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o Rubinstein-Sh 07: disty1s(Eq,, E,) = 2t |dy — di .

r1-1/p
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- ﬂlfl/P
o Note that in C(S1,St) we have ||u — v|| = 2 whenever

deg(u) # deg(v).
Whence, ||u — v||oo <2 = deg(u) = deg(v).

@ Therefore, the degree is uniform continuous on both
Whp(St, Sty and C(St, SY).
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Prop. (Brezis-Nirenberg, Brezis-Mironescu-Sh).
For any di # d> we have disty1/p.(Edy, Ea,) = 0, ice., Hun} € Eqy,
El{vn} S gd2 W|th ||mni>oo |Un — Vn|W1/P,p = O

Hence the degree is not uniformly continuous on W/PP(S1 S1)I

Note: The degree is continuous on W/PP(St S1): if {u,} € &,
satisfy u, — u then u € &,.
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@ Question (Brezis): Could this phenomenon be avoided if we
restrict u,, v, to a bounded set in W/PP(S1 S1)?

Answer: Yesl!

Thm. (Mironescu-Sh).
Let 1 < p < oo and M > 0. Then there exists § = §(p, M) > 0 s.t.

|U|W1/p,p < M,

u,v € Wl/p’p(Sl,Sl),‘u wires < 6
— Viwi/e.p

—> degu =degv

o The analogous problem in WN/PP(SN SN) "N > 2 is still
open (for p > N + 1)!
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Thm. ([BMS])

(i) If p > 1 then Distwl,p(5d17gd2) = o0, Vdi 75 do.
(ii) For p =1, Distyy1,1(Eq,, Eqy) = 2m|d1 — db] .

The proof of (i) uses a sequence {u,} satisfying deg(u,) = di and
uy(A) = S* for each arc A C S? of length 1/n.

Then, lim,_ s infvegd2 lup — vy, = 0.
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The proof of (ii) (about Disty11(s1 s1))

@ The upper bound follows from:
Vf € Eq,,Ve > 0,3g € &g, s.t./ |f — g| < 2n|dy — do| + ¢,
51

using “bubble insertion”.

@ For the lower bound take, for any u € &g, a sequence
U, = Tpou where T,(e?) = e™(0) with
7o [0,27] — [0,27] a “zig zag function” satisfying:
(i) 7(0) =0, 7,(27) = 2.
(i) 7/ oscillates between n and 2 — n on intervals of length 7/n.

It satisfies:

[im inf ‘I:I,,*\'/’:27T|d2*d1|
n—00 v€5d2 s1
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] DiStW1/p,p(51751)(5dl,gdz) = le/p,p(d2 - dl)

where, Jﬁvl/pp(d): inf \u\ﬁvl/pp =

inf // 2)| dxdy.
uea ) Js1xs1 |X—Y|

o Since oyy1/5,(d) > Cp|d|*/P (Bourgain-Brezis-Mironescu) we
deduce:

Cplda — di|M/P < Distyy1/pp(st 51y(Eay, Eay) < Cpldp — i [1/P.
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For f(e') =32°° e ¢ W1/22(S1 S') we have

n=—oo

[ee]

o0
‘f|?/V1/272 = 472 Z |n||an|? and degf = Z ENES

Hence 472| deg f| < ]f|f/vl/272,Vf, while equality holds for
f(z) = z9.
It follows that oyy1/22(d) = 27|d|'/2. Whence we get

DiStW1/2,2(51751)(5d17gdz) = 2W‘d2 - d1|1/2-
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distwl,p(5d17gd2) = Cp,N for all dy 75 d>
(independently of di, db!) ([Levi-Sh])
o In WN/PP(SN SN) we have distyyn/pp(Edys Ea,) = 0 for all
di, d» [BMS].
o In WN/PP(SN SNY we have
DiStWN/p,p(gdl, Sdz) < Cp,N dr — d1|1/P

Lower bound is open ....
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Thank you for your attention!
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