Skew Calabi-Yau algebras and Poisson algebras via filtered deformations

Q.-S. Wu (吴泉水)

(Joint with Ruipeng Zhu) School of Mathematical Sciences, Fudan University

IASM Workshop on Poisson geometry and Artin-Schelter Regular Algebras Oct. 13-18, 2024, Hangzhou

Q. -S. Wu (吴泉水) Skew Calabi-Yau algebras and Poisson algebras via filtered deformation

イロト イボト イヨト イヨト

- Homological determinants
- 4 Main results

Commutative Calabi-Yau algebras Van den Bergh duality CY algebras and Nakayama automorphisms

Smooth varieties and Calabi-Yau algebras

Let R = k[X], where X is an affine smooth variety of dimension d. Then $R^e = R \otimes R = k[X \times X]$ is (R is *homologically*) smooth, and

- $\operatorname{Tor}_{n}^{R^{e}}(R,R) = \operatorname{H}_{n}(R,R) \stackrel{HKR}{\cong} \wedge^{n} \Omega_{R|k}^{1} \cong \Omega_{R|k}^{n}$.
- $\operatorname{Ext}_{R^{e}}^{n}(R,R) = \operatorname{H}^{n}(R,R) \stackrel{HKR}{\cong} \wedge^{n} \operatorname{Der}_{k}(R) \cong (\Omega_{R|k}^{n})^{*}.$

・ロト ・ 四ト ・ ヨト ・ ヨト

Commutative Calabi-Yau algebras Van den Bergh duality CY algebras and Nakayama automorphisms

Smooth varieties and Calabi-Yau algebras

Let R = k[X], where X is an affine smooth variety of dimension d. Then $R^e = R \otimes R = k[X \times X]$ is (R is *homologically*) smooth, and

•
$$\operatorname{Tor}_{n}^{R^{e}}(R,R) = \operatorname{H}_{n}(R,R) \stackrel{HKR}{\cong} \wedge^{n} \Omega_{R|k}^{1} \cong \Omega_{R|k}^{n}.$$

•
$$\operatorname{Ext}_{R^e}^n(R,R) = \operatorname{H}^n(R,R) \stackrel{HKR}{\cong} \wedge^n \operatorname{Der}_k(R) \cong (\Omega_{R|k}^n)^*.$$

- *R* is called to have trivial canonical bundle ^{def}⇔ Ω^d_{R|k} ≅ R
 ^{def}⇔ X is a Calabi-Yau variety.
- In general, Ω^d_{R|k} is an invertible *R*-*R*-bimodule.
 (⇒ *R* has "Van den Bergh duality" of dimension *d*.)

Commutative Calabi-Yau algebras Van den Bergh duality CY algebras and Nakayama automorphisms

A fact about smooth algebras

Suppose that R is a smooth domain of dimension d. Then

- $\operatorname{Ext}_{R^e}^i(R, R^e) = \operatorname{Ext}_{R^e}^i(R, R) = 0$ for all i < d.
- $\operatorname{Ext}_{R^e}^d(R, R^e) \cong \operatorname{Ext}_{R^e}^d(R, R)$ as *R*-modules, the isomorphism is induced by the multiplication $m : R^e \to R$ (R^e -morphism).

・ロト ・ 四ト ・ ヨト ・ ヨト

Commutative Calabi-Yau algebras Van den Bergh duality CY algebras and Nakayama automorphisms

A fact about smooth algebras

Suppose that R is a smooth domain of dimension d. Then

- $\operatorname{Ext}_{R^e}^i(R, R^e) = \operatorname{Ext}_{R^e}^i(R, R) = 0$ for all i < d.
- $\operatorname{Ext}_{R^e}^d(R, R^e) \cong \operatorname{Ext}_{R^e}^d(R, R)$ as *R*-modules, the isomorphism is induced by the multiplication $m : R^e \to R$ (*R*^e-morphism).

The proof follows from:

- ker $(m: R \otimes R \rightarrow R)$ is a locally complete intersection, and
- Koszul complex for regular sequences.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Commutative Calabi-Yau algebras Van den Bergh duality CY algebras and Nakayama automorphisms

Definition (Van den Bergh duality)

An algebra A is said to have Van den Bergh duality of dim. d, if

- A is homologically smooth, that is, A^eA has a finite resolution by finitely generated projective A^e-modules;
- Extⁱ_{A^e}(A, A^e) = 0 if i ≠ d, and _AU_A := Ext^d_{A^e}(A, A^e) is an invertible A-A-bimodule.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Commutative Calabi-Yau algebras Van den Bergh duality CY algebras and Nakayama automorphisms

Definition (Van den Bergh duality)

An algebra A is said to have Van den Bergh duality of dim. d, if

- A is homologically smooth, that is, A^eA has a finite resolution by finitely generated projective A^e-modules;
- Extⁱ_{A^e}(A, A^e) = 0 if i ≠ d, and _AU_A := Ext^d_{A^e}(A, A^e) is an invertible A-A-bimodule.

In this case, there is a **twisted Poincaré duality**, i.e., for any $_AN_A$,

- $\mathrm{H}^{n}(A, N) \cong \mathrm{H}_{d-n}(A, U \otimes_{A} N);$
- $H_n(A, N) \cong H^{d-n}(A, U^{-1} \otimes_A N), U^{-1}$ is the inverse of $_A U_A$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Commutative Calabi-Yau algebras Van den Bergh duality CY algebras and Nakayama automorphisms

Definition [Gin]

A k-algebra A is called skew Calabi-Yau of dimension d, if

(i) A is homologically smooth;

(ii)
$$\operatorname{Ext}_{A^e}^i(A, A^e) \cong \begin{cases} 0, & i \neq d \\ A^{\mu_A}, & i = d \\ \operatorname{automorphism} \mu_A \in \operatorname{Aut}_k(A). \end{cases}$$
 as A^e -modules, for some

ヘロト ヘヨト ヘヨト ヘヨト

Commutative Calabi-Yau algebras Van den Bergh duality CY algebras and Nakayama automorphisms

Definition [Gin]

A k-algebra A is called skew Calabi-Yau of dimension d, if

(i) A is homologically smooth;

(ii)
$$\operatorname{Ext}_{A^{e}}^{i}(A, A^{e}) \cong \begin{cases} 0, & i \neq d \\ A^{\mu_{A}}, & i = d \\ \operatorname{automorphism} \mu_{A} \in \operatorname{Aut}_{k}(A). \end{cases}$$
 as A^{e} -modules, for some

Graded skew Calabi-Yau algebras are defined similarly in the category of graded bimodules.

V. Ginzburg, Calabi-Yau algebras, arXiv:math.AG/0612139.

・ロト ・四ト ・ヨト・ヨト・

Commutative Calabi-Yau algebras Van den Bergh duality CY algebras and Nakayama automorphisms

This μ_A is unique up to an inner automorphism; it is called a **Nakayama automorphism** of *A*.

If μ_A is inner, then A is called **Calabi-Yau**.

Q. -S. Wu (吴泉水) Skew Calabi-Yau algebras and Poisson algebras via filtered deformation

ヘロト 人間 トイヨト イヨト

Commutative Calabi-Yau algebras Van den Bergh duality CY algebras and Nakayama automorphisms

This μ_A is unique up to an inner automorphism; it is called a **Nakayama automorphism** of *A*.

If μ_A is inner, then A is called **Calabi-Yau**.

Nakayama automorphisms are important and useful invariants for genuing **skew Calabi-Yau algebras**.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Lifting CY property Filtered deformations Modular derivations Poincaré duality on HH and PH

Filtered algebras

• Let $A = \bigcup_{n \ge 0} F_n A$ be a (positively) filtered *k*-algebra.

Q. -S. Wu (吴泉水) Skew Calabi-Yau algebras and Poisson algebras via filtered deformat

ヘロト 人間 ト 人間 ト 人間 トー

크

Lifting CY property Filtered deformations Modular derivations Poincaré duality on HH and PH

Filtered algebras

- Let $A = \bigcup_{n \ge 0} F_n A$ be a (positively) filtered *k*-algebra.
- gr $A := \bigoplus_{n \ge 0} F_n A / F_{n-1} A$ is the **associated graded algebra**, with the multiplication given by

$$(a + F_{n-1}A)(b + F_{m-1}A) := ab + F_{n+m-1}A$$

for any $a \in F_nA$, $b \in F_mA$.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Lifting CY property Filtered deformations Modular derivations Poincaré duality on HH and PH

Theorem. Let A be a positively filtered algebra.

- If gr A has Van den bergh duality, then so has A.
- If gr A is skew Calabi-Yau of dim d, then so is A.
 If μ_{gr A} is a Nakayama automorphism of gr A, then there is a Nakayama automorphism μ_A of A such that μ_{gr A} = gr μ_A.

イロト イポト イヨト イヨト

Lifting CY property Filtered deformations Modular derivations Poincaré duality on HH and PH

Theorem. Let A be a positively filtered algebra.

- If gr A has Van den bergh duality, then so has A.
- If gr A is skew Calabi-Yau of dim d, then so is A.
 If μ_{gr A} is a Nakayama automorphism of gr A, then there is a Nakayama automorphism μ_A of A such that μ_{gr A} = gr μ_A.

gr A is CY "
$$\Rightarrow$$
" gr $\mu_A = id_{grA}$ for some μ_A .

It may happen that gr A is Calabi-Yau, but A is not Calabi-Yau.

M. Van den Bergh, A relation between Hochschild homology and cohomology for Gorenstein rings, Proc. Amer. Math. Soc. 126 (1998), 1345–1348.

Q.-S. Wu, R.-P. Zhu, Nakayama automorphisms and modular derivations in filtered quantizations, J. Algebra 572 (2021), 381–421.

イロト イポト イヨト イヨト

Lifting CY property Filtered deformations Modular derivations Poincaré duality on HH and PH

Example. Both $A_n(\mathbb{C})$ and $\mathcal{U}(\mathfrak{g})$ are **filtered deformations** of polynomial algebras, which are Calabi-Yau. (1) $A_n(\mathbb{C})$ is Calabi-Yau of dim 2*n*. (2) Let \mathfrak{g} be an *n*-dim Lie algebra.

- U(g) is skew Calabi-Yau, with a Nakayama automorphism μ such that μ(x) = x + tr([x, -]|_g) for all x ∈ g.
- $\mathcal{U}(g)$ is Calabi-Yau $\Leftrightarrow tr(ad_g(x)) = 0$ for all $x \in g$.
- **A. Yekutieli**, The rigid dualizing complex of a universal enveloping algebra, J. Pure Appl. Alg. 150 (2000), 85–93.
 - **Q.-S. Wu, C. Zhu**, PBW deformation of Koszul Calabi-Yau algebras, Algebra and Representation Theory 16 (2013), 405-420.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

Filtered deformation

If gr A is commutative, then gr A has a **Poisson algebra** structure:

$$\{\bar{a}, \bar{b}\} := ab - ba + F_{n+m-2}A \in F_{n+m-1}A / F_{n+m-2}A$$

for any $a \in F_nA$, $b \in F_mA$. In this case, A is called a **filtered** deformation of gr A. ($[F_nA, F_mA] \subseteq F_{m+n-1}A$)

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

э.

Filtered deformation

If gr A is commutative, then gr A has a **Poisson algebra** structure:

$$\{\bar{a}, \bar{b}\} := ab - ba + F_{n+m-2}A \in F_{n+m-1}A/F_{n+m-2}A$$

for any $a \in F_nA$, $b \in F_mA$. In this case, A is called a **filtered** deformation of gr A. ($[F_nA, F_mA] \subseteq F_{m+n-1}A$)

In fact, to get a **nontrivial Poisson structure** by taking maximal integer $\ell \ge 1$ such that $[F_nA, F_mA] \subseteq F_{m+n-\ell}A$ for all m, n, and

$$\{\bar{a}, \bar{b}\} := ab - ba + F_{n+m-\ell-1}A \in F_{n+m-\ell}A/F_{n+m-\ell-1}A$$

for any $a \in F_nA$, $b \in F_mA$.

 O. Gabber, The integrability of the characteristic variety, Amer. J. Math. 103 (1981),

 445–468.

Lifting CY property Filtered deformations Modular derivations Poincaré duality on HH and PH

Hypothesis

A is a filtered deformation with gr A is a commutative d-dim affine smooth algebra with a trivial canonical bundle $\Omega^d(\text{gr } A) = (\text{gr } A)\eta$.

・ロト ・四ト ・ヨト・ヨト・

Lifting CY property Filtered deformations Modular derivations Poincaré duality on HH and PH

Hypothesis

A is a filtered deformation with gr A is a commutative d-dim affine smooth algebra with a trivial canonical bundle $\Omega^d(\text{gr } A) = (\text{gr } A)\eta$.

$$Hd(gr A, gr Ae) \cong Hd(gr A, gr A) \stackrel{HKR}{\cong} (Ωd(gr A))*$$
⇒ gr A is d-dim Calabi-Yau

 \Rightarrow A is d-dim skew Calabi-Yau with μ_A

gr A has a **modular derivation** ϕ_{η} , which will be defined in a moment.

ヘロト ヘヨト ヘヨト ヘヨト

Lifting CY property Filtered deformations Modular derivations Poincaré duality on HH and PH

Main purpose of this talk

Discuss the relation between

the **Nakayama automorphism** μ_A of A (using homo. determinants)the **modular derivation** ϕ_n of gr A

Q.-S. Wu, R.-P. Zhu, Nakayama automorphisms and modular derivations in filtered quantizations, J. Algebra 572 (2021), 381–421.

J. Luo, S.-Q. Wang and Q.-S. Wu, Poincaré duality for smooth Poisson algebras and BV structure on Poisson cohomology, J. Algebra 649 (2024), 169–211.

ヘロト 人間 トイヨト イヨト

Lifting CY property Filtered deformations Modular derivations Poincaré duality on HH and PH

Let *R* be a smooth Poisson algebra of dimension *d* with trivial canonical bundle $\Omega^d(R) = R \eta$, where η is a volume form.

Definition. The **modular derivation** of *R* with respect to η is defined as the map $\phi_{\eta} : R \to R : f \mapsto \frac{L_{H_f}(\eta)}{\eta}$, where

イロト イボト イヨト イヨト 二日

Lifting CY property Filtered deformations Modular derivations Poincaré duality on HH and PH

Let *R* be a smooth Poisson algebra of dimension *d* with trivial canonical bundle $\Omega^d(R) = R \eta$, where η is a volume form.

Definition. The **modular derivation** of *R* with respect to η is defined as the map $\phi_{\eta} : R \to R : f \mapsto \frac{L_{H_f}(\eta)}{\eta}$, where

- $H_f := \{f, -\} : R \to R$ is the Hamiltonian derivation associated to f• $\iota_{H_f} : \Omega^d(R) \to \Omega^{d-1}(R), a_0 \, da_1 \wedge \cdots \wedge da_d \mapsto$
 - $\sum_{i} (-1)^{i-1} a_0 \{f, a_i\} da_1 \wedge \cdots \wedge da_i \cdots \wedge da_d$
- The Lie-derivation $L_{H_f} = [d, \iota_{H_f}]$ is of degree 0 on $\Omega^d(R)$.
 - J. Luo, S.-Q. Wang and Q.-S. Wu, Twisted Poincaré duality between Poisson homology and Poisson cohomology, J. Algebra 442 (2015), 484–505.

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖 ショク ()

Lifting CY property Filtered deformations Modular derivations Poincaré duality on HH and PH

 $\phi_{\eta}: R \rightarrow R$ is both a derivation and Poisson derivation.

Example. Let $R = k[x_1, x_2, \dots, x_d]$ be a polynomial Poisson algebra with Poisson bracket $\{-, -\}$. Then $\Omega^1(R) = \bigoplus_{i=1}^d R \, dx_i$.

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・ 日

Lifting CY property Filtered deformations Modular derivations Poincaré duality on HH and PH

 $\phi_{\eta}: R \rightarrow R$ is both a derivation and Poisson derivation.

Example. Let $R = k[x_1, x_2, \dots, x_d]$ be a polynomial Poisson algebra with Poisson bracket $\{-, -\}$. Then $\Omega^1(R) = \bigoplus_{i=1}^d R \, dx_i$.

 $\Omega^d(R) = R\eta$ where $\eta = dx_1 \wedge dx_2 \wedge \cdots \wedge dx_d$ is a volume form. The **modular derivation** ϕ_η is given by

$$\phi_{\eta}(f) = \sum_{j=1}^{d} \frac{\partial \{f, x_j\}}{\partial x_j}, \forall f \in \mathbf{R}.$$

J. Luo, S.-Q. Wang and Q.-S. Wu, Twisted Poincaré duality between Poisson homology and Poisson cohomology, J. Algebra 442 (2015), 484–505.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Lifting CY property Filtered deformations Modular derivations Poincaré duality on HH and PH

Let $\{dx_i; (dx_i)^*\}_{i=1,2,\dots,r}$ be a **dual basis** of the finitely generated projective module $\Omega^1(R)$. In general, $r \ge d$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Let $\{dx_i; (dx_i)^*\}_{i=1,2,\dots,r}$ be a **dual basis** of the finitely generated projective module $\Omega^1(R)$. In general, $r \ge d$.

Let $S = \{I = \{i_1 < i_2 < \dots < i_d\} \mid 1 \le i_1, i_d \le r\}$. If r = d, the set *S* has only one element $I = \{1 < 2 < \dots < d\}$.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Let $\{dx_i; (dx_i)^*\}_{i=1,2,\dots,r}$ be a **dual basis** of the finitely generated projective module $\Omega^1(R)$. In general, $r \ge d$.

Let $S = \{I = \{i_1 < i_2 < \dots < i_d\} \mid 1 \le i_1, i_d \le r\}$. If r = d, the set S has only one element $I = \{1 < 2 < \dots < d\}$.

To simplify the notation, for any $I = \{i_1 < i_2 < \cdots < i_d\} \in S$, let

 $\mathrm{d} x_l := \mathrm{d} x_{i_1} \wedge \mathrm{d} x_{i_2} \wedge \cdots \wedge \mathrm{d} x_{i_d} \text{ and } \mathrm{d} x_l^* := \mathrm{d} x_{i_1}^* \wedge \mathrm{d} x_{i_2}^* \wedge \cdots \wedge \mathrm{d} x_{i_d}^*.$

Then $\{dx_l, dx_l^*\}_{l \in S}$ is a **dual basis** for the projective module $\Omega^d(R)$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Lifting CY property Filtered deformations Modular derivations Poincaré duality on HH and PH

Since (η, η^*) is a dual basis of $\Omega^d(R)$,

$$dx_{l} = \eta^{*}(dx_{l}) \eta = b_{l} \eta, \qquad b_{l} := \eta^{*}(dx_{l}),$$

$$dx_{l}^{*} = dx_{l}^{*}(\eta) \eta^{*} = a_{l} \eta^{*}, \qquad a_{l} := dx_{l}^{*}(\eta).$$

ヘロト 人間 ト 人間 ト 人間 トー

æ

Since (η, η^*) is a dual basis of $\Omega^d(R)$,

$$dx_{l} = \eta^{*}(dx_{l}) \eta = b_{l} \eta,$$
 $b_{l} := \eta^{*}(dx_{l}) dx_{l}^{*} = dx_{l}^{*}(\eta) \eta^{*} = a_{l} \eta^{*},$ $a_{l} := dx_{l}^{*}(\eta).$

Similarly, since $\{dx_l, dx_i^*\}_{l \in S}$ is a dual basis of $\Omega^d(R)$,

$$\eta = \sum_{l \in S} \mathrm{d} x_l^*(\eta) \, \mathrm{d} x_l = \sum_{l \in S} a_l \, \mathrm{d} x_l,$$
$$\eta^* = \sum_{l \in S} \eta^*(\mathrm{d} x_l) \, \mathrm{d} x_l^* = \sum_{l \in S} b_l \, \mathrm{d} x_l^*$$

J. Luo, S.-Q. Wang and Q.-S. Wu, Poincaré duality for smooth Poisson algebras and BV structure on Poisson cohomology, J. Algebra 649 (2024), 169-211.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Lifting CY property Filtered deformations Modular derivations Poincaré duality on HH and PH

The **modular derivation** of *R* with respect to the volume form η is described by the dual basis of $\Omega^d(R)$.

ヘロト ヘヨト ヘヨト ヘヨト

Lifting CY property Filtered deformations Modular derivations Poincaré duality on HH and PH

The **modular derivation** of *R* with respect to the volume form η is described by the dual basis of $\Omega^d(R)$.

Theorem. For any $a \in R$,

$$\phi_{\eta}(\boldsymbol{a}) = \sum_{1 \leq i \leq r} \mathrm{d} x_{i}^{*}(\{\boldsymbol{a}, \boldsymbol{x}_{i}\}) + \sum_{l \in S} \{\boldsymbol{a}, \boldsymbol{a}_{l}\} \boldsymbol{b}_{l},$$

where $a_l = dx_l^*(\eta)$ and $b_l = \eta^*(dx_l)$.

J. Luo, S.-Q. Wang and Q.-S. Wu, Poincaré duality for smooth Poisson algebras and BV structure on Poisson cohomology, J. Algebra 649 (2024), 169–211.

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Lifting CY property Filtered deformations Modular derivations Poincaré duality on HH and PH

Theorem. Let *R* be a Poisson algebra which is smooth with trivial canonical bundle $\Omega^d(R) = R\eta$.

- The modular derivation ϕ_{η} ; $R \rightarrow R$ is a Poisson derivation.
- For any Poisson *R*-module *M*, the *R*-module M with
 {*x*, *a*}_{φ_η} := {*x*, *a*} + φ_η(*a*)*x* is a Poisson *R*-module, which is
 denoted by *M*_{φ_η} (the twisted Poisson module by φ_η).
- There is a twisted Poincaré duality for Poisson (co)homology:

 $\operatorname{PH}^{n}(R, M) \cong \operatorname{PH}_{d-n}(R, M_{\phi_{n}}).$

J. Luo, S.-Q. Wang and Q.-S. Wu, Poincaré duality for smooth Poisson algebras and BV structure on Poisson cohomology, J. Algebra 649 (2024), 169–211.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Skew Calabi-Yau algebras Filtered deformations Homological determinants Main results Application Main ideas H-module structure on Homological determina

Suppose $\operatorname{Ext}^{d}(A, A^{e}) = A\pi \cong A^{\mu_{A}}$, such that, for any $a \in A$ $\pi a = \mu_{A}(a)\pi$. π is called a μ_{A} -twisted volume of A.

$$(\mu_A(a)-a)\pi = \pi a - a\pi = [\pi,a] (\forall a \in A)$$

Q. -S. Wu (吴泉水) Skew Calabi-Yau algebras and Poisson algebras via filtered deformat

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

э.

Skew Calabi-Yau algebras Filtered deformations Homological determinants Main ideas H-module structure or Homological determin Application

Suppose $\operatorname{Ext}^{d}(A, A^{e}) = A\pi \cong A^{\mu_{A}}$, such that, for any $a \in A$ $\pi a = \mu_{A}(a)\pi$. π is called a μ_{A} -twisted volume of A.

$$(\mu_A(a)-a)\pi = \pi a - a\pi = [\pi,a] (\forall a \in A)$$

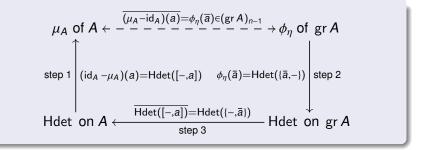
[-, a] : M → M, x ↦ xa - ax for any _AM_A.
δ_a := [-, a] : A → A, which is a derivation on A.
H_ā = {ā, -} : gr A → gr A is the Hamiltonian derivation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Main ideas H-module structure on $H^*(A, A^e)$ Homological determinant

Main ideas

Using **homological determinant** as a bridge to give a connection between Nakayama auto. μ_A of A and modular deri. ϕ_η of gr A.



Q. -S. Wu (吴泉水) Skew Calabi-Yau algebras and Poisson algebras via filtered deformation

Skew Calabi-Yau algebras Filtered deformations Homological determinants Main results Application Main ideas H-module struu Homological de

Main ideas *H*-module structure on H*(A, A^e) Homological determinant

Let H be a Hopf algebra acting on an algebra A.

$H \curvearrowright A \Rightarrow H \curvearrowright C^*(A, A^e) \Rightarrow H \curvearrowright H^*(A, A^e)$

There is a left H-module structure on the Hochschild cochain

$$\cdots \longrightarrow C^{n-1}(A, A^e) \longrightarrow C^n(A, A^e) \longrightarrow C^{n+1}(A, A^e) \longrightarrow \cdots$$

イロト イヨト イヨト イヨト

э.

Skew Calabi-Yau algebras Filtered deformations Homological determinants Main ideas *H*-module structure on H*(*A*, *A*^e) Homological determinant Apolication

Let *H* be a Hopf algebra acting on an algebra *A*.

$$H \curvearrowright A \Rightarrow H \curvearrowright C^*(A, A^e) \Rightarrow H \curvearrowright H^*(A, A^e)$$

There is a left H-module structure on the Hochschild cochain

$$\cdots \longrightarrow C^{n-1}(A, A^e) \longrightarrow C^n(A, A^e) \longrightarrow C^{n+1}(A, A^e) \longrightarrow \cdots$$

For any $f \in C^n(A, A^e)$, any $h \in H$ and $a_1, \ldots, a_n \in A$,

$$(h \rightarrow f)(a_1, \ldots, a_n) = \sum_{(h)} (S^2 h_{n+2} \otimes h_1) \cdot f(Sh_{n+1} \cdot a_1, \ldots, Sh_2 \cdot a_n)$$

 A^e is viewed as a left $H \otimes H$ -module: $(g \otimes h)(a \otimes b) = (g \cdot a \otimes h \cdot b)$.

Skew Calabi-Yau algebras Filtered deformations Homological determinants Main ideas H-module structure on H*(A, A*) Homological determinant

General action:

$$(h \rightarrow f)(a_1,\ldots,a_n) = \sum_{(h)} (S^2 h_{n+2} \otimes h_1) \cdot f(Sh_{n+1} \cdot a_1,\ldots,Sh_2 \cdot a_n)$$

Group action:
$$(g \rightarrow f)(a_1, \ldots, a_n) = (g \otimes g) \cdot f(g^{-1} \cdot a_1, \ldots, g^{-1} \cdot a_n)$$

・ロト ・日下・日下・日下・

а.

Skew Calabi-Yau algebras Filtered deformations Homological determinants Main ideas H-module structure on H*(A, A*) Homological determinant

General action:

$$(h \rightarrow f)(a_1, \ldots, a_n) = \sum_{(h)} (S^2 h_{n+2} \otimes h_1) \cdot f(Sh_{n+1} \cdot a_1, \ldots, Sh_2 \cdot a_n)$$

Group action:
$$(g \rightarrow f)(a_1, \ldots, a_n) = (g \otimes g) \cdot f(g^{-1} \cdot a_1, \ldots, g^{-1} \cdot a_n)$$

Li (derivation) action:

$$(\delta \rightarrow f)(a_1, \dots, a_n) = (\delta \otimes 1 + 1 \otimes \delta) \cdot f(a_1, \dots, a_n) + \sum_{i=1}^n f(a_1, \dots, -\delta(a_i), \dots, a_n)$$

ヘロト ヘ部ト ヘヨト ヘヨト

Ð.

Skew Calabi-Yau algebras Filtered deformations Homological determinants Main ideas H-module structure on H*(A, A^e) Homological determinant Application

Suppose μ_A -twisted volume of A. Then $\pi a = \mu_A(a)\pi$, $\forall a \in A$.

 $(\mathsf{Ext}^d(\mathsf{A},\mathsf{A}^e)=\mathsf{A}\pi\cong\mathsf{A}^{\mu_{\mathsf{A}}})$

・ロト ・ 四ト ・ ヨト ・ ヨト ・

э

Skew Calabi-Yau algebras Filtered deformations Homological determinants Main ideas H-module structure on H*(A, A^e) Homological determinant Application

Suppose μ_A -twisted volume of A. Then $\pi a = \mu_A(a)\pi$, $\forall a \in A$.

 $(\mathsf{Ext}^d(\mathsf{A},\mathsf{A}^e)=\mathsf{A}\pi\cong\mathsf{A}^{\mu_{\mathsf{A}}})$

For any $h \in H$, there is a unique $a \in A$ such that $h \rightarrow \pi = a \pi \in A \pi = \text{Ext}^{d}(A, A^{e}).$

Let $\phi : H \to A$ be the map such that $h \to \pi = \phi(h)\pi \ (\in A\pi).$

Main ideas *H*-module structure on H*(A, A^e) Homological determinant

ϕ is convolution invertible

By the *H*-action on $\text{Ext}^d(A, A^e)$, $\phi(gh)\pi = g \rightharpoonup (\phi(h)\pi)$, and

$$\phi(gh) = \sum_{(g)} (g_1
ightarrow \phi(h)) \phi(g_2).$$

・ロト ・四ト ・ヨト・ヨト・

э

Main ideas *H*-module structure on H*(A, A^e) Homological determinant

ϕ is convolution invertible

By the *H*-action on $\text{Ext}^d(A, A^e)$, $\phi(gh)\pi = g \rightharpoonup (\phi(h)\pi)$, and

$$\phi(gh) = \sum_{(g)} (g_1
ightarrow \phi(h)) \phi(g_2).$$

In fact, $\phi \in \text{Hom}_k(H, A)$ is convolution invertible, with the inverse

$$\phi^{-1}(h) = \sum h_2 \rightharpoonup \phi(S^{-1}h_1).$$

イロト イヨト イヨト イヨト

э.

Main ideas H-module structure on $H^*(A, A^e)$ Homological determinant

Definition

The **homological determinant** $Hdet = Hdet_{\pi}$ of the Hopf action H on A is defined to be $\phi^{-1} \in Hom_k(H, A)$, that is,

$$\mathsf{Hdet}(h) := \phi^{-1}(h) = \sum h_2 \rightharpoonup \phi(S^{-1}h_1).$$

ヘロト 人間 ト 人間 ト 人間 トー

Skew Calabi-Yau algebras Filtered deformations Homological determinants Main results Homological det Homological det

Main ideas *H*-module structure on H^{*}(A, A^e) Homological determinant

Definition

The **homological determinant** $Hdet = Hdet_{\pi}$ of the Hopf action H on A is defined to be $\phi^{-1} \in Hom_k(H, A)$, that is,

$$\mathsf{Hdet}(h) := \phi^{-1}(h) = \sum h_2
ightarrow \phi(S^{-1}h_1).$$

If *A* is connected graded skew CY, Hdet coincides with the definition by Jørgensen-Zhang; Kirkman-Kuzmanovich-Zhang. Hdet agrees with the definition by Meur (2019).

- **P. Le Meur**, Patrick Smash products of Calabi-Yau algebras by Hopf algebras, J. Noncommut. Geom. 13 (2019), 887–961.
- **Q.-S. Wu, R.-P. Zhu**, Nakayama automorphisms and modular derivations in filtered quantizations, J. Algebra 572 (2021), 381-421.

ヘロト 人間 ト 人間 ト 人間 トー

Skew Calabi-Yau algebras Filtered deformations Homological determinants Main results Application Step 1: A relation between μ_A and Hdet_{π} Step 2: A relation between ϕ_η and Hdet_{η^*} $Step 3: <math>\overline{\partial_a \to \pi} = (-, \overline{a}) \to \overline{\pi}$ Step 1: (id_A $-\mu_A$)(<u>a</u>) = Hdet_{π}([-, <u>a</u>])</sub>

Given $_AM_A$, consider the **commutator action** $a \in A$ on M

 $[-, a] : M \to M, x \mapsto xa - ax$ $([-, a] \frown x = xa - ax)$

$$(\mu_A(a) - a)\pi = \pi a - a\pi = [\pi, a] \ (\forall \ a \in A)$$

 $(\pi \in \operatorname{Ext}^d(A, A^e) = A\pi \cong A^{\mu_A})$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Skew Calabi-Yau algebras Filtered deformations Homological determinants Main results Application Step 1: A relation between μ_A and Hdet_{π} Step 2: A relation between ϕ_η and Hdet_{η^*} $Step 3: <math>\overline{\delta_a \to \pi} = (-, \overline{a}) \to \overline{\pi}$ Step 1: (id_A $-\mu_A$)(<u>a</u>) = Hdet_{π}([-, a])</sub>

Given $_AM_A$, consider the **commutator action** $a \in A$ on M

 $[-, a] : M \to M, x \mapsto xa - ax$ $([-, a] \frown x = xa - ax)$

$$(\mu_A(a) - a)\pi = \pi a - a\pi = [\pi, a] \ (\forall \ a \in A)$$

 $(\pi \in \operatorname{Ext}^d(A, A^e) = A\pi \cong A^{\mu_A})$

Consider $\delta_a := [-, a] : A \to A$, which is a derivation on A. Let $H = \mathcal{U}(k\delta_a) = k[\delta_a]$, which acts on A by $\delta_a \to x = [x, a]$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Skew Calabi-Yau algebras Filtered deformations Homological determinants

Main results

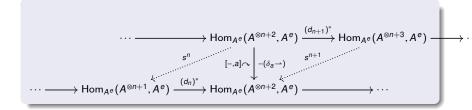
Application

Step 1: A relation between μ_A and Hdet_{π} Step 2: A relation between ϕ_η and Hdet_{η^*} Step 3: $\overline{\delta_a \rightarrow \pi} = \{-, \overline{a}\} \rightarrow \overline{\pi}$

Step 1:
$$(\operatorname{id}_A - \mu_A)(a) = \operatorname{\mathsf{Hdet}}_\pi([-,a])$$

Key fact 1

$$[-,a] \curvearrowright \operatorname{H}^*(A, A^e) \quad ``= " \quad \delta_a \rightharpoonup \operatorname{H}^*(A, A^e).$$



$$s^n(f)(x_0\otimes\cdots\otimes x_n)=\sum_{i=0}^{n-1}(-1)^if(x_0\otimes\cdots\otimes x_i\otimes a\otimes x_{i+1}\otimes\cdots\otimes x_n)$$

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Step 1: A relation between μ_A and Hdet_{π} Step 2: A relation between ϕ_η and Hdet_{η^*} Step 3: $\overline{\delta_a \rightarrow \pi} = \{-, \overline{a}\} \rightarrow \overline{\pi}$

Application

Step 1: $(\operatorname{id}_A - \mu_A)(a) = \operatorname{Hdet}_{\pi}([-, a])$

Key fact 1

$$[-,a] \curvearrowright \mathrm{H}^*(A,A^e) \quad ``= `` \delta_a \rightharpoonup \mathrm{H}^*(A,A^e).$$

$$(\mu_A(a) - a)\pi = [\pi, a] \stackrel{\text{Key fact 1}}{=} \delta_a \rightharpoonup \pi,$$

$$\mathsf{Hdet}_{\pi}(\delta_a)\pi = \phi^{-1}(\delta_a)\pi = (\mathbf{1}_H \rightharpoonup \phi(S^{-1}\delta_a) + \delta_a \rightharpoonup \phi(\mathbf{1}_H))\pi$$

$$= -(\delta_a \rightharpoonup \pi)$$

・ロト ・ 日下 ・ 日下 ・ 日下

Application

Step 1: A relation between μ_A and Hdet_{π} Step 2: A relation between ϕ_η and Hdet_{η^*} Step 3: $\overline{\delta_a \rightarrow \pi} = \{-, \overline{a}\} \rightarrow \overline{\pi}$

Step 1: $(\operatorname{id}_A - \mu_A)(a) = \operatorname{Hdet}_{\pi}([-, a])$

Key fact 1

$$[-,a] \curvearrowright \mathrm{H}^*(A, A^e) \quad ``= " \quad \delta_a \rightharpoonup \mathrm{H}^*(A, A^e).$$

$$(\mu_A(a) - a)\pi = [\pi, a] \stackrel{\text{Key fact } 1}{=} \delta_a \rightharpoonup \pi,$$

$$\mathsf{Hdet}_{\pi}(\delta_a)\pi = \phi^{-1}(\delta_a)\pi = (\mathbf{1}_H \rightharpoonup \phi(S^{-1}\delta_a) + \delta_a \rightharpoonup \phi(\mathbf{1}_H))\pi$$

$$= -(\delta_a \rightharpoonup \pi)$$

Proposition 4.1

 $(\mathrm{id}_A - \mu_A)(a) = \mathrm{Hdet}_{\pi}(\delta_a).$

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Step 1: A relation between μ_A and Hdet_{π} Step 2: A relation between ϕ_η and Hdet_{η^*} Step 3: $\delta_a \rightarrow \pi = \{-, \bar{a}\} \rightarrow \pi$

Step 2: $\phi_{\eta} \longleftrightarrow \operatorname{Hdet}_{\eta^*}$

Key fact 2

Let $R(:= \operatorname{gr} A)$ be a *d*-dim affine smooth commutative algebra.

where $\iota_{-}(-)$ is induced by the **contraction map**.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

 Skew Calabi-Yau algebras

 Filtered deformations

 Homological determinants

 Main results

 Application

Step 1: A relation between μ_A and Hdet_{π} Step 2: A relation between ϕ_η and Hdet_{η^*} Step 3: $\overline{\delta_a \rightarrow \pi} = \{-, \overline{a}\} \rightarrow \overline{\pi}$

Step 2: $\phi_{\eta} \longleftrightarrow \operatorname{Hdet}_{\eta^*}$

Key fact 2

Let $R(:= \operatorname{gr} A)$ be a *d*-dim affine smooth commutative algebra.

where $\iota_{-}(-)$ is induced by the **contraction map**.

If *H* is cocommutative and $H \sim R$, then the morphisms above are *H*-morphisms.

イロト イボト イヨト イヨト

Step 1: A relation between μ_A and $Hdet_{\pi}$ Step 2: A relation between ϕ_{η} and $Hdet_{\eta^*}$ Step 3: $\overline{\delta_a \rightarrow \pi} = \{-, \overline{a}\} \rightarrow \overline{\pi}$

$\iota_{-}(-): \Omega^{p+q}(R) \otimes \text{Der}^{q}(R) \to \Omega^{p}(R)$ is the map $\omega \otimes F \mapsto \iota_{F}(\omega)$ induced by the **contraction map**, which is an *H*-morphism.

Q. -S. Wu (吴泉水) Skew Calabi-Yau algebras and Poisson algebras via filtered deformation

ヘロト 人間 ト 人間 ト 人間 トー

Step 1: A relation between μ_A and Hdet_{π} Step 2: A relation between ϕ_η and Hdet_{η^*} Step 3: $\delta_a \rightarrow \pi = \{-, \bar{a}\} \rightarrow \pi$

 $\iota_{-}(-): \Omega^{p+q}(R) \otimes \text{Der}^{q}(R) \to \Omega^{p}(R)$ is the map $\omega \otimes F \mapsto \iota_{F}(\omega)$ induced by the **contraction map**, which is an *H*-morphism.

If
$$\omega = a_0 \, \mathrm{d}a_1 \wedge \mathrm{d}a_2 \wedge \cdots \wedge \mathrm{d}a_{p+q} \in \Omega^{p+q}(R),$$

 $\iota_F(\omega) = \sum_{\sigma \in S_{p,q}} \mathrm{sgn}(\sigma) a_0 F(a_{\sigma(1)} \wedge \cdots \wedge a_{\sigma(p)}) \, \mathrm{d}a_{\sigma(p+1)} \wedge \cdots \wedge \mathrm{d}a_{\sigma(p+q)}.$

The *H*-module structure of $\Omega^n(R)$ is given by

$$h \rightarrow (a_0 \, \mathrm{d} a_1 \wedge \cdots \wedge \mathrm{d} a_n)$$

:= $\sum (h_1 \rightarrow a_0) \, \mathrm{d}(h_2 \rightarrow a_1) \wedge \cdots \wedge \mathrm{d}(h_{n+1} \rightarrow a_n).$

 Skew Calabi-Yau algebras
 Step 1: A relation between μ_A and $Hdet_{\pi}$

 Filtered deformations
 Step 2: A relation between ϕ_η and $Hdet_{\eta^*}$

 Main results
 Step 3: $\delta_a \rightarrow \pi = \{-, \bar{a}\} \rightarrow \bar{\pi}$

The **cap product** \cap : $H_{p+q}(A, M) \otimes H^q(A, N) \longrightarrow H_p(A, M \otimes_A N)$ is the map defined on the level of Hochschild complexes by

$$C_{\rho+q}(A, M) \otimes C^{q}(A, N) \longrightarrow C_{\rho}(A, M \otimes_{A} N)$$

 $(m \otimes a_1 \otimes \cdots \otimes a_{p+q}) \cap f := (m \otimes f(a_1, \ldots, a_q)) \otimes a_{q+1} \otimes \cdots \otimes a_{p+q}.$

The cap product \cap is also an *H*-module morphism:

$$h \rightarrow \left((m \otimes a_1 \otimes \cdots \otimes a_{p+q}) \cap f \right)$$

= $\sum_{(h)} (h_1 \rightarrow (m \otimes a_1 \otimes \cdots \otimes a_{p+q})) \cap (h_2 \rightarrow f).$

 Skew Calabi-Yau algebras
 Step 1: A relation between μ_A and $Hdet_{\pi}$

 Filtered deformations
 Step 2: A relation between ϕ_η and $Hdet_{\eta^*}$

 Main results
 Step 3: $\overline{\delta_a} \rightarrow \pi = \{-, \overline{a}\} \rightarrow \overline{\pi}$

 Application
 Application

Recall the **HKR theorem**. If *R* is smooth, *H* is cocommutative, then

 $\Omega^n(R) \stackrel{\varepsilon_n}{\cong} \mathrm{H}_n(R,R)$

is an *H*-module isomorphism, where ε_n given by

$$arepsilon_n(a_0 da_1 \wedge \cdots \wedge da_n) := \overline{\sum_{\sigma \in S_n} \operatorname{sgn}(\sigma)(a_0 \otimes a_{\sigma(1)} \otimes \cdots \otimes a_{\sigma(n)})}$$

where \overline{z} denotes the image of $z \in Z_n(C_{\bullet}(R, R))$ in $H_n(R, R)$.

・ロト ・ 四ト ・ ヨト ・ ヨト ・

 Skew Calabi-Yau algebras
 Step 1: A relation between μ_A and $Hdet_{\pi}$

 Filtered deformations
 Step 2: A relation between ϕ_η and $Hdet_{\eta^*}$

 Main results
 Step 3: $\overline{\delta_a} \rightarrow \overline{\pi} = \{-, \overline{a}\} \rightarrow \overline{\pi}$

 Application
 Application

Suppose *R* is smooth. Then

 $H^{n}(R,R) \stackrel{\varrho^{n}}{\cong} \operatorname{Der}^{n}(R) \text{ is an } H\text{-module isomorphism, where}$ $\overline{f} \mapsto \varrho^{n}(\overline{f}) : b_{1} \wedge \dots \wedge b_{n} \mapsto \sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) f(b_{\sigma(1)}, \dots, b_{\sigma(n)})$ for any $f \in Z(\operatorname{C}^{n}(R,R))$ and $b_{1}, \dots, b_{n} \in R$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Step 1: A relation between μ_A and $Hdet_{\pi}$ Step 2: A relation between ϕ_{η} and $Hdet_{\eta^*}$ Step 3: $\overline{\delta_a \rightarrow \pi} = \{-, \overline{a}\} \rightarrow \overline{\pi}$

Homo. determinants of Hopf actions on comm. CYs

 $\operatorname{Ext}_{R^e}^d(R, R^e) \cong \operatorname{Ext}_{R^e}^d(R, R) \cong \operatorname{Der}^d(R) \cong \operatorname{Hom}_R(\Omega^d(R), R) = R\eta^*$

are *H*-module isomorphisms.

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Step 1: A relation between μ_A and Hdet_{π} Step 2: A relation between ϕ_η and Hdet_{η^*} Step 3: $\delta_a \rightarrow \pi = \{-, \bar{a}\} \rightarrow \pi$

Homo. determinants of Hopf actions on comm. CYs

$$\operatorname{Ext}_{R^e}^d(R, R^e) \cong \operatorname{Ext}_{R^e}^d(R, R) \cong \operatorname{Der}^d(R) \cong \operatorname{Hom}_R(\Omega^d(R), R) = R\eta^*$$

are *H*-module isomorphisms.

The generator of $H_d(R, R) \cong \Omega^d(R)$ is still denoted by η , and the generator of $H^d(R, R) \cong Hom_R(\Omega^d(R), R)$ is still denoted η^* .

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

 Skew Calabi-Yau algebras
 Step 1: A relation between μ_A and $Hdet_{\pi}$

 Filtered deformations
 Step 2: A relation between ϕ_η and $Hdet_{\eta^*}$

 Main results
 Step 3: $\overline{\delta_a} \rightarrow \pi = \{-, \overline{a}\} \rightarrow \overline{\pi}$

The homological determinant can be computed by using the generator η^* of $\mathrm{H}^d(R, R) \cong \mathrm{Hom}_R(\Omega^d(R), R) = R\eta^*: \forall h \in H$,

$$h
ightarrow \eta^* = \phi(h)\eta^* = \sum_{(h)} (h_1
ightarrow \mathsf{Hdet}_{\eta^*}(Sh_2))\eta^*$$

・ロト ・四ト ・ヨト・ヨト・

 Skew Calabi-Yau algebras
 Step 1: A relation between μ_A and $Hdet_{\pi}$

 Filtered deformations
 Step 1: A relation between μ_A and $Hdet_{\pi}$

 Homological determinants
 Step 2: A relation between ϕ_η and $Hdet_{\eta^*}$

 Main results
 Step 3: $\delta_a \rightarrow \pi = \{-, \overline{a}\} \rightarrow \overline{\pi}$

The homological determinant can be computed by using the generator η^* of $\mathrm{H}^d(R, R) \cong \mathrm{Hom}_R(\Omega^d(R), R) = R\eta^*: \forall h \in H$,

$$h
ightarrow \eta^* = \phi(h) \eta^* = \sum_{(h)} (h_1
ightarrow \mathsf{Hdet}_{\eta^*}(\mathcal{S}h_2)) \eta^*$$

Proposition 4.2

Let R be a smooth commutative algebra with trivial canonical bundle $\Omega^d(R) = R\eta$. Then, the **homological determinant** of a cocommutative Hopf algebra H acting on R is given by

$$\operatorname{Hdet}_{\eta^*}(h) = \eta^*(h \rightharpoonup \eta), \, \forall \, h \in H.$$

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Skew Calabi-Yau algebrasStep 1: A relation between μ_A and Hdet $_{\pi}$ Filtered deformationsStep 2: A relation between ϕ_η and Hdet $_{\eta^*}$ Main resultsStep 3: $\overline{\delta_a} \rightarrow \pi = \{-, \overline{a}\} \rightarrow \overline{\pi}$

By using the Key fact 2 that

$$\begin{array}{c} \operatorname{H}_{d}(R,R) \otimes \operatorname{H}^{d}(R,R) \xrightarrow{- \cap -} \operatorname{H}_{0}(R,R) \\ \\ HKR \downarrow^{\wr} & \bigcirc & HKR \downarrow = \\ \Omega^{d}(R) \otimes \Omega^{d}(R)^{*} \xrightarrow{\iota_{-}(-)} \Omega^{0}(R) \end{array}$$

is a commutative diagram of H-morphisms,

$$(h
ightarrow \eta) \cap \eta^* = \iota_{\eta^*}(h
ightarrow \eta) = \eta^*(h
ightarrow \eta) = \mathsf{Hdet}_{\eta^*}(h)$$

・ロト ・ 四ト ・ ヨト ・ ヨト ・

크

Step 1: A relation between μ_A and Hdet_{π} Step 2: A relation between ϕ_{η} and Hdet_{η^*} Step 3: $\overline{\delta_a \rightarrow \pi} = \{-, \overline{a}\} \rightarrow \overline{\pi}$

Lemma. For any $\delta \in \text{Der}(R)$, $a \in R$ and $I = \{i_1 < i_2 < \cdots < i_d\} \in S$,

$$\delta(a) \, \mathrm{d} x_l = \sum_{j=1}^d (-1)^{j-1} \delta(x_{i_j}) \, \mathrm{d} a \wedge \mathrm{d} x_{i_1} \wedge \mathrm{d} x_{i_2} \wedge \cdots \widehat{\mathrm{d} x_{i_j}} \cdots \wedge \mathrm{d} x_{i_d}.$$

ヘロト ヘ部ト ヘヨト ヘヨト

э

 Skew Calabi-Yau algebras
 Step 1: A relation between μ_A and $Hdet_{\pi}$

 Filtered deformations
 Step 1: A relation between ϕ_η and $Hdet_{\eta^*}$

 Main results
 Step 3: $\overline{\delta_a} \rightarrow \pi = \{-, \overline{a}\} \rightarrow \overline{\pi}$

 Application
 Application

Lemma. For any $\delta \in \text{Der}(R)$, $a \in R$ and $I = \{i_1 < i_2 < \cdots < i_d\} \in S$,

$$\delta(a) \, \mathrm{d} x_{i} = \sum_{j=1}^{d} (-1)^{j-1} \delta(x_{i_{j}}) \, \mathrm{d} a \wedge \mathrm{d} x_{i_{1}} \wedge \mathrm{d} x_{i_{2}} \wedge \cdots \widehat{\mathrm{d} x_{i_{j}}} \cdots \wedge \mathrm{d} x_{i_{d}}.$$

The proof follows by applying the contraction map $\iota_{\delta}: \Omega^{d+1}(R) \to \Omega^{d}(R)$ to $0 = da \wedge dx_{i_1} \wedge \cdots \wedge dx_{i_d}$.

イロト イヨト イヨト イヨト

э

$$\begin{aligned} \mathsf{H}\mathsf{det}_{\eta^*}(\delta) &= \eta^*(\delta \rightharpoonup \eta) \\ &= \left(\sum_{l} (\delta a_l) \, \mathsf{d} x_{i_1} \wedge \cdots \wedge \mathsf{d} x_{i_d} + \sum_{l,s} a_l \, \mathsf{d} x_{i_1} \wedge \cdots \wedge \mathsf{d} \delta(x_{i_s}) \wedge \cdots \wedge \mathsf{d} x_{i_d} \right) \cap \eta^* \\ &= \eta^* \left(\sum_{l} (\delta a_l) \, \mathsf{d} x_{i_1} \wedge \cdots \wedge \mathsf{d} x_{i_d} + \sum_{l,s} a_l \, \mathsf{d} x_{i_1} \wedge \cdots \wedge \mathsf{d} \delta(x_{i_s}) \wedge \cdots \wedge \mathsf{d} x_{i_d} \right) \\ &= \eta^* (\mathcal{L}_{\delta}(\eta)) = \frac{\mathcal{L}_{\delta}(\eta)}{\eta} = \operatorname{div}_{\eta}(\delta). \end{aligned}$$

Q. -S. Wu (吴泉水) Skew Calabi-Yau algebras and Poisson algebras via filtered deformat

・ロト ・ 四ト ・ ヨト ・ ヨト

$$\begin{aligned} \mathsf{H}\mathsf{det}_{\eta^*}(\delta) &= \eta^*(\delta \rightharpoonup \eta) \\ &= \left(\sum_{l} (\delta a_l) \, \mathsf{d} x_{i_1} \land \dots \land \mathsf{d} x_{i_d} + \sum_{l,s} a_l \, \mathsf{d} x_{i_1} \land \dots \land \mathsf{d} \delta(x_{i_s}) \land \dots \land \mathsf{d} x_{i_d}\right) \cap \eta^* \\ &= \eta^* \left(\sum_{l} (\delta a_l) \, \mathsf{d} x_{i_1} \land \dots \land \mathsf{d} x_{i_d} + \sum_{l,s} a_l \, \mathsf{d} x_{i_1} \land \dots \land \mathsf{d} \delta(x_{i_s}) \land \dots \land \mathsf{d} x_{i_d}\right) \\ &= \eta^* (L_{\delta}(\eta)) = \frac{L_{\delta}(\eta)}{\eta} = \operatorname{div}_{\eta}(\delta). \end{aligned}$$

Proposition 4.3

$$\phi_\eta(r) = \mathsf{Hdet}_{\eta^*}(\{r,-\}), ext{ for any } r \in \mathsf{R} \ \left(= \mathsf{L}_{\mathsf{H}_r}(\eta)/\eta
ight).$$

イロト 不留 トイヨト イヨト

Skew Calabi-Yau algebras Filtered deformations Homological determinants Main results Application Step 3: $\overline{\delta_a \rightarrow \pi} = \{-, \bar{a}\} \rightarrow \pi$ Step 3: $\overline{Hdet}_{\pi}(\delta_a) = Hdet_{\eta^*}(\{-, \bar{a}\})$

Let $Q_{\bullet} \to {}_{A^e}A \to 0$ be a f.g. filt-projective resolution, such that gr $Q_{\bullet} \to {}_{(\text{gr}A^e)}$ gr $A \to 0$ is a f.g. graded-projective resolution. Note that gr $A^e \cong (\text{gr}A)^e$.

Let $B_{\bullet}(A) \rightarrow A \rightarrow 0$ be the bar resolution of A, which is filtered.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Skew Calabi-Yau algebras Filtered deformations Homological determinants Main results Application Step 3: $\overline{\delta_a \rightarrow \pi} = \{-, \bar{a}\} \rightarrow \pi$ Step 3: $\overline{Hdet}_{\pi}(\delta_a) = Hdet_{\eta^*}(\{-, \bar{a}\})$

Let $Q_{\bullet} \to {}_{A^e}A \to 0$ be a f.g. filt-projective resolution, such that gr $Q_{\bullet} \to {}_{(\text{gr}A^e)}$ gr $A \to 0$ is a f.g. graded-projective resolution. Note that gr $A^e \cong (\text{gr}A)^e$.

Let $B_{\bullet}(A) \rightarrow A \rightarrow 0$ be the bar resolution of A, which is filtered.

$$Q_{\bullet} \stackrel{\text{homo. equiv.}}{\longrightarrow} B_{\bullet}(A) \qquad " \Rightarrow "$$

$$\operatorname{gr} Q_{\bullet} \stackrel{\text{homo. equiv.}}{\longrightarrow} \operatorname{gr} B_{\bullet}(A) \cong B_{\bullet}(\operatorname{gr} A).$$

Q. -S. Wu (吴泉水) Skew Calabi-Yau algebras and Poisson algebras via filtered deformation

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・ ヨ

ヘロト 人間 トイヨト イヨト

Skew Calabi-Yau algebras
 Step 1: A relation between
$$\mu_A$$
 and $Hdet_{\pi}$

 Filtered deformations
 Step 2: A relation between ϕ_{η} and $Hdet_{\eta^*}$

 Main results
 Step 3: $\overline{\delta_a \rightarrow \pi} = \{-, \overline{a}\} \rightarrow \overline{\pi}$

$$\operatorname{Hom}_{\operatorname{gr} A^{e}}(\operatorname{gr} Q_{\bullet}, \operatorname{gr} A^{e}) \xrightarrow{\operatorname{hom}_{equiv.}} \underline{\operatorname{Hom}}_{\operatorname{gr} A^{e}}(\mathsf{B}_{\bullet}(\operatorname{gr} A), \operatorname{gr} A^{e}).$$

◆□▶ ◆舂▶ ◆産▶ ◆産▶ 「産」

 Skew Calabi-Yau algebras
 Step 1: A relation between μ_A and H

 Filtered deformations
 Step 2: A relation between ϕ_η and H

 Main results
 Step 3: $\overline{\delta_a \rightarrow \pi} = \{-, \bar{a}\} \rightarrow \bar{\pi}$

The spectral sequence of the filtered complex $HOM_{A^e}(B_{\bullet}(A), A^e)$ yields that

•
$$\operatorname{Ext}_{A^e}^i(A, A^e) = 0$$
 if $i \neq d$, and

• $\operatorname{Ext}_{A^e}^{d}(A, A^e) = \operatorname{H}^d(\operatorname{HOM}_{A^e}(\mathsf{B}_{\bullet}(A), A^e))$ has a bounded below filtration such that $\operatorname{gr}\operatorname{Ext}_{A^e}^{d}(A, A^e) \cong \operatorname{\underline{Ext}}_{(\operatorname{gr} A)^e}^{d}(\operatorname{gr} A, (\operatorname{gr} A)^e)$

$$= \mathrm{H}^{d}(\mathrm{Hom}_{(\mathrm{gr}\, A)^{e}}(B_{\bullet}(\mathrm{gr}\, A), (\mathrm{gr}\, A)^{e}))$$

as right $(\operatorname{gr} A)^e$ -module,

э.

Skew Calabi-Yau algebras Filtered deformations Homological determinants Main results Application Step 3: $\overline{\delta_a \rightarrow \pi} = \{-, \overline{a}\} \rightarrow \overline{\pi}$ Step 3: $\overline{\delta_a \rightarrow \pi} = \{-, \overline{a}\} \rightarrow \overline{\pi}$

Let $R := \operatorname{gr} A$. The following diagram is commutative.

$$\operatorname{gr} \operatorname{HOM}_{A^{e}}(A^{\otimes n+2}, A^{e}) \xrightarrow{\operatorname{gr}(\delta_{a} \rightarrow)} \operatorname{gr} \operatorname{HOM}_{A^{e}}(A^{\otimes n+2}, A^{e})$$

$$\cong \downarrow \Psi_{n} \qquad \cong \downarrow \Psi_{n}$$

$$\operatorname{\underline{Hom}}_{(\operatorname{gr} A)^{e}}((\operatorname{gr} A)^{\otimes n+2}, (\operatorname{gr} A)^{e}) \xrightarrow{\{-,\bar{a}\} \rightarrow} \operatorname{\underline{Hom}}_{(\operatorname{gr} A)^{e}}((\operatorname{gr} A)^{\otimes n+2}, (\operatorname{gr} A)^{e}).$$

 π is a twisted volume " \Rightarrow " $\eta^* := \overline{\pi}$ is a dual basis of η .

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・ ヨ

 Skew Calabi-Yau algebras

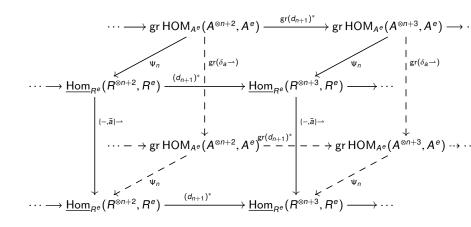
 Filtered deformations

 Homological determinants

 Main results

 Application

Step 1: A relation between μ_A and Hdet
Step 2: A relation between ϕ_{ij} and Hdet
Step 3: $\overline{\delta_a \rightarrow \pi} = \{-, \overline{a}\} \rightarrow \overline{\pi}$



Q. -S. Wu (吴泉水) Skew Calabi-Yau algebras and Poisson algebras via filtered deformation

イロト イポト イヨト イヨト 二日

Step 1: A relation between μ_A and Hdet_{π} Step 2: A relation between ϕ_η and Hdet_{η^*} Step 3: $\delta_{\underline{a}} \rightarrow \pi = \{-, \overline{a}\} \rightarrow \overline{\pi}$

Proposition 4.4

•
$$\overline{\delta_a \rightharpoonup \pi} = \{-, \bar{a}\} \rightharpoonup \eta^*$$

•
$$\mathsf{Hdet}_{\pi}(\delta_a) = \mathsf{Hdet}_{\eta^*}(\{-, \bar{a}\})$$

・ロト ・日下・日下・日下・

Step 1: A relation between μ_A and Hdet_{π} Step 2: A relation between ϕ_η and Hdet_{η^{+}} Step 3: $\delta_{a} \rightarrow \pi = \{-, \bar{a}\} \rightarrow \pi$

$$\overline{(\mathsf{id}_A - \mu_A)(a)} \stackrel{\underline{step1}}{=} \overline{\mathsf{Hdet}_{\pi}(\delta_a)}$$
$$\stackrel{\underline{step3}}{=} \mathsf{Hdet}_{\eta^*}(\{-, \bar{a}\})$$
$$\stackrel{\underline{step2}}{=} - \phi_{\eta}(\bar{a}).$$

・ロト ・ 日下 ・ 日下 ・ 日下

э.

 Skew Calabi-Yau algebras
 Step 1: A relation

 Filtered deformations
 Step 1: A relation

 Homological determinants
 Step 2: A relation

 Main results
 Step 3: $\delta_a \rightarrow \pi =$

Step 1: A relation between
$$\mu_A$$
 and Hdet _{π}
Step 2: A relation between ϕ_η and Hdet _{η^*}
Step 3: $\delta_a \rightarrow \pi = \{-, \bar{a}\} \rightarrow \pi$

$$(\operatorname{id}_{A} - \mu_{A})(a) \stackrel{step1}{=} \overline{\operatorname{Hdet}_{\pi}(\delta_{a})}$$

 $\stackrel{step3}{=} \operatorname{Hdet}_{\eta^{*}}(\{-, \bar{a}\})$
 $\stackrel{step2}{=} - \phi_{\eta}(\bar{a}).$

Theorem 4.5

$$\overline{(\mu_{\mathsf{A}} - \mathrm{id}_{\mathsf{A}})(a)} = \phi_{\eta}(\overline{a}) \in (\mathrm{gr}\,\mathsf{A})_{n-\ell}$$
 for any $a \in \mathsf{F}_n\mathsf{A}$.

•
$$(\mu_A - \mathrm{id}_A)|_{F_{\ell-1}A} = 0.$$

• for any
$$a \in F_{\ell}A$$
, $\mu_A(a) - a = \phi_{\eta}(\overline{a}) \in F_0A$.

< □ > < //>

Ξ.

Step 1: A relation between μ_A and Hdet_{π} Step 2: A relation between ϕ_η and Hdet_{η^*} Step 3: $\delta_{\underline{a}} \rightarrow \pi = \{-, \overline{a}\} \rightarrow \overline{\pi}$

Corollary 4.6 (Calabi-Yau \leftrightarrow unimodular Poisson)

Suppose that A is generated by F_1A as k-algebra.

- If the poisson structure on gr A is unimodular (that is, $\phi_{\eta} = 0$ for some volume form η), then A is Calabi-Yau.
- If U(A) ⊂ F₀A(⇐ gr A is a domain), then gr A is unimodular if and only if A is Calabi-Yau.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

Ring of differential operators

Let *R* be a *d*-dim affine smooth domain over a field *k* with char(k) = 0.

The **ring of differential operators** $\mathcal{D}(R) := \bigcup_p \mathcal{D}(R)_p$ of *R* is defined inductively by Grothendieck as $\mathcal{D}(R)_{-1} = 0$ and

 $\mathcal{D}(R)_{p} := \{ f \in \operatorname{End}_{k}(R) \mid fr - rf \in \mathcal{D}(R)_{p-1} \text{ for all } r \in R \}.$

Obviously, $\mathcal{D}(R) = \bigcup_{p} \mathcal{D}(R)_{p}$ is a filtered *k*-algebra.

Weyl algebra $A_d(\mathbb{C}) = \mathcal{D}(\mathbb{C}[x_1, \ldots, x_d]).$

gr $\mathcal{D}(R) \cong$ the symmetric *R*-algebra $Sym_R(\text{Der}(R))$ as graded *R*-algebra.

Proposition 5.1

The poisson structure on $\operatorname{gr} \mathcal{D}(R)$ is unimodular.

Theorem 5.2

The ring of differential operators $\mathcal{D}(R)$ is a 2d-dim CY algebra.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

Thank you for your attention!

Q. -S. Wu (吴泉水) Skew Calabi-Yau algebras and Poisson algebras via filtered deformat

イロト イヨト イヨト イヨト