On two notions of distance between homotopy classes in $W^{1/p,p}(S^1,S^1)$

Itai Shafrir (Technion)

Based partially on joint works with Brezis and Mironescu

Nonlocal Problems in Mathematical Physics, Analysis and Geometry

IASM Hangzhou, Sep. 2024

• Since $W^{1,p}(S^1,S^1)\subset C(S^1,S^1)$ for $p\geq 1$, we may write

$$W^{1,p}(S^1,S^1)=\bigcup_{d\in\mathbb{Z}}\mathcal{E}_d$$

where
$$\mathcal{E}_d = \{u \in W^{1,p}(S^1, S^1) : \deg(u) = d\}.$$

• Since $W^{1,p}(S^1,S^1)\subset C(S^1,S^1)$ for $p\geq 1$, we may write

$$W^{1,p}(S^1,S^1) = \bigcup_{d \in \mathbb{Z}} \mathcal{E}_d$$

where
$$\mathcal{E}_d = \{ u \in W^{1,p}(S^1, S^1) : \deg(u) = d \}.$$

• Maps in $W^{1/p,p}(S^1,S^1)$, p>1 are not necessarily continuous,

• Since $W^{1,p}(S^1,S^1)\subset C(S^1,S^1)$ for $p\geq 1$, we may write

$$W^{1,p}(S^1,S^1) = \bigcup_{d \in \mathbb{Z}} \mathcal{E}_d$$

where $\mathcal{E}_d = \{ u \in W^{1,p}(S^1, S^1) : \deg(u) = d \}.$

• Maps in $W^{1/p,p}(S^1,S^1)$, p>1 are not necessarily continuous,

but one can use instead the VMO-degree (Brezis-Nirenberg). So we still have $W^{1/p,p}(S^1,S^1)=\bigcup_{d\in\mathbb{Z}}\mathcal{E}_d$.

• Since $W^{1,p}(S^1,S^1)\subset C(S^1,S^1)$ for $p\geq 1$, we may write

$$W^{1,p}(S^1,S^1) = \bigcup_{d \in \mathbb{Z}} \mathcal{E}_d$$

where
$$\mathcal{E}_d = \{ u \in W^{1,p}(S^1, S^1) : \deg(u) = d \}.$$

• Maps in $W^{1/p,p}(S^1,S^1)$, p>1 are not necessarily continuous,

but one can use instead the VMO-degree (Brezis-Nirenberg). So we still have $W^{1/p,p}(S^1,S^1)=\bigcup_{d\in\mathbb{Z}}\mathcal{E}_d$.

First consider

$$\mathsf{dist}_{W^{1,p}}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) = \inf_{u \in \mathcal{E}_{d_1}} \inf_{v \in \mathcal{E}_{d_2}} |\dot{u} - \dot{v}|_{L^p}.$$

• Since $W^{1,p}(S^1,S^1)\subset C(S^1,S^1)$ for $p\geq 1$, we may write

$$W^{1,p}(S^1,S^1) = \bigcup_{d \in \mathbb{Z}} \mathcal{E}_d$$

where
$$\mathcal{E}_d = \{ u \in W^{1,p}(S^1, S^1) : \deg(u) = d \}.$$

• Maps in $W^{1/p,p}(S^1,S^1)$, p>1 are not necessarily continuous,

but one can use instead the VMO-degree (Brezis-Nirenberg). So we still have $W^{1/p,p}(S^1,S^1)=\bigcup_{d\in\mathbb{Z}}\mathcal{E}_d$.

First consider

$$\mathsf{dist}_{W^{1,p}}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) = \inf_{u \in \mathcal{E}_{d_1}} \inf_{v \in \mathcal{E}_{d_2}} |\dot{u} - \dot{v}|_{L^p}.$$

• Rubinstein-Sh 07: $\operatorname{dist}_{W^{1,p}}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) = \frac{2^{1+1/p}}{\pi^{1-1/p}}|d_2-d_1|.$

• There exists a constant $c_p > 0$ such that whenever $u, v \in W^{1,p}(S^1, S^1)$ satisfy $|\dot{u} - \dot{v}|_{L^p} < c_p$, we have $\deg(u) = \deg(v)$.

• There exists a constant $c_p > 0$ such that whenever $u, v \in W^{1,p}(S^1, S^1)$ satisfy $|\dot{u} - \dot{v}|_{L^p} < c_p$, we have $\deg(u) = \deg(v)$.

Actually
$$c_p = \frac{2^{1+1/p}}{\pi^{1-1/p}}$$
 (e.g. $c_1 = 4$).

• There exists a constant $c_p > 0$ such that whenever $u, v \in W^{1,p}(S^1, S^1)$ satisfy $|\dot{u} - \dot{v}|_{L^p} < c_p$, we have $\deg(u) = \deg(v)$.

Actually
$$c_p = \frac{2^{1+1/p}}{\pi^{1-1/p}}$$
 (e.g. $c_1 = 4$).

• Note that in $C(S^1, S^1)$ we have $||u - v||_{\infty} = 2$ whenever $\deg(u) \neq \deg(v)$.

• There exists a constant $c_p > 0$ such that whenever $u, v \in W^{1,p}(S^1, S^1)$ satisfy $|\dot{u} - \dot{v}|_{L^p} < c_p$, we have $\deg(u) = \deg(v)$.

Actually
$$c_p = \frac{2^{1+1/p}}{\pi^{1-1/p}}$$
 (e.g. $c_1 = 4$).

• Note that in $C(S^1, S^1)$ we have $||u - v||_{\infty} = 2$ whenever $\deg(u) \neq \deg(v)$. Whence, $||u - v||_{\infty} < 2 \Longrightarrow \deg(u) = \deg(v)$.

• There exists a constant $c_p > 0$ such that whenever $u, v \in W^{1,p}(S^1, S^1)$ satisfy $|\dot{u} - \dot{v}|_{L^p} < c_p$, we have $\deg(u) = \deg(v)$.

Actually
$$c_p = \frac{2^{1+1/p}}{\pi^{1-1/p}}$$
 (e.g. $c_1 = 4$).

- Note that in $C(S^1, S^1)$ we have $||u v||_{\infty} = 2$ whenever $\deg(u) \neq \deg(v)$. Whence, $||u - v||_{\infty} < 2 \Longrightarrow \deg(u) = \deg(v)$.
- Therefore, the degree is **uniform continuous** on both $W^{1,p}(S^1, S^1)$ and $C(S^1, S^1)$.

We consider

$$\mathsf{dist}_{W^{1/p,p}}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) = \inf_{u \in \mathcal{E}_{d_1}} \inf_{v \in \mathcal{E}_{d_2}} |u-v|_{W^{1/p,p}}.$$

We consider

$$\mathsf{dist}_{W^{1/p,p}}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) = \inf_{u \in \mathcal{E}_{d_1}} \inf_{v \in \mathcal{E}_{d_2}} |u - v|_{W^{1/p,p}}.$$

where
$$|f|_{W^{1/p,p}}^p = \iint_{S^1 \times S^1} \frac{|f(x) - f(y)|^p}{|x - y|^2} dxdy$$
.

We consider

$$\mathsf{dist}_{W^{1/p,p}}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) = \inf_{u \in \mathcal{E}_{d_1}} \inf_{v \in \mathcal{E}_{d_2}} |u - v|_{W^{1/p,p}}.$$

where
$$|f|_{W^{1/p,p}}^p = \iint_{S^1 \times S^1} \frac{|f(x) - f(y)|^p}{|x - y|^2} dxdy$$
.

Prop. (Brezis-Nirenberg, Brezis-Mironescu-Sh).

For any $\overline{d_1
eq d_2}$ we have $\operatorname{dist}_{W^{1/p,p}}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) = 0$,

We consider

$$\mathsf{dist}_{W^{1/p,p}}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) = \inf_{u \in \mathcal{E}_{d_1}} \inf_{v \in \mathcal{E}_{d_2}} |u - v|_{W^{1/p,p}}.$$

where
$$|f|_{W^{1/p,p}}^p = \iint_{S^1 \times S^1} \frac{|f(x) - f(y)|^p}{|x - y|^2} dxdy$$
.

Prop. (Brezis-Nirenberg, Brezis-Mironescu-Sh).

For any $d_1 \neq d_2$ we have $\operatorname{dist}_{W^{1/p,p}}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) = 0$, i.e., $\exists \{u_n\} \in \mathcal{E}_{d_1}, \exists \{v_n\} \in \mathcal{E}_{d_2}$ with $\lim_{n \to \infty} |u_n - v_n|_{W^{1/p,p}} = 0$.

We consider

$$\mathsf{dist}_{W^{1/p,p}}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) = \inf_{u \in \mathcal{E}_{d_1}} \inf_{v \in \mathcal{E}_{d_2}} |u - v|_{W^{1/p,p}}.$$

where
$$|f|_{W^{1/p,p}}^p = \iint_{S^1 \times S^1} \frac{|f(x) - f(y)|^p}{|x - y|^2} dx dy$$
.

Prop. (Brezis-Nirenberg, Brezis-Mironescu-Sh).

For any $\overline{d_1 \neq d_2}$ we have $\operatorname{dist}_{W^{1/p,p}}(\mathcal{E}_{d_1}, \mathcal{E}_{d_2}) = 0$, i.e., $\exists \{u_n\} \in \mathcal{E}_{d_1}, \exists \{v_n\} \in \mathcal{E}_{d_2}$ with $\lim_{n \to \infty} |u_n - v_n|_{W^{1/p,p}} = 0$.

Hence the degree is **not uniformly continuous** on $W^{1/p,p}(S^1, S^1)!$

We consider

$$\mathsf{dist}_{W^{1/p,p}}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) = \inf_{u \in \mathcal{E}_{d_1}} \inf_{v \in \mathcal{E}_{d_2}} |u - v|_{W^{1/p,p}}.$$

where
$$|f|_{W^{1/p,p}}^p = \iint_{S^1 \times S^1} \frac{|f(x) - f(y)|^p}{|x - y|^2} dx dy$$
.

Prop. (Brezis-Nirenberg, Brezis-Mironescu-Sh).

For any $d_1 \neq d_2$ we have $\operatorname{dist}_{W^{1/p,p}}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) = 0$, i.e., $\exists \{u_n\} \in \mathcal{E}_{d_1}$, $\exists \{v_n\} \in \mathcal{E}_{d_2}$ with $\lim_{n \to \infty} |u_n - v_n|_{W^{1/p,p}} = 0$.

Hence the degree is **not uniformly continuous** on $W^{1/p,p}(S^1,S^1)!$

<u>Note:</u> The degree is **continuous** on $W^{1/p,p}(S^1, S^1)$: if $\{u_n\} \in \mathcal{E}_d$ satisfy $u_n \to u$ then $u \in \mathcal{E}_d$.

• In the proof we construct $\{u_n\} \in \mathcal{E}_{d_1}$, $\{v_n\} \in \mathcal{E}_{d_2}$ with $\lim_{n \to \infty} |u_n - v_n|_{W^{1/p,p}} = 0$

• In the proof we construct $\{u_n\} \in \mathcal{E}_{d_1}$, $\{v_n\} \in \mathcal{E}_{d_2}$ with $\lim_{n \to \infty} |u_n - v_n|_{W^{1/p,p}} = 0$ but $\lim_{n \to \infty} |u_n|_{W^{1/p,p}} = \lim_{n \to \infty} |v_n|_{W^{1/p,p}} = \infty$.

- In the proof we construct $\{u_n\} \in \mathcal{E}_{d_1}$, $\{v_n\} \in \mathcal{E}_{d_2}$ with $\lim_{n \to \infty} |u_n v_n|_{W^{1/p,p}} = 0$ but $\lim_{n \to \infty} |u_n|_{W^{1/p,p}} = \lim_{n \to \infty} |v_n|_{W^{1/p,p}} = \infty$.
- Question (Brezis): Could this phenomenon be avoided if we restrict u_n , v_n to a **bounded set** in $W^{1/p,p}(S^1, S^1)$?

- In the proof we construct $\{u_n\} \in \mathcal{E}_{d_1}$, $\{v_n\} \in \mathcal{E}_{d_2}$ with $\lim_{n \to \infty} |u_n v_n|_{W^{1/p,p}} = 0$ but $\lim_{n \to \infty} |u_n|_{W^{1/p,p}} = \lim_{n \to \infty} |v_n|_{W^{1/p,p}} = \infty$.
- Question (Brezis): Could this phenomenon be avoided if we restrict u_n , v_n to a **bounded set** in $W^{1/p,p}(S^1, S^1)$?

 Answer: Yes!

- In the proof we construct $\{u_n\} \in \mathcal{E}_{d_1}$, $\{v_n\} \in \mathcal{E}_{d_2}$ with $\lim_{n \to \infty} |u_n v_n|_{W^{1/p,p}} = 0$ but $\lim_{n \to \infty} |u_n|_{W^{1/p,p}} = \lim_{n \to \infty} |v_n|_{W^{1/p,p}} = \infty$.
- Question (Brezis): Could this phenomenon be avoided if we restrict u_n , v_n to a **bounded set** in $W^{1/p,p}(S^1, S^1)$? Answer: Yes!

Thm. (Mironescu-Sh).

Let 1 and <math>M > 0. Then there exists $\delta = \delta(p, M) > 0$ s.t.

$$u, v \in W^{1/p,p}(S^1, S^1), \frac{|u|_{W^{1/p,p}} \leq M}{|u-v|_{W^{1/p,p}} < \delta} \Longrightarrow \deg u = \deg v$$

- In the proof we construct $\{u_n\} \in \mathcal{E}_{d_1}$, $\{v_n\} \in \mathcal{E}_{d_2}$ with $\lim_{n \to \infty} |u_n v_n|_{W^{1/p,p}} = 0$ but $\lim_{n \to \infty} |u_n|_{W^{1/p,p}} = \lim_{n \to \infty} |v_n|_{W^{1/p,p}} = \infty$.
- Question (Brezis): Could this phenomenon be avoided if we restrict u_n , v_n to a **bounded set** in $W^{1/p,p}(S^1, S^1)$? Answer: Yes!

Thm. (Mironescu-Sh).

Let 1 and <math>M > 0. Then there exists $\delta = \delta(p, M) > 0$ s.t.

$$u, v \in W^{1/p,p}(S^1, S^1), \frac{|u|_{W^{1/p,p}} \leq M}{|u-v|_{W^{1/p,p}} < \delta} \Longrightarrow \deg u = \deg v$$

• The analogous problem in $W^{N/p,p}(S^N, S^N)$, $N \ge 2$ is still open (for p > N + 1)!

Define:

$$\begin{split} \mathsf{Dist}_{W^{1,p}}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) &= \sup_{u \in \mathcal{E}_{d_1}} \inf_{v \in \mathcal{E}_{d_2}} |u-v|_{W^{1,p}(S^1,S^1)} \text{for } p \geq 1 \\ \mathsf{Dist}_{W^{1/p,p}}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) &= \sup_{u \in \mathcal{E}_{d_1}} \inf_{v \in \mathcal{E}_{d_2}} |u-v|_{W^{1/p,p}(S^1,S^1)} \text{for } p > 1 \end{split}$$

Define:

$$\begin{split} \mathsf{Dist}_{W^{1,p}}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) &= \sup_{u \in \mathcal{E}_{d_1}} \inf_{v \in \mathcal{E}_{d_2}} |u-v|_{W^{1,p}(S^1,S^1)} \text{for } p \geq 1 \\ \mathsf{Dist}_{W^{1/p,p}}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) &= \sup_{u \in \mathcal{E}_{d_1}} \inf_{v \in \mathcal{E}_{d_2}} |u-v|_{W^{1/p,p}(S^1,S^1)} \text{for } p > 1 \end{split}$$

Remark: We don't know whether

$$\mathsf{Dist}_{W^{N/p,p}}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) = \mathsf{Dist}_{W^{N/p,p}}(\mathcal{E}_{d_2},\mathcal{E}_{d_1}) \text{ always holds}.$$

Define:

$$\begin{split} \mathsf{Dist}_{W^{1,p}}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) &= \sup_{u \in \mathcal{E}_{d_1}} \inf_{v \in \mathcal{E}_{d_2}} |u-v|_{W^{1,p}(S^1,S^1)} \text{for } p \geq 1 \\ \mathsf{Dist}_{W^{1/p,p}}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) &= \sup_{u \in \mathcal{E}_{d_1}} \inf_{v \in \mathcal{E}_{d_2}} |u-v|_{W^{1/p,p}(S^1,S^1)} \text{for } p > 1 \end{split}$$

Remark: We don't know whether

$$\mathsf{Dist}_{W^{N/p,p}}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) = \mathsf{Dist}_{W^{N/p,p}}(\mathcal{E}_{d_2},\mathcal{E}_{d_1}) \text{ always holds}.$$

Thm. ([BMS])

$$\overline{\text{(i) If } p > 1 \text{ then }} \overline{\text{Dist}_{W^{1,p}}(\mathcal{E}_{d_1}, \mathcal{E}_{d_2})} = \infty, \ \forall d_1 \neq d_2.$$

Define:

$$\begin{split} \mathsf{Dist}_{W^{1,p}}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) &= \sup_{u \in \mathcal{E}_{d_1}} \inf_{v \in \mathcal{E}_{d_2}} |u-v|_{W^{1,p}(S^1,S^1)} \mathsf{for} \ p \geq 1 \\ \mathsf{Dist}_{W^{1/p,p}}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) &= \sup_{u \in \mathcal{E}_{d_1}} \inf_{v \in \mathcal{E}_{d_2}} |u-v|_{W^{1/p,p}(S^1,S^1)} \mathsf{for} \ p > 1 \end{split}$$

Remark: We don't know whether

 $\mathsf{Dist}_{W^{N/p,p}}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) = \mathsf{Dist}_{W^{N/p,p}}(\mathcal{E}_{d_2},\mathcal{E}_{d_1}) \text{ always holds}.$

Thm. ([BMS])

- $\overline{\text{(i) If } p>1 \text{ then }} \ \mathsf{Dist}_{W^{1,p}}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) = \infty, \ \forall d_1 \neq d_2.$
- (ii) For p=1, $\mathsf{Dist}_{W^{1,1}}(\mathcal{E}_{d_1},\mathcal{E}_{d_2})=2\pi|d_1-d_2|$.

Define:

$$\begin{split} \mathsf{Dist}_{W^{1,p}}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) &= \sup_{u \in \mathcal{E}_{d_1}} \inf_{v \in \mathcal{E}_{d_2}} |u-v|_{W^{1,p}(S^1,S^1)} \mathsf{for} \ p \geq 1 \\ \mathsf{Dist}_{W^{1/p,p}}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) &= \sup_{u \in \mathcal{E}_{d_1}} \inf_{v \in \mathcal{E}_{d_2}} |u-v|_{W^{1/p,p}(S^1,S^1)} \mathsf{for} \ p > 1 \end{split}$$

Remark: We don't know whether

 $\mathsf{Dist}_{W^{N/p,p}}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) = \mathsf{Dist}_{W^{N/p,p}}(\mathcal{E}_{d_2},\mathcal{E}_{d_1})$ always holds.

Thm. ([BMS])

- $\overline{\text{(i) If } p>1 \text{ then }} \mathsf{Dist}_{W^{1,p}}(\mathcal{E}_{d_1},\mathcal{E}_{d_2})=\infty, \ \forall d_1\neq d_2.$
- (ii) For p = 1, $\text{Dist}_{W^{1,1}}(\mathcal{E}_{d_1}, \mathcal{E}_{d_2}) = 2\pi |d_1 d_2|$.

The proof of (i) uses a sequence $\{u_n\}$ satisfying $\deg(u_n)=d_1$ and $u_n(A)=S^1$ for each arc $A\subset S^1$ of length 1/n.

Define:

$$\begin{split} \mathsf{Dist}_{W^{1,p}}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) &= \sup_{u \in \mathcal{E}_{d_1}} \inf_{v \in \mathcal{E}_{d_2}} |u-v|_{W^{1,p}(S^1,S^1)} \mathsf{for} \ p \geq 1 \\ \mathsf{Dist}_{W^{1/p,p}}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) &= \sup_{u \in \mathcal{E}_{d_1}} \inf_{v \in \mathcal{E}_{d_2}} |u-v|_{W^{1/p,p}(S^1,S^1)} \mathsf{for} \ p > 1 \end{split}$$

Remark: We don't know whether

 $\mathsf{Dist}_{W^{N/p,p}}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) = \mathsf{Dist}_{W^{N/p,p}}(\mathcal{E}_{d_2},\mathcal{E}_{d_1})$ always holds.

Thm. ([BMS])

- $\overline{\text{(i) If } p>1 \text{ then }} \mathsf{Dist}_{W^{1,p}}(\mathcal{E}_{d_1},\mathcal{E}_{d_2})=\infty, \ \forall d_1\neq d_2.$
- (ii) For p=1, $\mathsf{Dist}_{W^{1,1}}(\mathcal{E}_{d_1},\mathcal{E}_{d_2})=2\pi|d_1-d_2|$.

The proof of (i) uses a sequence $\{u_n\}$ satisfying $\deg(u_n)=d_1$ and $u_n(A)=S^1$ for each arc $A\subset S^1$ of length 1/n.

Then, $\lim_{n\to\infty}\inf_{v\in\mathcal{E}_{d_n}}|u_n-v|_{W^{1,p}}=\infty.$

The proof of (ii) (about $Dist_{W^{1,1}(S^1,S^1)}$)

The proof of (ii) (about $Dist_{W^{1,1}(S^1,S^1)}$)

• The upper bound follows from:

$$\forall f \in \mathcal{E}_{d_1}, \forall \varepsilon > 0, \exists g \in \mathcal{E}_{d_2} \text{ s.t.} \int_{S^1} |\dot{f} - \dot{g}| \leq 2\pi |d_1 - d_2| + \varepsilon,$$

• The upper bound follows from:

$$\forall f \in \mathcal{E}_{d_1}, \forall \varepsilon > 0, \exists g \in \mathcal{E}_{d_2} \text{ s.t.} \int_{\mathcal{S}^1} |\dot{f} - \dot{g}| \leq 2\pi |d_1 - d_2| + \varepsilon,$$
 using "bubble insertion".

• The upper bound follows from:

$$\forall f \in \mathcal{E}_{d_1}, \forall \varepsilon > 0, \exists g \in \mathcal{E}_{d_2} \text{ s.t. } \int_{S^1} |\dot{f} - \dot{g}| \leq 2\pi |d_1 - d_2| + \varepsilon,$$

using "bubble insertion".

• For the lower bound take, for any $u \in \mathcal{E}_{d_1}$, a sequence $u_n = T_n \circ u$ where $T_n(e^{i\theta}) = e^{i\tau_n(\theta)}$, with $\tau_n : [0, 2\pi] \to [0, 2\pi]$ a "zig zag function" satisfying:

• The upper bound follows from:

$$\forall f \in \mathcal{E}_{d_1}, \forall \varepsilon > 0, \exists g \in \mathcal{E}_{d_2} \text{ s.t. } \int_{S^1} |\dot{f} - \dot{g}| \leq 2\pi |d_1 - d_2| + \varepsilon,$$

using "bubble insertion".

• For the lower bound take, for any $u \in \mathcal{E}_{d_1}$, a sequence $u_n = T_n \circ u$ where $T_n(e^{i\theta}) = e^{i\tau_n(\theta)}$, with $\tau_n : [0, 2\pi] \to [0, 2\pi]$ a "zig zag function" satisfying: (i) $\tau_n(0) = 0, \tau_n(2\pi) = 2\pi$.

• The upper bound follows from:

$$\forall f \in \mathcal{E}_{d_1}, \forall \varepsilon > 0, \exists g \in \mathcal{E}_{d_2} \text{ s.t.} \int_{\mathcal{S}^1} |\dot{f} - \dot{g}| \leq 2\pi |d_1 - d_2| + \varepsilon,$$

using "bubble insertion".

- For the lower bound take, for any $u \in \mathcal{E}_{d_1}$, a sequence $u_n = T_n \circ u$ where $T_n(e^{i\theta}) = e^{i\tau_n(\theta)}$, with $\tau_n : [0, 2\pi] \to [0, 2\pi]$ a "zig zag function" satisfying:
 - (i) $\tau_n(0) = 0, \tau_n(2\pi) = 2\pi.$
 - (ii) τ'_n oscillates between n and 2-n on intervals of length π/n^2 .

• The upper bound follows from:

$$\forall f \in \mathcal{E}_{d_1}, \forall \varepsilon > 0, \exists g \in \mathcal{E}_{d_2} \text{ s.t.} \int_{\mathcal{S}^1} |\dot{f} - \dot{g}| \leq 2\pi |d_1 - d_2| + \varepsilon,$$

using "bubble insertion".

- For the lower bound take, for any $u \in \mathcal{E}_{d_1}$, a sequence $u_n = T_n \circ u$ where $T_n(e^{i\theta}) = e^{i\tau_n(\theta)}$, with $\tau_n : [0,2\pi] \to [0,2\pi]$ a "zig zag function" satisfying:
 - (i) $\tau_n(0) = 0, \tau_n(2\pi) = 2\pi.$
 - (ii) τ'_n oscillates between n and 2-n on intervals of length π/n^2 . It satisfies:

$$\lim_{n\to\infty}\inf_{v\in\mathcal{E}_{d_2}}\int_{S^1}|\dot{u}_n-\dot{v}|=2\pi|d_2-d_1|$$

Thm. ([Sh])

 $\bullet \ \mathsf{Dist}_{W^{1/p,p}(S^1,S^1)}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) = \sigma_{W^{1/p,p}}(d_2-d_1)$

Thm. ([Sh])

 $\begin{aligned} \bullet \ \, \mathsf{Dist}_{W^{1/p,p}(S^1,S^1)}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) &= \sigma_{W^{1/p,p}}(d_2-d_1) \\ \mathsf{where,} \ \, \sigma^p_{W^{1/p,p}}(d) &= \inf_{u \in \mathcal{E}_d} |u|^p_{W^{1/p,p}} &= \\ \inf_{u \in \mathcal{E}_d} \iint_{S^1 \times S^1} \frac{|u(x) - u(y)|^p}{|x - y|^2} \, dx dy. \end{aligned}$

Thm. ([Sh])

- $\operatorname{Dist}_{W^{1/p,p}(S^1,S^1)}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) = \sigma_{W^{1/p,p}}(d_2 d_1)$ where, $\sigma_{W^{1/p,p}}^p(d) = \inf_{u \in \mathcal{E}_d} |u|_{W^{1/p,p}}^p = \inf_{u \in \mathcal{E}_d} \iint_{S^1 \times S^1} \frac{|u(x) - u(y)|^p}{|x - y|^2} dxdy.$
- Since $\sigma_{W^{1/p,p}}(d) \ge C_p |d|^{1/p}$ (Bourgain-Brezis-Mironescu) we deduce:

Thm. ([Sh])

- $\operatorname{Dist}_{W^{1/p,p}(S^1,S^1)}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) = \sigma_{W^{1/p,p}}(d_2 d_1)$ where, $\sigma_{W^{1/p,p}}^p(d) = \inf_{u \in \mathcal{E}_d} |u|_{W^{1/p,p}}^p = \inf_{u \in \mathcal{E}_d} \iint_{S^1 \times S^1} \frac{|u(x) - u(y)|^p}{|x - y|^2} dxdy.$
- Since $\sigma_{W^{1/p,p}}(d) \ge C_p |d|^{1/p}$ (Bourgain-Brezis-Mironescu) we deduce:

$$C_p|\mathit{d}_2-\mathit{d}_1|^{1/p} \leq \mathsf{Dist}_{W^{1/p,p}(S^1,S^1)}(\mathcal{E}_{\mathit{d}_1},\mathcal{E}_{\mathit{d}_2}) \leq C_p'|\mathit{d}_2-\mathit{d}_1|^{1/p}.$$

For
$$f(e^{i\theta}) = \sum_{n=-\infty}^{\infty} e^{in\theta} \in W^{1/2,2}(S^1, S^1)$$
 we have

$$|f|_{W^{1/2,2}}^2 = 4\pi^2 \sum_{n=-\infty}^{\infty} |n| |a_n|^2$$
 and $\deg f = \sum_{n=-\infty}^{\infty} n|a_n|^2$.

For
$$f(e^{i\theta}) = \sum_{n=-\infty}^{\infty} e^{in\theta} \in W^{1/2,2}(S^1,S^1)$$
 we have

$$|f|_{W^{1/2,2}}^2 = 4\pi^2 \sum_{n=-\infty}^{\infty} |n| |a_n|^2$$
 and $\deg f = \sum_{n=-\infty}^{\infty} n |a_n|^2$.

Hence $4\pi^2 |\deg f| \leq |f|_{W^{1/2,2}}^2, \forall f$, while equality holds for $f(z) = z^d$.

For
$$f(e^{i\theta}) = \sum_{n=-\infty}^{\infty} e^{in\theta} \in W^{1/2,2}(S^1,S^1)$$
 we have

$$|f|_{W^{1/2,2}}^2 = 4\pi^2 \sum_{n=-\infty}^{\infty} |n| |a_n|^2$$
 and $\deg f = \sum_{n=-\infty}^{\infty} n|a_n|^2$.

Hence $4\pi^2 |\deg f| \leq |f|_{W^{1/2,2}}^2, \forall f$, while equality holds for $f(z) = z^d$.

It follows that $\sigma_{W^{1/2,2}}(d) = 2\pi |d|^{1/2}$. Whence

For
$$f(e^{i\theta}) = \sum_{n=-\infty}^{\infty} e^{in\theta} \in W^{1/2,2}(S^1,S^1)$$
 we have

$$|f|_{W^{1/2,2}}^2 = 4\pi^2 \sum_{n=-\infty}^{\infty} |n| |a_n|^2$$
 and $\deg f = \sum_{n=-\infty}^{\infty} n |a_n|^2$.

Hence $4\pi^2 |\deg f| \leq |f|_{W^{1/2,2}}^2, \forall f$, while equality holds for $f(z) = z^d$.

It follows that $\sigma_{W^{1/2,2}}(d) = 2\pi |d|^{1/2}$. Whence we get

Corollary

$$\mathsf{Dist}_{W^{1/2,2}(S^1,S^1)}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) = 2\pi |d_2 - d_1|^{1/2}.$$

Some results for $N \ge 2$

Some results for $N \ge 2$

• For p > N, in $W^{1,p}(S^N, S^N)$ we have $\operatorname{dist}_{W^{1,p}}(\mathcal{E}_{d_1}, \mathcal{E}_{d_2}) = c_{p,N}$ for all $d_1 \neq d_2$ (independently of d_1, d_2 !) ([Levi-Sh])

Some results for N > 2

- For p > N, in $W^{1,p}(S^N, S^N)$ we have $\operatorname{dist}_{W^{1,p}}(\mathcal{E}_{d_1}, \mathcal{E}_{d_2}) = c_{p,N}$ for all $d_1 \neq d_2$ (independently of d_1, d_2 !) ([Levi-Sh])
- In $W^{N/p,p}(S^N, S^N)$ we have $\operatorname{dist}_{W^{N/p,p}}(\mathcal{E}_{d_1}, \mathcal{E}_{d_2}) = 0$ for all d_1, d_2 [BMS].

Some results for $N \ge 2$

- For p > N, in $W^{1,p}(S^N, S^N)$ we have $\operatorname{dist}_{W^{1,p}}(\mathcal{E}_{d_1}, \mathcal{E}_{d_2}) = c_{p,N}$ for all $d_1 \neq d_2$ (independently of d_1, d_2 !) ([Levi-Sh])
- In $W^{N/p,p}(S^N, S^N)$ we have $\operatorname{dist}_{W^{N/p,p}}(\mathcal{E}_{d_1}, \mathcal{E}_{d_2}) = 0$ for all d_1, d_2 [BMS].
- In $W^{N/p,p}(S^N, S^N)$ we have $\operatorname{Dist}_{W^{N/p,p}}(\mathcal{E}_{d_1}, \mathcal{E}_{d_2}) \leq C_{p,N} |d_2 d_1|^{1/p}$

Some results for N > 2

- For p > N, in $W^{1,p}(S^N, S^N)$ we have $\operatorname{dist}_{W^{1,p}}(\mathcal{E}_{d_1}, \mathcal{E}_{d_2}) = c_{p,N}$ for all $d_1 \neq d_2$ (independently of d_1, d_2 !) ([Levi-Sh])
- In $W^{N/p,p}(S^N, S^N)$ we have $\operatorname{dist}_{W^{N/p,p}}(\mathcal{E}_{d_1}, \mathcal{E}_{d_2}) = 0$ for all d_1, d_2 [BMS].
- In $W^{N/p,p}(S^N,S^N)$ we have $\operatorname{Dist}_{W^{N/p,p}}(\mathcal{E}_{d_1},\mathcal{E}_{d_2}) \leq C_{p,N}|d_2-d_1|^{1/p}$ Lower bound is open

Thank you for your attention!