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Smooth varieties and Calabi-Yau algebras

Let R = k [X ], where X is an affine smooth variety of dimension d.
Then Re = R ⊗ R = k [X × X ] is (R is homologically) smooth, and

• TorR
e

n (R ,R) = Hn(R ,R)
HKR
� ∧nΩ1

R |k � Ωn
R |k .

• ExtnRe (R ,R) = Hn(R ,R)
HKR
� ∧nDerk (R) � (Ωn

R |k )
∗.

• R is called to have trivial canonical bundle
def
⇔ Ωd

R |k � R
def
⇔ X is a Calabi-Yau variety.

• In general, Ωd
R |k is an invertible R-R-bimodule.

(⇒ R has ”Van den Bergh duality” of dimension d.)
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A fact about smooth algebras

Suppose that R is a smooth domain of dimension d. Then

• ExtiRe (R ,Re) = ExtiRe (R ,R) = 0 for all i < d.

• ExtdRe (R ,Re) � ExtdRe (R ,R) as R-modules, the isomorphism
is induced by the multiplication m : Re → R (Re-morphism).

The proof follows from⚵

• ker(m : R ⊗ R → R) is a locally complete intersection, and

• Koszul complex for regular sequences.
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Definition (Van den Bergh duality)

An algebra A is said to have Van den Bergh duality of dim. d, if

• A is homologically smooth, that is, Ae A has a finite
resolution by finitely generated projective Ae-modules;

• ExtiAe (A ,Ae) = 0 if i , d, and A UA := ExtdAe (A ,Ae) is an
invertible A -A -bimodule.

In this case, there is a twisted Poincaré duality, i.e., for any A NA ,

• Hn(A ,N) � Hd−n(A ,U ⊗A N);

• Hn(A ,N) � Hd−n(A ,U−1 ⊗A N), U−1 is the inverse of A UA .
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Definition [Gin]

A k -algebra A is called skew Calabi-Yau of dimension d, if

(i) A is homologically smooth;

(ii) ExtiAe (A ,Ae) �

0, i , d

AµA , i = d
as Ae-modules, for some

automorphism µA ∈ Autk (A).

Graded skew Calabi-Yau algebras are defined similarly in the
category of graded bimodules.

V. Ginzburg, Calabi-Yau algebras, arXiv:math.AG/0612139.
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This µA is unique up to an inner automorphism; it is called a
Nakayama automorphism of A .

If µA is inner, then A is called Calabi-Yau.

Nakayama automorphisms are important and useful invariants
for genuing skew Calabi-Yau algebras.
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Filtered algebras

• Let A = ∪n≥0FnA be a (positively) filtered k -algebra.

• grA := ⊕n≥0FnA/Fn−1A is the associated graded algebra,
with the multiplication given by

(a + Fn−1A)(b + Fm−1A) := ab + Fn+m−1A

for any a ∈ FnA , b ∈ FmA .
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Theorem. Let A be a positively filtered algebra.

• If grA has Van den bergh duality, then so has A .

• If grA is skew Calabi-Yau of dim d, then so is A .
If µgrA is a Nakayama automorphism of grA , then there is a

Nakayama automorphism µA of A such that µgrA = gr µA .

grA is CY “⇒” gr µA = idgrA for some µA .

It may happen that grA is Calabi-Yau, but A is not Calabi-Yau.

M. Van den Bergh, A relation between Hochschild homology and cohomology for
Gorenstein rings, Proc. Amer. Math. Soc. 126 (1998), 1345–1348.

Q.-S. Wu, R.-P. Zhu, Nakayama automorphisms and modular derivations in filtered
quantizations, J. Algebra 572 (2021), 381–421.
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Example. Both An(C) andU(g) are filtered deformations of
polynomial algebras, which are Calabi-Yau.
(1) An(C) is Calabi-Yau of dim 2n.
(2) Let g be an n-dim Lie algebra.

• U(g) is skew Calabi-Yau, with a Nakayama automorphism µ
such that µ(x) = x + tr([x,−]|g) for all x ∈ g.

• U(g) is Calabi-Yau⇔ tr(adg(x)) = 0 for all x ∈ g.

A. Yekutieli, The rigid dualizing complex of a universal enveloping algebra, J. Pure
Appl. Alg. 150 (2000), 85–93.

Q.-S. Wu, C. Zhu, PBW deformation of Koszul Calabi-Yau algebras, Algebra and
Representation Theory 16 (2013), 405-420.
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Poincaré duality on HH and PH

Filtered deformation
If grA is commutative, then grA has a Poisson algebra structure:

{ā, b̄} := ab − ba + Fn+m−2A ∈ Fn+m−1A/Fn+m−2A

for any a ∈ FnA , b ∈ FmA . In this case, A is called a filtered
deformation of grA . ([FnA ,FmA ] ⊆ Fm+n−1A )

In fact, to get a nontrivial Poisson structure by taking maximal
integer ℓ ⩾ 1 such that [FnA ,FmA ] ⊆ Fm+n−ℓA for all m, n, and

{ā, b̄} := ab − ba + Fn+m−ℓ−1A ∈ Fn+m−ℓA/Fn+m−ℓ−1A

for any a ∈ FnA , b ∈ FmA .

O. Gabber, The integrability of the characteristic variety, Amer. J. Math. 103 (1981),
445–468.

Q. -S. Wu (壇君噙) Skew Calabi-Yau algebras and Poisson algebras via filtered deformations



Skew Calabi-Yau algebras
Filtered deformations

Homological determinants
Main results
Application

Lifting CY property
Filtered deformations
Modular derivations
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Hypothesis

A is a filtered deformation with grA is a commutative d-dim affine
smooth algebra with a trivial canonical bundle Ωd(grA) = (grA) η.

Hd(grA , grAe) � Hd(grA , grA)
HKR
� (Ωd(grA))∗

⇒ grA is d-dim Calabi-Yau

⇒A is d-dim skew Calabi-Yau with µA

grA has a modular derivation ϕη, which will be defined in a
moment.
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Main purpose of this talk
Discuss the relation between

the Nakayama automorphism µA of A
⇕ (using homo. determinants)

the modular derivation ϕη of grA

Q.-S. Wu, R.-P. Zhu, Nakayama automorphisms and modular derivations in filtered
quantizations, J. Algebra 572 (2021), 381–421.

J. Luo, S.-Q. Wang and Q.-S. Wu, Poincaré duality for smooth Poisson algebras and
BV structure on Poisson cohomology, J. Algebra 649 (2024), 169–211.
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Let R be a smooth Poisson algebra of dimension d with trivial
canonical bundle Ωd(R) = R η, where η is a volume form.

Definition. The modular derivation of R with respect to η is

defined as the map ϕη : R → R : f 7→
LHf (η)

η , where

• Hf := {f ,−} : R → R is the Hamiltonian derivation associated to f
• ιHf : Ω

d(R)→ Ωd−1(R), a0 da1 ∧ · · · ∧ dad 7→∑
i(−1)i−1a0{f , ai} da1 ∧ · · · d̂ai · · · ∧ dad

• The Lie-derivation LHf = [d, ιHf ] is of degree 0 on Ωd(R).

J. Luo, S.-Q. Wang and Q.-S. Wu, Twisted Poincaré duality between Poisson
homology and Poisson cohomology, J. Algebra 442 (2015), 484–505.
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ϕη : R → R is both a derivation and Poisson derivation.

Example. Let R = k [x1, x2, · · · , xd ] be a polynomial Poisson
algebra with Poisson bracket {−,−}. Then Ω1(R) = ⊕d

i=1R dxi .

Ωd(R) = Rη where η = dx1 ∧ dx2 ∧ · · · ∧ dxd is a volume form.
The modular derivation ϕη is given by

ϕη(f) =
d∑

j=1

∂{f , xj}

∂xj
, ∀ f ∈ R .

J. Luo, S.-Q. Wang and Q.-S. Wu, Twisted Poincaré duality between Poisson
homology and Poisson cohomology, J. Algebra 442 (2015), 484–505.
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Let {dxi; (dxi)
∗}i=1,2,··· ,r be a dual basis of the finitely generated

projective module Ω1(R). In general, r ⩾ d.

Let S = {I = {i1 < i2 < · · · < id} | 1 ≤ i1, id ≤ r}.
If r = d, the set S has only one element I = {1 < 2 < · · · < d}.

To simplify the notation, for any I = {i1 < i2 < · · · < id} ∈ S, let

dxI := dxi1 ∧ dxi2 ∧ · · · ∧ dxid and dx∗I := dx∗i1 ∧ dx∗i2 ∧ · · · ∧ dx∗id .

Then {dxI, dx∗I }I∈S is a dual basis for the projective module Ωd(R).
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Since (η, η∗) is a dual basis of Ωd(R),

dxI = η
∗(dxI) η = bI η, bI : = η

∗(dxI),

dx∗I = dx∗I (η) η
∗ = aI η

∗, aI : = dx∗I (η).

Similarly, since {dxI, dx∗I }I∈S is a dual basis of Ωd(R),

η =
∑
I∈S

dx∗I (η) dxI =
∑
I∈S

aI dxI,

η∗ =
∑
I∈S

η∗(dxI) dx∗I =
∑
I∈S

bI dx∗I

J. Luo, S.-Q. Wang and Q.-S. Wu, Poincaré duality for smooth Poisson algebras and
BV structure on Poisson cohomology, J. Algebra 649 (2024), 169–211.
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The modular derivation of R with respect to the volume form η is
described by the dual basis of Ωd(R).

Theorem. For any a ∈ R,

ϕη(a) =
∑

1≤i≤r

dx∗i ({a, xi}) +
∑
I∈S

{a, aI}bI,

where aI = dx∗I (η) and bI = η
∗(dxI).

J. Luo, S.-Q. Wang and Q.-S. Wu, Poincaré duality for smooth Poisson algebras and
BV structure on Poisson cohomology, J. Algebra 649 (2024), 169–211.

Q. -S. Wu (壇君噙) Skew Calabi-Yau algebras and Poisson algebras via filtered deformations



Skew Calabi-Yau algebras
Filtered deformations

Homological determinants
Main results
Application

Lifting CY property
Filtered deformations
Modular derivations
Poincaré duality on HH and PH

The modular derivation of R with respect to the volume form η is
described by the dual basis of Ωd(R).

Theorem. For any a ∈ R,

ϕη(a) =
∑

1≤i≤r

dx∗i ({a, xi}) +
∑
I∈S

{a, aI}bI,

where aI = dx∗I (η) and bI = η
∗(dxI).

J. Luo, S.-Q. Wang and Q.-S. Wu, Poincaré duality for smooth Poisson algebras and
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Poincaré duality on HH and PH

Theorem. Let R be a Poisson algebra which is smooth with trivial
canonical bundle Ωd(R) = Rη.

• The modular derivation ϕη;R → R is a Poisson derivation.

• For any Poisson R-module M, the R-module M with
{x, a}ϕη := {x, a}+ ϕη(a)x is a Poisson R-module, which is
denoted by Mϕη (the twisted Poisson module by ϕη).

• There is a twisted Poincaré duality for Poisson (co)homology:

PHn(R ,M) � PHd−n(R ,Mϕη).

J. Luo, S.-Q. Wang and Q.-S. Wu, Poincaré duality for smooth Poisson algebras and
BV structure on Poisson cohomology, J. Algebra 649 (2024), 169–211.
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Main ideas
H-module structure on H∗(A ,Ae)

Homological determinant

Suppose Extd(A ,Ae) = Aπ � AµA , such that, for any a ∈ A
πa = µA (a)π.

π is called a µA -twisted volume of A .

(
µA (a) − a

)
π = πa − aπ = [π, a] (∀ a ∈ A)

• [−, a] : M → M, x 7→ xa − ax for any A MA .
• δa := [−, a] : A → A , which is a derivation on A .
• Hā = {ā,−} : grA → grA is the Hamiltonian derivation.
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Main ideas
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Homological determinant

Main ideas
Using homological determinant as a bridge to give a connection
between Nakayama auto. µA of A and modular deri. ϕη of grA .

µA of A oo
(µA−idA )(a)=ϕη(a)∈(grA)n−1

// ϕη of grA

step 2ϕη(ā)=Hdet({ā,−})

��

Hdet on A

step 1 (idA −µA )(a)=Hdet([−,a])

OO

Hdet on grA
step 3

Hdet([−,a])=Hdet({−,ā})
oo

Q.-S. Wu, R.-P. Zhu, Nakayama automorphisms and modular derivations in filtered
quantizations, J. Algebra 572 (2021), 381-421.

Q. -S. Wu (壇君噙) Skew Calabi-Yau algebras and Poisson algebras via filtered deformations



Skew Calabi-Yau algebras
Filtered deformations

Homological determinants
Main results
Application

Main ideas
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Homological determinant

Let H be a Hopf algebra acting on an algebra A .

H ↷ A ⇒ H ↷ C∗(A ,Ae)⇒ H ↷ H∗(A ,Ae)

There is a left H-module structure on the Hochschild cochain

· · · −→ Cn−1(A ,Ae) −→ Cn(A ,Ae) −→ Cn+1(A ,Ae) −→ · · ·

For any f ∈ Cn(A ,Ae), any h ∈ H and a1, . . . , an ∈ A ,

(h ⇀ f)(a1, . . . , an) =
∑
(h)

(S2hn+2 ⊗ h1) · f(Shn+1 · a1, . . . ,Sh2 · an)

Ae is viewed as a left H ⊗H-module: (g⊗h)(a ⊗b) = (g ·a ⊗h ·b).
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Main ideas
H-module structure on H∗(A ,Ae)

Homological determinant

General action:

(h ⇀ f)(a1, . . . , an) =
∑
(h)

(S2hn+2 ⊗ h1) · f(Shn+1 · a1, . . . ,Sh2 · an)

Group action: (g ⇀ f)(a1, . . . , an) = (g ⊗ g) · f(g−1 · a1, . . . , g−1 · an)

Li (derivation) action:

(δ ⇀ f)(a1, . . . , an) =(δ ⊗ 1 + 1 ⊗ δ) · f(a1, . . . , an)+
n∑

i=1

f(a1, . . . ,−δ(ai), . . . , an)
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Main ideas
H-module structure on H∗(A ,Ae)

Homological determinant

Suppose µA -twisted volume of A . Then πa = µA (a)π, ∀ a ∈ A .

(Extd(A ,Ae) = Aπ � AµA )

For any h ∈ H, there is a unique a ∈ A such that
h ⇀ π = a π ∈ Aπ = Extd(A ,Ae).

Let ϕ : H → A be the map such that
h ⇀ π = ϕ(h)π (∈ Aπ).
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Main ideas
H-module structure on H∗(A ,Ae)

Homological determinant

ϕ is convolution invertible

By the H-action on Extd(A ,Ae), ϕ(gh)π = g ⇀ (ϕ(h)π), and

ϕ(gh) =
∑
(g)

(
g1 ⇀ ϕ(h)

)
ϕ(g2).

In fact, ϕ ∈ Homk (H,A) is convolution invertible, with the inverse

ϕ−1(h) =
∑

h2 ⇀ ϕ(S−1h1).
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Main ideas
H-module structure on H∗(A ,Ae)

Homological determinant

Definition
The homological determinant Hdet = Hdetπ of the Hopf action H
on A is defined to be ϕ−1 ∈ Homk (H,A), that is,

Hdet(h) := ϕ−1(h) =
∑

h2 ⇀ ϕ(S−1h1).

If A is connected graded skew CY, Hdet coincides with the
definition by Jørgensen-Zhang; Kirkman-Kuzmanovich-Zhang.
Hdet agrees with the definition by Meur (2019).

P. Le Meur, Patrick Smash products of Calabi-Yau algebras by Hopf algebras, J.
Noncommut. Geom. 13 (2019), 887–961.

Q.-S. Wu, R.-P. Zhu, Nakayama automorphisms and modular derivations in filtered
quantizations, J. Algebra 572 (2021), 381-421.
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Step 1: A relation between µA and Hdetπ
Step 2: A relation between ϕη and Hdetη∗

Step 3: δa⇀π = {−, ā}⇀π

Step 1: (idA −µA)(a) = Hdetπ([−, a])

Given A MA , consider the commutator action a ∈ A on M

[−, a] : M → M, x 7→ xa − ax ([−, a]↷ x = xa − ax)

(
µA (a) − a

)
π = πa − aπ = [π, a] (∀ a ∈ A)

(π ∈ Extd(A ,Ae) = Aπ � AµA )

Consider δa := [−, a] : A → A , which is a derivation on A .
Let H = U(kδa) = k [δa ], which acts on A by δa ⇀ x = [x, a].
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Step 1: A relation between µA and Hdetπ
Step 2: A relation between ϕη and Hdetη∗

Step 3: δa⇀π = {−, ā}⇀π

Step 1: (idA −µA)(a) = Hdetπ([−, a])

Key fact 1

[−, a]↷ H∗(A ,Ae) “ = ” δa ⇀ H∗(A ,Ae).

· · · // HomAe (A⊗n+2,Ae)
(dn+1)

∗

//

sn

uu

[−,a]↷ −(δa⇀)

��

HomAe (A⊗n+3,Ae)

sn+1

uu

// · · ·

· · · // HomAe (A⊗n+1,Ae)
(dn)

∗

// HomAe (A⊗n+2,Ae) // · · ·

sn(f)(x0 ⊗ · · · ⊗ xn) =
∑n−1

i=0 (−1)i f(x0 ⊗ · · · ⊗ xi ⊗ a ⊗ xi+1 ⊗ · · · ⊗ xn)
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Step 1: A relation between µA and Hdetπ
Step 2: A relation between ϕη and Hdetη∗

Step 3: δa⇀π = {−, ā}⇀π

Step 1: (idA −µA)(a) = Hdetπ([−, a])

Key fact 1

[−, a]↷ H∗(A ,Ae) “ = ” δa ⇀ H∗(A ,Ae).

(µA (a) − a)π =[π, a]
Key fact 1

= δa ⇀ π,

Hdetπ(δa)π =ϕ
−1(δa)π = (1H ⇀ ϕ(S−1δa) + δa ⇀ ϕ(1H))π

= − (δa ⇀ π)

Proposition 4.1

(idA −µA )(a) = Hdetπ(δa).
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Step 1: A relation between µA and Hdetπ
Step 2: A relation between ϕη and Hdetη∗

Step 3: δa⇀π = {−, ā}⇀π

Step 2: ϕη ←→ Hdetη∗

Key fact 2

Let R(:= grA) be a d-dim affine smooth commutative algebra.

Hp+q(R ,R) ⊗ Hq(R ,R)

⟳HKR ≀

��

−∩− // Hp(R ,R)

HKR ≀

��

Ωp+q(R) ⊗ Ωq(R)∗
ι−(−)

// Ωp(R)

.

where ι−(−) is induced by the contraction map.

If H is cocommutative and H ↷ R, then the morphisms above are
H-morphisms.
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Step 1: A relation between µA and Hdetπ
Step 2: A relation between ϕη and Hdetη∗

Step 3: δa⇀π = {−, ā}⇀π

ι−(−) : Ω
p+q(R) ⊗ Derq(R)→ Ωp(R) is the map ω ⊗ F 7→ ιF(ω)

induced by the contraction map, which is an H-morphism.

If ω = a0 da1 ∧ da2 ∧ · · · ∧ dap+q ∈ Ω
p+q(R),

ιF(ω)

=
∑
σ∈Sp,q

sgn(σ)a0F(aσ(1) ∧ · · · ∧ aσ(p)) daσ(p+1) ∧ · · · ∧ daσ(p+q).

The H-module structure of Ωn(R) is given by

h ⇀ (a0 da1 ∧ · · · ∧ dan)

:=
∑

(h1 ⇀ a0) d(h2 ⇀ a1) ∧ · · · ∧ d(hn+1 ⇀ an).
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Step 1: A relation between µA and Hdetπ
Step 2: A relation between ϕη and Hdetη∗

Step 3: δa⇀π = {−, ā}⇀π

The cap product ∩ : Hp+q(A ,M) ⊗ Hq(A ,N) −→ Hp(A ,M ⊗A N)
is the map defined on the level of Hochschild complexes by

Cp+q(A ,M) ⊗ Cq(A ,N) −→ Cp(A ,M ⊗A N)

(m ⊗ a1 ⊗ · · · ⊗ ap+q) ∩ f := (m ⊗ f(a1, . . . , aq)) ⊗ aq+1 ⊗ · · · ⊗ ap+q.

The cap product ∩ is also an H-module morphism⚵

h ⇀
(
(m ⊗ a1 ⊗ · · · ⊗ ap+q) ∩ f

)
=
∑
(h)

(h1 ⇀
(
m ⊗ a1 ⊗ · · · ⊗ ap+q)

)
∩ (h2 ⇀ f).
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Step 1: A relation between µA and Hdetπ
Step 2: A relation between ϕη and Hdetη∗

Step 3: δa⇀π = {−, ā}⇀π

Recall the HKR theorem. If R is smooth, H is cocommutative, then

Ωn(R)
εn
� Hn(R ,R)

is an H-module isomorphism, where εn given by

εn(a0da1 ∧ · · · ∧ dan) :=
∑
σ∈Sn

sgn(σ)(a0 ⊗ aσ(1) ⊗ · · · ⊗ aσ(n))

where z denotes the image of z ∈ Zn(C•(R ,R)) in Hn(R ,R).
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Step 1: A relation between µA and Hdetπ
Step 2: A relation between ϕη and Hdetη∗

Step 3: δa⇀π = {−, ā}⇀π

Suppose R is smooth. Then

Hn(R ,R)
ϱn

� Dern(R) is an H-module isomorphism, where

f̄ 7→ ϱn (̄f) : b1 ∧ · · · ∧ bn 7→
∑
σ∈Sn

sgn(σ)f(bσ(1), . . . , bσ(n))

for any f ∈ Z(Cn(R ,R)) and b1, · · · , bn ∈ R.
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Step 1: A relation between µA and Hdetπ
Step 2: A relation between ϕη and Hdetη∗

Step 3: δa⇀π = {−, ā}⇀π

Homo. determinants of Hopf actions on comm. CYs

ExtdRe (R ,Re) � ExtdRe (R ,R) � Derd(R) � HomR(Ω
d(R),R) = Rη∗

are H-module isomorphisms.

The generator of Hd(R ,R) � Ωd(R) is still denoted by η, and
the generator of Hd(R ,R) � HomR(Ω

d(R),R) is still denoted η∗.
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Homo. determinants of Hopf actions on comm. CYs

ExtdRe (R ,Re) � ExtdRe (R ,R) � Derd(R) � HomR(Ω
d(R),R) = Rη∗

are H-module isomorphisms.

The generator of Hd(R ,R) � Ωd(R) is still denoted by η, and
the generator of Hd(R ,R) � HomR(Ω

d(R),R) is still denoted η∗.
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Step 1: A relation between µA and Hdetπ
Step 2: A relation between ϕη and Hdetη∗

Step 3: δa⇀π = {−, ā}⇀π

The homological determinant can be computed by using the
generator η∗ of Hd(R ,R) � HomR(Ω

d(R),R) = Rη∗: ∀ h ∈ H,

h ⇀ η∗ = ϕ(h)η∗ =
∑
(h)

(h1 ⇀ Hdetη∗(Sh2))η
∗

Proposition 4.2
Let R be a smooth commutative algebra with trivial canonical
bundle Ωd(R) = Rη. Then, the homological determinant of a
cocommutative Hopf algebra H acting on R is given by

Hdetη∗(h) = η∗(h ⇀ η), ∀ h ∈ H.
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The homological determinant can be computed by using the
generator η∗ of Hd(R ,R) � HomR(Ω

d(R),R) = Rη∗: ∀ h ∈ H,

h ⇀ η∗ = ϕ(h)η∗ =
∑
(h)

(h1 ⇀ Hdetη∗(Sh2))η
∗

Proposition 4.2
Let R be a smooth commutative algebra with trivial canonical
bundle Ωd(R) = Rη. Then, the homological determinant of a
cocommutative Hopf algebra H acting on R is given by

Hdetη∗(h) = η∗(h ⇀ η), ∀ h ∈ H.

Q. -S. Wu (壇君噙) Skew Calabi-Yau algebras and Poisson algebras via filtered deformations



Skew Calabi-Yau algebras
Filtered deformations

Homological determinants
Main results
Application

Step 1: A relation between µA and Hdetπ
Step 2: A relation between ϕη and Hdetη∗

Step 3: δa⇀π = {−, ā}⇀π

By using the Key fact 2 that

Hd(R ,R) ⊗ Hd(R ,R)

⟳HKR ≀

��

−∩− // H0(R ,R)

HKR =
��

Ωd(R) ⊗ Ωd(R)∗
ι−(−)

// Ω0(R)

is a commutative diagram of H-morphisms,

(h ⇀ η) ∩ η∗ = ιη∗(h ⇀ η) = η∗(h ⇀ η) = Hdetη∗(h)
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Step 1: A relation between µA and Hdetπ
Step 2: A relation between ϕη and Hdetη∗

Step 3: δa⇀π = {−, ā}⇀π

Lemma. For any δ ∈ Der(R), a ∈ R and I = {i1 < i2 < · · · < id} ∈ S,

δ(a) dxI =
d∑

j=1

(−1)j−1δ(xij ) da ∧ dxi1 ∧ dxi2 ∧ · · · d̂xij · · · ∧ dxid .

The proof follows by applying the contraction map
ιδ : Ω

d+1(R)→ Ωd(R) to 0 = da ∧ dxi1 ∧ · · · ∧ dxid .
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Step 1: A relation between µA and Hdetπ
Step 2: A relation between ϕη and Hdetη∗

Step 3: δa⇀π = {−, ā}⇀π

Hdetη∗(δ) = η
∗(δ ⇀ η)

=
(∑

I

(δaI) dxi1 ∧ · · · ∧ dxid +
∑
I,s

aI dxi1 ∧ · · · ∧ dδ(xis ) ∧ · · · ∧ dxid

)
∩ η∗

=η∗
(∑

I

(δaI) dxi1 ∧ · · · ∧ dxid +
∑
I,s

aI dxi1 ∧ · · · ∧ dδ(xis ) ∧ · · · ∧ dxid

)
=η∗(Lδ(η)) =

Lδ(η)
η

= divη(δ).

Proposition 4.3

ϕη(r) = Hdetη∗({r ,−}), for any r ∈ R
(
= LHr (η)/η

)
.
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Step 1: A relation between µA and Hdetπ
Step 2: A relation between ϕη and Hdetη∗

Step 3: δa⇀π = {−, ā}⇀π

Step 3: Hdetπ(δa) = Hdetη∗({−, ā})

Let Q• → Ae A → 0 be a f.g. filt-projective resolution, such that
grQ• → (grAe) grA → 0 is a f.g. graded-projective resolution.

Note that grAe � (grA)e .

Let B•(A)→ A → 0 be the bar resolution of A , which is filtered.

Q•
homo. equiv.
−→ B•(A) ”⇒ ”

grQ•
homo. equiv.
−→ gr B•(A) � B•(grA).
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Step 1: A relation between µA and Hdetπ
Step 2: A relation between ϕη and Hdetη∗

Step 3: δa⇀π = {−, ā}⇀π

HOMAe (Q•,Ae)

=

��

homo. equiv.
// HOMAe (B•(A),Ae)� _

��

HomAe (Q•,Ae)
homo. equiv.

// HomAe (B•(A),Ae),

the inclusion HOMAe (B•(A),Ae) ⊆ HomAe (B•(A),Ae) is also a
homotopy equivalence.

HomgrAe (grQ•, grAe)
homo. equiv.
−→ HomgrAe (B•(grA), grAe).
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Step 1: A relation between µA and Hdetπ
Step 2: A relation between ϕη and Hdetη∗

Step 3: δa⇀π = {−, ā}⇀π

The spectral sequence of the filtered complex HOMAe (B•(A),Ae)
yields that
• ExtiAe (A ,Ae) = 0 if i , d, and
• ExtdAe (A ,Ae) = Hd(HOMAe (B•(A),Ae)) has a bounded below
filtration such that gr ExtdAe (A ,Ae) � Extd

(grA)e (grA , (grA)e)

= Hd(Hom(grA)e (B•(grA), (grA)e))

as right (grA)e-module,
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Step 1: A relation between µA and Hdetπ
Step 2: A relation between ϕη and Hdetη∗

Step 3: δa⇀π = {−, ā}⇀π

Step 3: δa⇀π = {−, ā}⇀π

Let R := grA . The following diagram is commutative.

gr HOMAe (A⊗n+2,Ae)

Ψn�

��

gr(δa⇀)
// gr HOMAe (A⊗n+2,Ae)

Ψn�

��

Hom(grA)e ((grA)⊗n+2, (grA)e)
{−,ā}⇀

// Hom(grA)e ((grA)⊗n+2, (grA)e).

π is a twisted volume ”⇒” η∗ := π is a dual basis of η.
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Step 1: A relation between µA and Hdetπ
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Step 3: δa⇀π = {−, ā}⇀π

· · · // gr HOMAe (A⊗n+2,Ae)

gr(δa⇀)

��

gr(dn+1)
∗

//

Ψn
xx

gr HOMAe (A⊗n+3,Ae) −→ · · ·

gr(δa⇀)

��

Ψn
xx

· · · −→ HomRe (R⊗n+2,Re)

{−,ā}⇀

��

(dn+1)
∗

// HomRe (R⊗n+3,Re)

{−,ā}⇀

��

// · · ·

· · · // gr HOMAe (A⊗n+2,Ae)
gr(dn+1)

∗

//

Ψn
xx

gr HOMAe (A⊗n+3,Ae)d · · ·

Ψn
xx

· · · −→ HomRe (R⊗n+2,Re)
(dn+1)

∗

// HomRe (R⊗n+3,Re) // · · ·
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Step 1: A relation between µA and Hdetπ
Step 2: A relation between ϕη and Hdetη∗

Step 3: δa⇀π = {−, ā}⇀π

Proposition 4.4

• δa⇀π = {−, ā}⇀η∗

• Hdetπ(δa) = Hdetη∗({−, ā})

Q. -S. Wu (壇君噙) Skew Calabi-Yau algebras and Poisson algebras via filtered deformations



Skew Calabi-Yau algebras
Filtered deformations

Homological determinants
Main results
Application

Step 1: A relation between µA and Hdetπ
Step 2: A relation between ϕη and Hdetη∗

Step 3: δa⇀π = {−, ā}⇀π

(idA −µA )(a)
step1
== Hdetπ(δa)

step3
== Hdetη∗({−, ā})
step2
== − ϕη(ā).

Theorem 4.5

(µA − idA )(a) = ϕη(a) ∈ (grA)n−ℓ for any a ∈ FnA.
• (µA − idA )|Fℓ−1A = 0.
• for any a ∈ FℓA, µA (a) − a = ϕη(a) ∈ F0A.
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Step 1: A relation between µA and Hdetπ
Step 2: A relation between ϕη and Hdetη∗

Step 3: δa⇀π = {−, ā}⇀π

Corollary 4.6 (Calabi-Yau←→ unimodular Poisson)

Suppose that A is generated by F1A as k-algebra.

• If the poisson structure on grA is unimodular (that is, ϕη = 0
for some volume form η), then A is Calabi-Yau.

• If U(A) ⊂ F0A(⇐ grA is a domain), then
grA is unimodular if and only if A is Calabi-Yau.
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Ring of differential operators

Let R be a d-dim affine smooth domain over a field k with
char(k) = 0.

The ring of differential operators D(R) :=
⋃

pD(R)p of R is
defined inductively by Grothendieck as D(R)−1 = 0 and

D(R)p := {f ∈ Endk (R) | fr − rf ∈ D(R)p−1 for all r ∈ R}.

Obviously, D(R) =
⋃

pD(R)p is a filtered k -algebra.
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Weyl algebra Ad(C) = D(C[x1, . . . , xd ]).

grD(R) � the symmetric R-algebra SymR(Der(R)) as graded
R-algebra.

Proposition 5.1

The poisson structure on grD(R) is unimodular.

Theorem 5.2

The ring of differential operators D(R) is a 2d-dim CY algebra.
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Thank you for your attention!

Q. -S. Wu (壇君噙) Skew Calabi-Yau algebras and Poisson algebras via filtered deformations


	Skew Calabi-Yau algebras
	Commutative Calabi-Yau algebras
	Van den Bergh duality
	CY algebras and Nakayama automorphisms

	Filtered deformations
	Lifting CY property
	Filtered deformations
	Modular derivations
	Poincaré duality on HH and PH

	Homological determinants
	Main ideas
	H-module structure on H*(A,Ae)
	Homological determinant

	Main results
	Step 1: A relation between A and `3́9`42`3܀613A``45`47`AHdet
	Step 2: A relation between  and `3́9`42`3܀613A``45`47`AHdet*
	Step 3: a   = {-,} 

	Application

