2004):

Every (g*, 7o) has an integrable system consisting of polynomial functions.

A natural question:

@ How to construct concrete polynomial integrable systems on (g*, mo)?

Well-known method: Thimm’'s method.

Our work: A new method for a class of (g*, o).

Jiang-Hua Lu The University of Hong Kong Int sys from cluster 6/39
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An example

@ n := {strictly upper triangular matrices of size n x n}

e n_ := {strictly lower triangular matrices of size n x n}

o n~ (n_)* xr <y > tr(xy)>;
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§1.2. Preview: an example

An example

@ n := {strictly upper triangular matrices of size n x n}

e n_ := {strictly lower triangular matrices of size n x n}
e n~(n_) xm— <y — tr(xy));
For n = 4:
0 xi2
x=] 0 0 [x3 x4
0 0 0 x4
0 0 0 O

Integrable system consists of
fi=x12, fh=x13, f=xw, 1 =x13x4—Xx14%3
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For arbitrary n:

0 xiz] [x13]|[aa]| X1sl| X6
0 0 [xo3| x2a]| x25| Xx26
0 0 0 |x3 X35 X36
X = 0 0 0 0 X45 X46
0 0 0 0 0 xs6
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§1.2. Preview: an example

For arbitrary n:

X14||[X15]| [X16

o
)
X
[l
w

X23 || X24 || X25 | X26

X34 X35 X36

00X56
0 0 O

O O O O O o
o O O O O

0
0 0 xu5 xs6
0
0

The minors indicated above form an integrable system on (n, ).
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§1.3. Setup and goal of talk

Linearizations of Poisson structures.

Let (P, 7) be a complex Poisson manifold, and py € P such that

7(po) = 0.
Then
@ The cotangent space T, M has a Lie bracket given by

[dpof> dpog] = dpo{f,g}ﬂ'

@ Tangent space T, P thus carries the linear Poisson structure 7;

e Call (Tp,P,m) the linearization of (P, 7) at po.

Goal: Construct integrable systems on ( Ty, P, mg) using (P, ).
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§2.1. A key observation

From (P, 7) to (Tp, P, mo):

Let ¢ be any local holomorphic function on P defined near pg.

@ Choose local holomorphic coordinates z = (z1, ..., 2,) s.t. z(po) = 0.
@ Define

¢ = lowest order term of ¢ in the Tyalor expansion of ¢ at 0.

@ Regard ¢'°V as a homogeneous polynomial on Tpo P;

o Note that ¢!°V £ 0 if ¢ # 0.

¢'°% is independent of the choice of local coordinates (z1,. .., z,).
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§2.1. A key observation

If ¢ and 1 are local holomorphic functions near pg such that

{9, v}r € Cov,

then {@°V 1oV}, = 0.

Proof: Compare lowest order terms of expansions of both sides of

{0, ¢} = Aoy
Q.E.D.
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§2.1. A key observation

Definition: For set ®=(¢1, ..., ¢,) of local holomorphic functions near py,

@ say ® is w-log-canonical if

{¢i, 6} € Cipj, Vi,j=1,....n
@ say ® is log-canonical system on (P, ) at pg if

Q@ o is m-log-canonical;
Q dpi A--- ANdp, # 0 near py (recall n = dim P).
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§2.1. A key observation

Definition: For set ®=(¢1, ..., ¢,) of local holomorphic functions near py,

@ say ® is w-log-canonical if

{¢i, 6} € Cipj, Vi,j=1,....n
@ say ® is log-canonical system on (P, ) at pg if

Q@ o is m-log-canonical;
Q dpi A--- ANdp, # 0 near py (recall n = dim P).

We have proved

If (¢1,...,¢n) is w-log-canonical, then

(", ")}y =0, Vij€Ll...,n
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1
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§2.1. A key observation

Recall: To form a polynomial integrable system on ( Tp, P, 7o), need

1
m=n-— Erk(wo) (the magic number)

algebraically independent Poisson commuting polynomials on T, P.

A natural question:

@ Given log-canonical system ®=(¢1,...,dp) on (P,n) at pg, when does
def
q)low Lol ( llow’ e LOW)

contain n — irk(mo) algebraically independent elements?
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Preparation:

For a non-zero local holomorphic differential k-form 1 on P near py,

@ use Taylor expansion in local coordinates z = (z1,. .., z,) to define
10w
= E ay,..idziy N--- Ndz;,
<<

with all a; . i homogeneous polynomials in z of degree m.
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Preparation:

For a non-zero local holomorphic differential k-form 1 on P near py,

@ use Taylor expansion in local coordinates z = (z1,. .., z,) to define
10w
- E i,y dzjy A+ A dsz
<<

with all a; . ; homogeneous polynomials in z of degree m. Define

deg(p'°") = m + k.
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@ use Taylor expansion in local coordinates z = (z1,. .., z,) to define
10w
- E i,y dzjy A+ A dsz
<<

with all a; . ; homogeneous polynomials in z of degree m. Define

deg(p'°") = m + k.
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@ 11 is a polynomial k-form on T, P;
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§2.2. Main theorem: a sufficient condition

Preparation:

For a non-zero local holomorphic differential k-form 1 on P near py,

@ use Taylor expansion in local coordinates z = (z1,. .., z,) to define
10w
- E i,y dzjy A+ A dsz
<<

with all a; . ; homogeneous polynomials in z of degree m. Define

deg(p'°") = m + k.

low

@ 11 is a polynomial k-form on T, P;

o 1°V is well-defined, i.e., independent of choice of (zi,.. ., z,).
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Definition: Given log-canonical system ®=(¢1,...,¢,) on (P, ) at po,
@ introduce meromorphic n-form on P
doi A --- ANdo,
T 61 0m

and call pg the log-volume form of &;

fo = d(log ¢1) A -+ A d(log én),
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Definition: Given log-canonical system ®=(¢1,...,¢,) on (P, ) at po,
@ introduce meromorphic n-form on P
doi A --- ANdo,
T 61 0m

and call pg the log-volume form of &;

fo = d(log ¢1) A -+ A d(log én),

@ define rational n-form on T, P

~ (dpr Ao Adep)oV

A g

low

Jiang-Hua Lu The University of Hong Kong Int sys from cluster 15/39



§2.2. Main theorem: a sufficient condition

Definition: Given log-canonical system ®=(¢1,...,¢,) on (P, ) at po,
@ introduce meromorphic n-form on P
doi A --- ANdo,
T 61 0m

and call pg the log-volume form of &;

= d(log¢1) A--- A d(log ¢),

Ko

@ define rational n-form on T, P

~ (dpr Ao Adep)oV

A g

low

@ define

deg(ug™) = deg((dp1 A -+ A dpn)®™) — deg(¢F™ - - - Plo™).
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§2.2. Main theorem: a sufficient condition

Theorem (Li-Li-L 2024)
Given log-canonical system ® on (P, ) at po, if
1 1
deg(iig™) < Srk(mo),  equivalently,  deg(ug™) = Srk(mo),
then ®'°V contains a (polynomial) integrable system on (T, P, o).
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Theorem (Li-Li-L 2024)

Given log-canonical system ® on (P, ) at po, if

1 1
deg(15") < Srk(mo),  equivalently,  deg(ug™) = Srk(mo),

then ®'°V contains a (polynomial) integrable system on (T, P, o).

Definition

A log-canonical system & on (P, ) at pg is said to have Property Z if

1
deg(5) = 51k(o).
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§2.2. Main theorem: a sufficient condition

Theorem (Li-Li-L 2024)

Given log-canonical system ® on (P, ) at po, if

1 1
deg(15") < Srk(mo),  equivalently,  deg(ug™) = Srk(mo),

then ®'°V contains a (polynomial) integrable system on (T, P, o).

Definition

A log-canonical system & on (P, ) at pg is said to have Property Z if

1
deg(5) = 51k(o).

Thus

@ Property T = ®!°% contains an integrable system on (Tpy P, m0)-
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§2.2. Main theorem: a sufficient condition

Recap: Let (P, 7) be an n-dim Poisson manifold with 7(pp) = 0.
e Have linearization (Tp, P, mo) of (P, ) at po;
@ For a log-canonical system ®=(¢1,...,¢,) on (P,m) at po, if

(Dd:ef doir A---Ndoy
1 Pn

(the log-volume form of ®)

satisfies )
deg(ug™) = Srk(mo)  (Property T),
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§2.2. Main theorem: a sufficient condition

Recap: Let (P,7) be an n-dim Poisson manifold with 7(pg) = 0.

e Have linearization (Tp, P, mo) of (P, ) at po;

@ For a log-canonical system ®=(¢1,...,¢,) on (P,m) at po, if
o g1 A A don (the log-volume form of ®)
¢1 ¢n
satisfies )
deg(pig"V) = Efk(ﬂo) (Property 7),

then the set et
q)low € (¢lovv7 o ¢170W)

contains a polynomial integrable system on (Tp, P, 7).
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Cluster theory is a source of log-canonical systems!
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§3. Polynomial integrable systems from cluster theory

Cluster theory is a source of log-canonical systems!

A Wonderful Lemma:

Suppose that (P, ) carries a compatible cluster structure C. Then
@ every extended cluster in C is a log-canonical system on (P, );

@ all extended clusters have the same log-volume form, denoted as u¢;

Suppose that (P, ) carries a compatible cluster structure C. If

deg(1™) = 51(ro), @

then every cluster in C gives a polynomial integrable system on (Tp, P, ).
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§3. Polynomial integrable systems from cluster theory

Cluster theory is a source of log-canonical systems!

A Wonderful Lemma:

Suppose that (P, ) carries a compatible cluster structure C. Then
@ every extended cluster in C is a log-canonical system on (P, );

@ all extended clusters have the same log-volume form, denoted as u¢;

Suppose that (P, ) carries a compatible cluster structure C. If

deg(1™) = 51(ro), @

then every cluster in C gives a polynomial integrable system on (Tp, P, ).

There are typically infinitely many extended clusters in C!
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§3. Polynomial integrable systems from cluster theory

Let (P, ) be a smooth affine Poisson variety with 7m(pg) = 0.
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§3. Polynomial integrable systems from cluster theory

Let (P, ) be a smooth affine Poisson variety with m(pg) = 0.

Definition

Say a compatible cluster structure C on (P, ) has Property Z at py if

1
deg(5™) = k(o).
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Say a compatible cluster structure C on (P, ) has Property Z at py if

1
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Let (P, ) be a smooth affine Poisson variety with m(pg) = 0.

Definition

Say a compatible cluster structure C on (P, ) has Property Z at py if

1
deg(5™) = k(o).
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@ Explain compatible cluster structures and the Wonderful Lemma;
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§3. Polynomial integrable systems from cluster theory

Let (P, ) be a smooth affine Poisson variety with m(pg) = 0.

Definition

Say a compatible cluster structure C on (P, ) has Property Z at py if

1
deg(5™) = k(o).

Rest of the talk:
@ Explain compatible cluster structures and the Wonderful Lemma;

@ Look at three examples from Lie theory.
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§3.1. Compatible cluster structures on Poisson varieties

Cluster structures: Let P be an irreducible rational affine variety over C.
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Cluster structures: Let P be an irreducible rational affine variety over C.

1. Definition of a seed: A seed in C(P) is a triple (¥, ex, M), where
@ ® = (¢1,...,¢n) is a transcendental basis of C(P) over C;

@ ex C [1, n], non-empty, set of exchange directions;

@ M € Mat,xex(Z) such that Meyxxex skew-symmetrizable.
Given a seed (¢, ex, M) in C(P),

@ & =(¢1,...,¢y) is called the extended cluster of the seed,;

@ The functions ¢, k € ex, are called cluster variables of the seed;
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§3.1. Compatible cluster structures on Poisson varieties

Cluster structures: Let P be an irreducible rational affine variety over C.

1. Definition of a seed: A seed in C(P) is a triple (¥, ex, M), where
@ ® = (¢1,...,¢n) is a transcendental basis of C(P) over C;

@ ex C [1, n], non-empty, set of exchange directions;
@ M € Mat,xex(Z) such that Meyxxex skew-symmetrizable.
Given a seed (¢, ex, M) in C(P),
@ & =(¢1,...,¢y) is called the extended cluster of the seed,;
@ The functions ¢, k € ex, are called cluster variables of the seed;

e The functions ¢}, € [1, n]\ex, are called frozen variables;
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§3.1: Compatible cluster structures on Poisson varieties

2. Definition of seed mutation:

Mutation of (®, ex, M=(m; j)) in the direction k €ex is (¢’, ex, M’), where
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2. Definition of seed mutation:

Mutation of (®, ex, M=(m; j)) in the direction k €ex is (¢’, ex, M’), where
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mj k —mj k
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Pk = (2)
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§3.1: Compatible cluster structures on Poisson varieties

2. Definition of seed mutation:

Mutation of (®, ex, M=(m; j)) in the direction k €ex is (¢’, ex, M’), where
° ¢ = (¢17 s 7¢k—1; ¢;<> ¢k+17 s 7¢n) with
Hmj7k>0 ¢;17ij + Hmj7k<0 qb;mj,k
Pk '

e M’ is obtained from M by --- (formula not important).

Pk = (2)

More importantly,

@ Numerator in (2) contains no ¢, because my , = 0.
@ Seeds are mutation equivalent if related by sequences of mutations;

@ Mutation equivalent seeds share the same set of frozen variables.
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§3.1: Compatible cluster structures on Poisson varieties

3. Definitions of cluster algebras/cluster structures:
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inv C set of frozen variables = {¢; : j € [1, n]\ex},
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@ Given a mutation equivalence class C of seeds in C(P) and
inv C set of frozen variables = {¢; : j € [1, n]\ex},

the cluster algebra A(C);y,y is the sub-algebra of C(P) generated by

o all cluster variables in all seeds in C;
o all frozen variables ¢}, j € [1, n]\ex;

o all ¢;°*, for ¢; € inv.
@ A cluster structure on P is a mutation equivalence class C such that

A(C)iny = C[P]  for some inv.
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§3.1: Compatible cluster structures on Poisson varieties

3. Definitions of cluster algebras/cluster structures:

@ Given a mutation equivalence class C of seeds in C(P) and
inv C set of frozen variables = {¢; : j € [1, n]\ex},

the cluster algebra A(C);y,y is the sub-algebra of C(P) generated by

o all cluster variables in all seeds in C;
o all frozen variables ¢}, j € [1, n]\ex;

o all ¢;°*, for ¢; € inv.
@ A cluster structure on P is a mutation equivalence class C such that
A(C)iny = C[P]  for some inv.

Implication: all extended clusters in C consist of regular functions on
P.
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§3.1: Compatible cluster structures on Poisson varieties

Finally! Let 7 be a Poisson structure on P.

Definition [Gekhtman-Shapiro-Vainshtein|:
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Remarks:
@ Having a cluster structure on a given P is a miracle;
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§3.1: Compatible cluster structures on Poisson varieties

Finally! Let 7 be a Poisson structure on P.

Definition [Gekhtman-Shapiro-Vainshtein]: A cluster structure C on P is
compatible with 7 if every extended cluster in C is m-log-canonical.

Remarks:
@ Having a cluster structure on a given P is a miracle;

@ Given a cluster structure on P, checking compatibility with 7 is an
easy linear algebra check.

@ Cluster structure are typically of infinite type, i.e., having infinitely
many extended clusters.
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§3.2: Proof of Wonderful Lemma

Lemma (Wonderful Lemma)

If C is a cluster structure on P compatible with 7, then
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Lemma (Wonderful Lemma)

If C is a cluster structure on P compatible with 7, then
© cevery extended cluster in C is a log-canonical system on (P, ),

@ all extended clusters in C have, up to a sign, same log-volume form;

Proof:
© comes from definition of compatibility;
@ only need to consider one step mutation
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§3.2: Proof of Wonderful Lemma

Lemma (Wonderful Lemma)

If C is a cluster structure on P compatible with 7, then
© cevery extended cluster in C is a log-canonical system on (P, ),

@ all extended clusters in C have, up to a sign, same log-volume form;

Proof:
© comes from definition of compatibility;
@ only need to consider one step mutation

¢ = (¢17---7¢n) —>¢,: (qbl?'"7¢k—17¢?ﬁ¢k+17"‘7¢n)-
Let o = d(log 1) A - - - d(log pk—1) A d(log dxs1) A -+ A d(log dn).
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Lemma (Wonderful Lemma)

If C is a cluster structure on P compatible with 7, then
© cevery extended cluster in C is a log-canonical system on (P, ),
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Proof:
© comes from definition of compatibility;
@ only need to consider one step mutation
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§3.2: Proof of Wonderful Lemma

Lemma (Wonderful Lemma)

If C is a cluster structure on P compatible with 7, then
© cevery extended cluster in C is a log-canonical system on (P, ),

@ all extended clusters in C have, up to a sign, same log-volume form;

Proof:
© comes from definition of compatibility;
@ only need to consider one step mutation

¢ = (¢17---7¢n) — (D, = (qbl»---7¢k—17¢g<a¢k+17"‘7¢n)-
Let o = d(log 1) A - - - d(log pk—1) A d(log dxs1) A -+ A d(log dn).
Since gbk(bﬁ( = aj + ap, where a; and a; do not contain ¢y, we have
por = £a A d(log ¢)) = £a A (d(—log ¢x) + d(log(a1 + a2))
=ta Ad(log dx) = tue.
Q.E.D.
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§3.2: Proof of Wonderful Lemma

Recap: Let (P, 7) be a smooth affine Poisson variety with 7(pg) = 0.
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§3.2: Proof of Wonderful Lemma

Recap: Let (P, 7) be a smooth affine Poisson variety with 7(pg) = 0.

@ Suppose that C is a cluster structure on P compatible with ;

@ Use any extended cluster ® = (¢1,...,¢,) in C to define

pie = po = d(log 1) A --- A d(log ¢p).

Jiang-Hua Lu The University of Hong Kong Int sys from cluster 25 /39



§3.2: Proof of Wonderful Lemma

Recap: Let (P, ) be a smooth affine Poisson variety with 7(pg) = 0.

@ Suppose that C is a cluster structure on P compatible with ;

@ Use any extended cluster ® = (¢1,...,¢,) in C to define
pie = po = d(log 1) A --- A d(log ¢p).

o Assume C has Property T at py, i.e., deg(1?") = k(o).
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§3.2: Proof of Wonderful Lemma

Recap: Let (P, ) be a smooth affine Poisson variety with 7(pg) = 0.

@ Suppose that C is a cluster structure on P compatible with ;

@ Use any extended cluster ® = (¢1,...,¢,) in C to define
pie = po = d(log 1) A --- A d(log ¢p).

@ Assume C has Property 7 at po, i.e., deg(ug’“) = %rk(?ro).
@ Then for every extended cluster ® = (¢1,...,¢,), the set
q)low — (¢110w o ¢10W

contains a polynomial integrable system on (Tp, P, mp).
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§3.2: Proof of Wonderful Lemma

Remark: We may need to modify pc to pic by modifying the frozen
variable part to ensure

~low 1
deg(7i™) = 5rk(o).

In this case we also say that C Property Z at py.
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§4: Three examples from Lie theory

Notation: Fix
@ G: connected complex semi-simple Lie group with Lie(G) = g;
(B, B_): pair of opposite Borel sub-groups of G;
N C B and N_ C B_: unipotent radicals;
T = BN B_: maximal torus of G;
Respective Lie algebras g,t,b,b_,n,n_;

W = Ng(T)/T: the Weyl group; wy € W the longest element.
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@ G: connected complex semi-simple Lie group with Lie(G) = g;

(B, B_): pair of opposite Borel sub-groups of G;
N C B and N_ C B_: unipotent radicals;

T = BN B_: maximal torus of G;

Respective Lie algebras g,t,b,b_,n,n_;

W = Ng(T)/T: the Weyl group; wy € W the longest element.
One then has
@ the standard complex semi-simple Poisson Lie group (G,ms) with
st = rsLt - rs§7

where ry € g ® g is the standard classical quasi-triangular r-matrix;
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§4: Three examples from Lie theory

Notation: Fix

@ G: connected complex semi-simple Lie group with Lie(G) = g;

(B, B_): pair of opposite Borel sub-groups of G;
N C B and N_ C B_: unipotent radicals;

T = BN B_: maximal torus of G;

Respective Lie algebras g,t,b,b_,n,n_;

W = Ng(T)/T: the Weyl group; wy € W the longest element.
One then has
@ the standard complex semi-simple Poisson Lie group (G,ms) with
st = rsLt - rs§7

where ry € g ® g is the standard classical quasi-triangular r-matrix;

o (G,my) is the semi-classical limit of the quantum group Ugg.
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84.1: Integrable systems on linearization of (G, 7y)

Example 1: Integrable systems on linearization of (G, 7s) at e € G.
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Example 1: Integrable systems on linearization of (G, 7s) at e € G.

@ One has g (e) = 0, where e € G is the identity element;

@ Every double Bruhat cell G*Y = BuBN B_vB_ C G is a Poisson
sub-manifold of (G, 7st);

Jiang-Hua Lu The University of Hong Kong Int sys from cluster 28/39



84.1: Integrable systems on linearization of (G, 7y)

Example 1: Integrable systems on linearization of (G, 7s) at e € G.

@ One has g (e) = 0, where e € G is the identity element;
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84.1: Integrable systems on linearization of (G, 7y)

Example 1: Integrable systems on linearization of (G, 7s) at e € G.

@ One has g (e) = 0, where e € G is the identity element;

@ Every double Bruhat cell G*Y = BuBN B_vB_ C G is a Poisson
sub-manifold of (G, 7st);

@ Each double Bruhat cell has the Berenstein-Fomin-Zelevinsky (2005)
cluster structure compatible with mg;

@ The BFZ cluster structure on G"0-"0 extends to a cluster structure on
G compatible with 7.
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84.1: Integrable systems on linearization of (G, 7y)

Example 1: Integrable systems on linearization of (G, 7s) at e € G.

Theorem (Li-Li-L. 2024)

One has 7g(€) = 0, where e € G is the identity element;

Every double Bruhat cell G¥Y = BuB N B_vB_ C G is a Poisson
sub-manifold of (G, 7st);

Each double Bruhat cell has the Berenstein-Fomin-Zelevinsky (2005)
cluster structure compatible with mg;

The BFZ cluster structure on G"0:"0 extends to a cluster structure on
G compatible with 7.

The BFZ cluster structure on G has Property T at e € G.
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84.1: Integrable systems on linearization of (G, 7y)

linearization (g, 7o) of (G, 7s) at e € G.
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84.1: Integrable systems on linearization of (G, 7y)

linearization (g, 7o) of (G, 7s) at e € G.

@ The linear Poisson structure is defined by the Lie algebra

g ={(y—+y, —Yo+ys):y—€n_,yety,en}Cb_d®b

with the non-degenerate bilinear pairing between g and g* given by

(x, (y1,¥2)) = (X, ¥1 — ¥2)Killingform-

e Examples of polynomial integrable systems on (g, 7o) consist of
generalized minors.
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§4.2: Integrable systems on linearization of (BwB/

Example 2: Integrable systems on linearization of (BwB/B, ) at w.B.
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Example 2: Integrable systems on linearization of (BwB/B, ) at w.B.
Consider now the flag variety G/B of G.
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§4.2: Integrable systems on linearization of (BwB/B, )

Example 2: Integrable systems on linearization of (BwB/B, ) at w.B.
Consider now the flag variety G/B of G.

@ 7y, on G projects to a well-defined Poisson structure m on G/B;

@ For every w € W, the Schubert cell
C":=BwB/BC G/B
is a Poisson sub-manifold of (G/B, ), and w(w.B) = 0;
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§4.2: Integrable systems on linearization of (BwB/

Example 2: Integrable systems on linearization of (BwB/B, ) at w.B.
Consider now the flag variety G/B of G.

@ 7y, on G projects to a well-defined Poisson structure m on G/B;
@ For every w € W, the Schubert cell
C":=BwB/BcC G/B
is a Poisson sub-manifold of (G/B, ), and w(w.B) = 0;

@ Each CY has a standard cluster structure compatible with 7
(Berenstein—Fomin—ZeIevinsky, Geiss-Leclerc-Schroder, Goodearl-Yakimov, ...);
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§4.2: Integrable systems on linearization of (BwB/B, )

Example 2: Integrable systems on linearization of (BwB/B, ) at w.B.
Consider now the flag variety G/B of G.

@ 7y, on G projects to a well-defined Poisson structure m on G/B;
@ For every w € W, the Schubert cell
C":=BwB/BcC G/B
is a Poisson sub-manifold of (G/B, ), and w(w.B) = 0;

@ Each CY has a standard cluster structure compatible with 7
(Berenstein—Fomin—ZeIevinsky, Geiss-Leclerc-Schroder, Goodearl-Yakimov, ...);

Theorem (Li-Li-L. 2024)
The standard cluster structure on each C* has Property T at w.B € C".
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§4.2: Integrable systems on linearization of (BwB/

Linearization of (C%,7) at w.B € C".

Jiang-Hua Lu The University of Hong Kong Int sys from cluster 31/39



§4.2: Integrable systems on linearization of (BwB/B, )

Linearization of (C%,7) at w.B € C".

Forwe W, let N = NNnwN_w 1 and NV = N_ NnwNw 1, and

n” = Lie(N") and n" = Lie(NY).

Jiang-Hua Lu The University of Hong Kong Int sys from cluster 31/39



§4.2: Integrable systems on linearization of (BwB/B, )

Linearization of (C%,7) at w.B € C".

Forwe W, let N = NNnwN_w 1 and NV = N_ NnwNw 1, and
n" =Lie(N") and n" = Lie(N").

o T, 5CY =Zn", with linear Poisson structure my coming from

T, gC"” ~n" (as Lie algebras).
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§4.2: Integrable systems on linearization of (BwB/

Linearization of (C%,7) at w.B € C".

Forwe W, let N = NNnwN_w 1 and NV = N_ NnwNw 1, and
n" =Lie(N") and n" = Lie(N").

o T, 5CY =Zn", with linear Poisson structure my coming from

w

T, gC"” ~n" (as Lie algebras).

@ Thus every extended cluster in the standard cluster structure on C*
gives a polynomial integrable system on (n", o).
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Linearization of (C%,7) at w.B € C".

Forwe W, let N = NNnwN_w 1 and NV = N_ NnwNw 1, and
n" =Lie(N") and n" = Lie(N").

o T, 5CY =Zn", with linear Poisson structure my coming from

w

T, gC"” ~n" (as Lie algebras).

@ Thus every extended cluster in the standard cluster structure on C*
gives a polynomial integrable system on (n", o).

@ When w = wy, we have n" =n,
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§4.2: Integrable systems on linearization of (BwB/

Linearization of (C%,7) at w.B € C".

Forwe W, let N = NNnwN_w 1 and NV = N_ NnwNw 1, and
n" =Lie(N") and n" = Lie(N").

o T, 5CY =Zn", with linear Poisson structure my coming from

w

T, gC"” ~n" (as Lie algebras).

@ Thus every extended cluster in the standard cluster structure on C*
gives a polynomial integrable system on (n", o).

@ When w = wy, we have n" =n,

@ Example in §1.2 is an integrable system on (n, ) for g = sl,,.
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84.3: Integrable systems on linearization of (GL}, )

Example 3: Integrable systems on linearization of (GL}, 7) at 1,.
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Example 3: Integrable systems on linearization of (GL}, 7) at 1,.

Consider (GL}, 7), dual Poisson group (GL, mst). Explicitly,
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84.3: Integrable systems on linearization of (GL}, )

Example 3: Integrable systems on linearization of (GL}, 7) at 1,.

Consider (GL}, 7), dual Poisson group (GL, mst). Explicitly,
GL;, = {(X,Y) € B x B_: the diagonal parts of X, Y

are inverses of each other}.
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Example 3: Integrable systems on linearization of (GL}, 7) at 1,.

Consider (GL}, 7), dual Poisson group (GL, mst). Explicitly,
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Example 3: Integrable systems on linearization of (GL}, 7) at 1,.

Consider (GL}, 7), dual Poisson group (GL, mst). Explicitly,
GL;, = {(X,Y) € B x B_: the diagonal parts of X, Y

are inverses of each other}.

e Have 7(1,) =0, where 1, = (I, 5) € GL};

@ M. Gekhtman, M. Shapiro, and A. Vainshtein introduced a
generalized clustr structure on GL¥ comptible with 7

Jiang-Hua Lu The University of Hong Kong Int sys from cluster 32/39



84.3: Integrable systems on linearization of (GL}, )

Example 3: Integrable systems on linearization of (GL}, 7) at 1,.

Consider (GL}, 7), dual Poisson group (GL, mst). Explicitly,
GL;, = {(X,Y) € B x B_: the diagonal parts of X, Y
are inverses of each other}.
e Have 7(1,) =0, where 1, = (I, 5) € GL};

@ M. Gekhtman, M. Shapiro, and A. Vainshtein introduced a
generalized clustr structure on GL} comptible with 7.

Theorem (Li-Li-L. 2024)
The GGV generalized cluster structure on GL}, has Property T at 1,,.
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84.3: Integrable systems on linearization of (GL}, )

Linearization (gly, mo) of (GL}, ) at 1,
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84.3: Integrable systems on linearization of (GL}, )

Linearization (gly, mo) of (GL}, ) at 1,

o Identify
aty = (@), x> (= (o)
and regard 7o as a linear Poisson structure on gl,, given by

{Xijs Xut Yo = Ojexit — Sjixig, V1 < i, j, kI < n.
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84.3: Integrable systems on linearization of (GL}, )

Linearization (gly, mo) of (GL}, ) at 1,

o Identify
o= (gl = (1 )
and regard 7o as a linear Poisson structure on gl,, given by
{Xij, Xkt Yo = Ojuxit — Opixig, V1 <i,j, k, 1 < n.
o Define F : gl, — gl,, by

x»—>[xe1 x%e; .- x”el].
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84.3: Integrable systems on linearization of (GL}, )

Linearization (gly, mo) of (GL}, ) at 1,

o Identify
o= (gl = (1 )
and regard 7o as a linear Poisson structure on gl,, given by
{Xij, Xkt Yo = Ojuxit — Opixig, V1 <i,j, k, 1 < n.
o Define F : gl, — gl,, by

x»—>[xe1 x%e; .- x”el].

Remark: F does not preserve my on gl,,.
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84.3: Integrable systems on linearization of (GL}, )

Consider the following minors of F(x):

* ok % * | %
* ok % * | %
N
* |k | %
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84.3: Integrable systems on linearization of (GL}, )
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84.3: Integrable systems on linearization of (GL}, )

#]
* X
*
*
*

* X X
* X X
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84.3: Integrable systems on linearization of (GL}, )

as well as the following Casimir functions:

G = Z A{,-l,_..,,}.}7{;1’.._’,-1.}(x)
{i1,~~~,ij}6(7)

= sum of all principal j x j minors of x, j € [1,n].
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84.3: Integrable systems on linearization of (GL}, )

as well as the following Casimir functions:
G= D, Al (¥)
{in-i}e(f)

= sum of all principal j x j minors of x, j € [1,n].

The functions defined above form integrable system on (gl,,, 7).
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84.3: Integrable systems on linearization of (GL}, )

as well as the following Casimir functions:
G= D, Al (¥)
{in-i}e(f)

= sum of all principal j x j minors of x, j € [1,n].

The functions defined above form integrable system on (gl,,, 7).

Remark: This integrable system is not the Gelfand-Zeitlin system.
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84.3: Integrable systems on linearization of (GL}, )

For n =3: dimgl; =9,
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84.3: Integrable systems on linearization of (GL}, )

For n = 3: dimgl; = 9, magic number is 6.
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84.3: Integrable systems on linearization of (GL}, )

For n = 3: dimgl; = 9, magic number is 6.

X111 X12 X13
X = |X21 X22 X23
X31 X32 X33

X11  X11X11 + X12X21 + X13X31  *
F(x) = |x21 xo1x11 + Xo2X21 + X23X31  *
X31  X31X11 + X32X21 + X33X31  *

The minors of F(x) constructed above are
i =x31, fo=x31X3 + X21X31X33 — Xp1X02X31 — X23X31, 3 = Xo1.
The Casimirs are ¢; = tr(x), c3 = det(x), and
C2 = X11X22 + X11X33 — X12X21 — X13X31 + X22X33 — X23X32.
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Thank you!
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