Dual formulation of the multi-state Schrödinger Poisson Equation

Gershon Wolansky

Department of Mathematics, Technion 32000 Haifa, ISRAEL

E-mail: gershonw@math.technion.ac.il

September 2024, Hangzhou

• • = • • = •

Nonlocal Shrodinger equations

$$(-\Delta + V)\phi + \lambda\phi = 0 \tag{1}$$

on \mathbb{R}^3 , where $V = K * |\phi|^2$ is some symmetric kernel.

(本語)と 本語(と) 本語(と

Nonlocal Shrodinger equations

The kernel is induced by electrostatic/gravitational potential $K(x) \approx \pm |x|^{-1}$:

$$-\Delta\phi(x)\pm\left(\int\frac{|\phi(y)|^2}{|x-y|}dy\right)\phi(x)+\phi(x)=0$$

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

Nonlocal Shrodinger equations

The "gravitational" case $K(x) \approx -|x|^{-1}$

$$-\Delta\phi(x) - \left(\int \frac{|\phi(y)|^2}{|x-y|} dy\right)\phi(x) + \phi(x) = 0$$

was originally proposed by Ph. Choquard, as an approximation to Hartree–Fock theory for a one component plasma. Equation of similar types also appear to be a prototype of the so-called nonlocal problems, which arise in many situations and as a model of self-gravitating matter.

|山下 |田下 |田下

A generalized version in \mathbb{R}^n takes the form

$$-\Delta\phi - (I_{\alpha} * |\phi|^{p}) |\phi|^{p-2}\phi + \phi = 0$$
(1)

where

$$I_{\alpha} = A(\alpha)|x|^{\alpha-n}; \quad A(\alpha) := \frac{\Gamma\left(\frac{n-\alpha}{2}\right)}{2^{\alpha}\pi^{n/2}\Gamma\left(\alpha/2\right)}$$
(2)

is the Rietz potential, $\alpha \in (0, n)$, $p \in (1, \infty)$ was considered by many authors in the last decades, using its variational structure as a critical point of the functional

$$E_{p,\alpha}(\phi) = \frac{1}{2} \int_{\mathbb{R}^n} \left(|\nabla u|^2 + |\phi|^2 - \frac{1}{2p} \left(I_\alpha * |\phi|^p \right) |\phi|^p \right)$$
(3)

on an appropriate space.

• • = • • = •

In particular, existence of solutions the case p = 2 (and for more general singular interaction kernels) was studied by

- E. H. Lieb, *Existence and uniqueness of the minimizing solution of Choquard's non-linear equation*, Studies in Appl. Math.57(2)93-105, 1976/77
- P.-L. Lions: *The Choquard equation and related questions*, Nonlinear Anal., 4 (6) pp. 1063-1072, 1980
- G.P. Menzala: *On regular solutions of a nonlinear equation of Choquard's type*, Proc. Roy. Soc. Edinburgh Sect. A, 86 (3-4) pp. 291-301, 1980

For existence, regularity and asymptotic behavior of solutions in the general case see V. Moroz and J. Van Schaftingen

- Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp. Math. 17, no. 5, 2015
- A guide to the Choquard equation, Vitaly Moroz & Jean Van Schaftingen. J. Fixed Point Theory Appl. 19, no. 1, 773-813, 2017 and references therein.

The non-linear Schrödinger equation associated with $E_{p,\alpha}$ takes the form

$$-i\partial_t\psi - \Delta\psi - a(I_\alpha * |\psi|^p)|\psi|^{p-2}\psi = 0.$$
(4)

The number $a \in \mathbb{R}$ is the strength of interaction. The case a > 0 corresponds to the *attractive, gravitation-like* dynamics, and is related to Choquard's equation. The case a < 0 is the repulsive, electrostatic case and is related to the Hartree system. In this lecture we deal with the attractive case.

Considering an eigenmode $\psi = e^{-i\lambda t}\phi$ we get that ϕ satisfy the non-linear eigenvalue problems

$$-\Delta\phi - a\left(I_{\alpha}*|\phi|^{p}\right)|\phi|^{p-2}\phi - \lambda\phi = 0$$
(5)

which can be reduced to $a = \lambda = 1$ by a proper scaling. However, the solutions of the time dependent nonlinear equation preserve the \mathbb{L}^2 norm in time, so it is natural to look for stationary solutions under a prescribed \mathbb{L}^2 norm (say, $\|\phi\|_2 = 1$). It is not difficult to see that, in general, one can find a scaling $\phi \mapsto \phi_\beta(x) = \beta^{-n/2}\phi(x/\beta)$ which preserves the \mathbb{L}^2 norm and transform the strength of interaction in (5) into a = 1, making this parameter mathematically insignificant. There is, however, an exceptional case $\alpha = n(p-1) - 2$. In that case the first two terms in (5) are scaled identically under \mathbb{L}^2 preserving scaling, so the size of the interaction coefficient *a* is mathematically significant in that case.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

In the case p = 2 and in the presence of a prescribed, scalar potential W, the \mathbb{L}^2 - constraint version of (5) takes the form

$$-\Delta\phi + W\phi - a\left(\int_{\mathbb{R}^n} \frac{|\phi(y)|^2}{|x-y|^{n-\alpha}} dy\right)\phi - \lambda\phi = 0, \quad \|\phi\|_2 = 1.$$
 (6)

A solution is given by a minimizer of the functional

$$E_{a}^{W}(\phi) := \frac{1}{2} \int_{\mathbb{R}^{n}} \left(|\nabla \phi|^{2} + W|\phi|^{2} \right) dx - \frac{a}{4} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{|\phi(x)|^{2} |\phi(y)|^{2}}{|x - y|^{n - \alpha}} dx dy$$
(7)

restricted to the \mathbb{L}^2 unit sphere $\|\phi\|_2=1.$ W a prescribed function satisfying

 $\lim_{|x|\to\infty}W(x)=\infty$

< 由 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Exceptional case

D. Yinbin, L. Lu and S. Wei studied the equation in the exceptional case $\alpha = n - 2$, for $n \ge 3$, a > 0.

$$-\Delta \phi + W \phi - a\left(\int_{\mathbb{R}^n} rac{|\phi(y)|^2}{|x-y|^2} dy
ight) \phi - \lambda \phi = 0, \quad \|\phi\|_2 = 1 \;.$$

Constraint minimizers of mass critical Hartree functionals: Existence and mass concentrations, J. Mathematical physics, 56, 2015 In particular, they showed the existence of a critical strength $\bar{a}_c > 0$, depending on *n* but independent of *W*, such that E_a^W is bounded from below on the sphere $\|\phi\|_2 = 1$ iff $a \leq \bar{a}_c$. Moreover, a minimizer of E_a^W exists if $a < \bar{a}_c$, and is a solution. It was also shown that $a_c = \|\bar{\phi}\|_2$, where $\bar{\phi}$ is the unique, positive unconstrained solution of the equation of

$$-\Delta\bar{\phi}(x) - \left(\int_{\mathbb{R}^n} \frac{|\bar{\phi}(y)|^2}{|x-y|^2} dy\right)\bar{\phi}(x) + \bar{\phi}(x) = 0.$$
(8)

Multi state system

The first object is to extend the \mathbb{L}^2 -constraint Choquard equation (6) into a k- state system

$$-\Delta \phi_j + (W - aV) \phi_j - \lambda_j \phi_j = 0 \ \|\phi_j\|_2 = 1, \ ; \ j = 1 \dots k$$

where

$$V(x) = I_{\alpha} * \left(\sum_{i=1}^{k} \beta_{i} \int_{\mathbb{R}^{n}} \frac{\rho_{i}(y)}{|x - y|^{n - \alpha}} dy \right)$$
$$\rho_{i} := |\phi_{i}|^{2}$$

where $(\phi_1, \ldots \phi_k)$ constitutes an orthonormal k-sequence in $\mathbb{L}^2(\mathbb{R}^n)$ and

$$\beta_j > 0, \qquad \sum_{1}^k \beta_j = 1 \tag{9}$$

are the probabilities of occupation of the states $j = 1 \dots k$.

Multi state system

The first object is to extend the \mathbb{L}^2 -constraint Choquard equation (6) into a k- state system

and the exceptional case $\alpha = n - 2$

$$-\Delta\phi_j + W\phi_j - a\left(\sum_{i=1}^k \beta_i \int_{\mathbb{R}^n} \frac{|\phi_i(y)|^2}{|x-y|^2} dy\right)\phi_j - \lambda_j\phi_j = 0$$

where $(\phi_1, \ldots \phi_k)$ constitutes an orthonormal k-sequence in $\mathbb{L}^2(\mathbb{R}^n)$ and

$$\beta_j > 0, \qquad \sum_{1}^k \beta_j = 1 \tag{9}$$

(日) (同) (日) (日) (日)

are the probabilities of occupation of the states $j = 1 \dots k$.

Theorem

If $\{\phi_1, \ldots, \phi_k\}$ is a minimizer of

$$\mathcal{E}_{\beta,a}^{(\alpha)}(\vec{\psi}) := \frac{1}{2} \sum_{j=1}^{k} \beta_j \left[\langle \nabla \psi_j, \nabla \psi_j \rangle + \langle W \psi_j, \psi_j \rangle - \frac{a}{2} \sum_{i=1}^{k} \beta_i \left\langle |\psi_j|^2, I_\alpha * |\psi_i|^2 \right\rangle \right]$$

on all k- orthonormal frames $\vec{\psi} = (\psi_1, \dots, \psi_k)$, then it is a solution of the k- state Choquard system, while

$$\lambda_1 < \lambda_2 \leq \ldots, \leq \lambda_k$$

are successive eigenvalues starting form the minimal level λ_1 and ϕ_j the corresponding eigenstates.

- 4 週 ト - 4 ヨ ト - 4 ヨ ト - -

Dual formulation

The second object is to introduce a dual approach to the \mathbb{L}^2 constraint Choquard problem in the case p = 2.

11 / 26

Dual formulation

The second object is to introduce a dual approach to the \mathbb{L}^2 constraint Choquard problem in the case p = 2.

Idea: Work with the "gravitational potential" and *NOT* with the wave function

$$V = I_{\alpha} * (\sum_{j=1}^{k} \beta_j |\bar{\phi}_j|^2)$$

(人間) トイヨト イヨト

Dual formulation

The second object is to introduce a dual approach to the \mathbb{L}^2 constraint Choquard problem in the case p = 2.

Idea: Work with the "gravitational potential" and *NOT* with the wave function

$$V = I_{\alpha} * (\sum_{j=1}^{k} \beta_j |\bar{\phi}_j|^2)$$

For the case of single state k = 1, the dual formulation of E_a^W for $\alpha = 2$ on the constraint \mathbb{L}^2 sphere takes the form of the functional $V \mapsto \mathcal{H}_a^{W,\alpha}(V)$ $\mathcal{H}_a^{W,2}(V) = \frac{a}{2} \int_{\mathbb{R}^n} |\nabla V|^2 + \lambda_1(V)$

over the unconstrained Beppo-Levi space $V \in \dot{\mathbb{H}}_1(\mathbb{R}^n)$. Here the functional $\lambda_1 = \lambda_1(V)$ is the leading (minimal) eigenvalue of the Schrdinger operator

$$-\Delta + W - aV$$
 on \mathbb{R}^n .

The extension of this dual formulation to the *k*-system for $\alpha \in (0, 2]$ In case $\alpha = 2$ it takes the form

$$\mathcal{H}^{W,2}_{eta,a}(V) = rac{a}{2} \int_{\mathbb{R}^n} |\nabla V|^2 + \sum_{j=1}^k eta_j \lambda_j(V)$$

where $\lambda_1(V) < \lambda_2(V) \leq \ldots \lambda_k(V)$ are the leading k eigenvalues of the Schrdinger operator, while $\beta_1 > \beta_2 > \ldots \beta_k > 0$.

< 由 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If $\alpha \neq 2$?

Let us recall some definitions and theorems we use later For $V_1, V_2 \in C_0^{\infty}(\mathbb{R}^n)$ and $\alpha \in (0, 2)$, consider the quadratic form

$$\langle V_1, V_2 \rangle_{\alpha/2} := A(-\alpha) \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{(V_1(x) - V_1(y))(V_2(x) - V_2(y))}{|x - y|^{n + \alpha}} dx dy$$

where the constant $A(-\alpha)$ is defined as in (2). If $\alpha = 2$

$$\langle V_1, V_2 \rangle_{(1)} := \int_{\mathbb{R}^n} \nabla V_1 \cdot \nabla V_2 dx \; .$$

The closure of $C_0^{\infty}(\mathbb{R}^n)$ with respect to the norm induced by the inner product $\langle \cdot, \cdot \rangle_{\alpha/2}$ is denoted by $\dot{\mathbb{H}}_{\alpha/2}$. We denote the associated norm by $\||\cdot\||_{\alpha/2}$. ¹ Recall that $\dot{\mathbb{H}}_{\alpha/2}$ is a Hilbert space so, in particular, is weakly locally compact.

¹Note that $\dot{\mathbb{H}}_{\alpha/2}(\mathbb{R}^n)$ does not contain $\mathbb{L}^2(\mathbb{R}^n)$. In case $\alpha = 2$ it is sometimes called Beppo-Levi space.

 $\alpha = 2$:

$$\mathcal{H}^{W,2}_{\beta,a}(V) = \frac{a}{2} \int_{\mathbb{R}^n} |\nabla V|^2 + \sum_{j=1}^k \beta_j \lambda_j(V)$$

where $\lambda_1(V) < \lambda_2(V) \leq \ldots \lambda_k(V)$ are the leading k eigenvalues of the Schrdinger operator, while $\beta_1 > \beta_2 > \ldots \beta_k > 0$.

イロト 不得下 イヨト イヨト 二日

$$0 < \alpha < 2$$
:
 $\mathcal{H}_{\beta,a}^{W,\alpha}(V) = \frac{a}{2} \langle V, V \rangle_{\alpha/2} + \sum_{j=1}^{k} \beta_j \lambda_j(V)$

where $\lambda_1(V) < \lambda_2(V) \leq \ldots \lambda_k(V)$ are the leading k eigenvalues of the Schrdinger operator, while $\beta_1 > \beta_2 > \ldots \beta_k > 0$.

3

ヘロト 人間 とくほ とくほ とう

$$\frac{1}{2} \langle I_{\alpha} * \rho, \rho \rangle := \sup_{V \in C_0^{\infty}(\mathbb{R}^n)} \langle \rho, V \rangle - \frac{1}{2} \langle V, V \rangle_{\alpha/2} .$$
(10)

▲ロト ▲課 ト ▲注 ト ▲注 ト → 注 → のへの

$$\frac{1}{2} \langle I_{\alpha} * \rho, \rho \rangle := \sup_{V \in C_0^{\infty}(\mathbb{R}^n)} \langle \rho, V \rangle - \frac{1}{2} \langle V, V \rangle_{\alpha/2} .$$
 (10)

$$\mathbf{H}^{(\alpha)}(\phi, V) = \langle (-\Delta + W)\phi, \phi \rangle + a \left[\langle V, V \rangle_{\alpha/2} - \langle V, |\phi|^2 \rangle \right] .$$
(11)

▲ロト▲圖ト▲臣ト▲臣ト 臣 のへで

$$\frac{1}{2} \langle I_{\alpha} * \rho, \rho \rangle := \sup_{V \in C_0^{\infty}(\mathbb{R}^n)} \langle \rho, V \rangle - \frac{1}{2} \langle V, V \rangle_{\alpha/2} .$$
 (10)

$$\mathbf{H}^{(\alpha)}(\phi, V) = \langle (-\Delta + W)\phi, \phi \rangle + a \left[\langle V, V \rangle_{\alpha/2} - \langle V, |\phi|^2 \rangle \right] .$$
(11)

$$\inf_{V \in C_0^{\infty}(\mathbb{R}^n)} \mathbf{H}^{(\alpha)}(\phi, V) = 2\mathcal{E}_a^{(\alpha)}(\vec{\phi}) \equiv$$
$$\frac{1}{2} \left[\langle \nabla \phi, \nabla \phi \rangle + \langle W \phi, \phi \rangle - \frac{a}{2} \left\langle |\phi^2, I_{\alpha} * |\phi|^2 \right\rangle \right] \;.$$

3

メロト メポト メヨト メヨト

$$\frac{1}{2} \langle I_{\alpha} * \rho, \rho \rangle := \sup_{V \in C_0^{\infty}(\mathbb{R}^n)} \langle \rho, V \rangle - \frac{1}{2} \langle V, V \rangle_{\alpha/2} .$$
 (10)

$$\mathbf{H}^{(\alpha)}(\phi, V) = \langle (-\Delta + W)\phi, \phi \rangle + a \left[\langle V, V \rangle_{\alpha/2} - \langle V, |\phi|^2 \rangle \right] .$$
(11)

$$\inf_{V\in C_0^\infty(\mathbb{R}^n)} \mathbf{H}^{(\alpha)}(\phi, V) = 2\mathcal{E}_{\mathsf{a}}^{(\alpha)}(\vec{\phi}) \equiv$$

$$\frac{1}{2}\left[\langle \nabla\phi, \nabla\phi\rangle + \langle W\phi, \phi\rangle - \frac{a}{2}\left\langle |\phi^2, I_{\alpha} * |\phi|^2 \right\rangle\right] \;.$$

Let $\mathcal{H}^{W,\alpha}_{a}(V) = \inf_{\|\phi\|=1} \mathbf{H}^{(\alpha)}(\phi, V)$. $\mathcal{H}^{W,\alpha}_{,a}(V) = \frac{a}{2} \langle V, V \rangle_{\alpha/2} + \inf_{\|\phi\|_{2}=1} \langle (-\Delta + W - aV)\phi, \phi \rangle$.

Multi-level case

$$\mathcal{H}^{W,\alpha}_{\beta,a}(V) = \frac{a}{2} \langle V, V \rangle_{\alpha/2} + \inf_{\vec{\phi} \in \otimes^k \mathbb{H}^1} \sum_{j=1}^k \beta_j \left\langle (-\Delta + W - aV) \phi_j, \phi_j \right\rangle \;.$$

$$V \in \dot{\mathbb{H}}_{\alpha/2} \mapsto \mathcal{G}_{\beta,a}(V) := \inf_{\vec{\phi} \in \otimes^{k} \mathbb{H}^{1}} \sum_{j=1}^{k} \beta_{j} \left\langle (-\Delta + W - aV)\phi_{j}, \phi_{j} \right\rangle .$$
(12)

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Lemma

[Extended Rayleigh-Ritz] If $\beta_1 \geq \beta_2 \ldots \geq \beta_k$ then

$$\mathcal{G}_{eta, a}(V) = \sum_{j=1}^k eta_j \lambda_j(V)$$

where $\lambda_j(V)$ are the k lowest eigenvalues of the operator $-\Delta + W - aV$ arranged by increasing order. In particular, $G_{\beta,a}$ is concave on $\mathbb{H}_{\alpha/2}$. If $2 < n < 4 + \alpha$, $0 < \alpha \le 2$ then $G_{\beta,a}$ is weakly continuous on $\mathbb{H}_{\alpha/2}$. Moreover, the minimum in (12) is obtained at the eigenfunction $\overline{\phi}_j$ of $-\Delta + W - aV$ corresponding to λ_j .

イロト イポト イヨト イヨト

The Euler-Lagrange equation

$$\underline{\partial}_{V} \frac{1}{2} \langle V, V \rangle_{\alpha/2} = (-\Delta)^{\alpha/2} V$$
$$\overline{\partial}_{V} \mathcal{G}_{\beta,a} = -a \sum_{j=1}^{k} \beta_{j} |\bar{\phi}_{j}|^{2}$$

$$(-\Delta)^{\alpha/2}V - \sum_{j=1}^{n} \beta_j |\bar{\phi}_j|^2 = 0 \quad \Longleftrightarrow V = I_{\alpha} * (\sum_{j=1}^{n} \beta_j |\bar{\phi}_j|^2)$$

G. Wolansky (Technion)

18 / 26

3

(日) (周) (三) (三)

Partial Proof

Let $\bar{\phi}_j$ be the normalized eigenvalues of $-\Delta + W - aV$ corresponding to $\lambda_j(V)$. Fix some $m \ge j$ and let $\mathbb{H}_m = Sp(\bar{\phi}_1, \dots, \bar{\phi}_m)$. Let us restrict the supremum (12) to $\mathbb{H}_m^k := \{\vec{\phi} := (\phi_1, \dots, \phi_k), \phi_j \in \mathbb{H}_m\} \subset \mathbb{H}^k$. Then

$$\phi_j = \sum_{i=1}^m \left\langle \phi_j, \bar{\phi}_i \right\rangle \bar{\phi}_i, \quad (-\Delta + W - aV)\phi_j = \sum_{i=1}^m \lambda_i \left\langle \phi_j, \bar{\phi}_i \right\rangle \bar{\phi}_i \quad .$$

Define $\beta_{k+1} = \ldots = \beta_m = 0$. Then we can write, for any $\vec{\phi} \in \mathbb{H}_m^k$

$$\sum_{j=1}^{k} \beta_j \left\langle (-\Delta + W - aV)\phi_j, \phi_j \right\rangle = \sum_{i=1}^{m} \sum_{j=1}^{m} \beta_j \lambda_i |\left\langle \phi_j, \bar{\phi}_i \right\rangle|^2 .$$
(13)

Denote now $\gamma_{i,j} := |\langle \phi_j, \bar{\phi}_i \rangle|^2$. Then $\{\gamma_{i,j}\}$ is $m \times m$, bi-stochastic matrix, i.e $\sum_{i=1}^m \gamma_{i,j} = \sum_{j=1}^m \gamma_{i,j} = 1$ for all $i, j = 1 \dots m$. Consider now the infimum of $\sum_{i=1}^m \sum_{j=1}^m \tilde{\gamma}_{i,j} \lambda_i \beta_j$ over all bi-stochastic matrices $\{\tilde{\gamma}_{i,j}\}$. By Krain-Milman theorem, the minimum is obtained on an extreme point in the convex set of bi- stochastic matrices. By Birkhoff theorem, the extreme points are permutations so, from(13)

G. Wolansky (Technion)

$$\forall \vec{\phi} \in \mathbb{H}_m^k, \quad \sum_{j=1}^k \beta_j \left\langle (-\Delta + W - aV)\phi_j, \phi_j \right\rangle \geq \sum_{j=1}^m \beta_{\pi(j)} \lambda_j$$

for some permutation $\pi : \{1, \ldots, m\} \mapsto \{1, \ldots, m\}$. Now, recall that β_i are assumed to be in descending order while λ_i are in ascending order by definition. By the discrete rearangment theorem of Hardy, Littelwood and Polya [?] we obtain that the maximum on the right above is obrained at the identity permutation $\pi(i) = i$, that is, at the identity matrix $\tilde{\gamma}_{i,i} := \langle \phi_i, \bar{\phi}_i \rangle = \delta_{i,j}$. This implies that the eigenbasis $\bar{\phi}_1, \dots, \bar{\phi}_k$ of the k leading eigenvalues is the minimizer of (12) on \mathbb{H}_m^k for any $m \geq k$. In particular, the minimizer of (12) in \mathbb{H}_m^k is independent of *m*, as long as m > k. Suppose there exists some $\vec{\psi} \in \mathbb{H}^k$ which is not contained in and finite dimensional subspace generated by eigenstates, for which (12) is strictly smaller than its value on the first k – leading eigenspace. Since the eigenstates of the Schrdinger operator under assumption generate the whole space we can find, for a sufficiently large m, an orthonormal base in \mathbb{H}_m^k for on which the left side of (12) is strictly larger than $\sum_{i=1}^k \beta_i \lambda_i(V)$, and we get a contradiction for this value of m.

Theorem (Main)

- a: The functional $V \mapsto \frac{a}{2} \langle V, V \rangle_{\alpha/2} + G_{\beta,a}(V)$ is bounded from below on $\mathbb{H}_{\alpha/2}$ for any a > 0 if $3 \le n < 2 + \alpha$.
- b: In the critical cases $n = 3, \alpha = 1$ or $n = 4, \alpha = 2$ there exists $a = a_c^{(n)}(\vec{\beta}) > 0$ independent of W for which the functional is bounded from below if $a < a_c^{(n)}(\vec{\beta})$ and unbounded if $a > a_c^{(n)}(\vec{\beta})$.
- c: Moreover, in the cases n = 3 and n = 4, $a < a_c^{(n)}(\vec{\beta})$ the functional is coersive on $\dot{\mathbb{H}}_{\alpha/2}(\mathbb{R}^n)$, namely

$$\lim_{\||V\||_{\alpha/2}\to\infty}\frac{1}{2}\langle V,V\rangle_{\alpha/2}+G_{\beta,a}(V)=\infty$$
(14)

(日) (周) (三) (三)

and a minimizer \overline{V} exists.

d: If case [c] holds then there exists a solution of the Choquard system, induced by the minimizing potential \bar{V} .

Proof of Main Theorem

Theorem (Lieb-Thirring)

For the Schrödinger operator $-\Delta - V$ on \mathbb{R}^n with a real valued potential V the numbers $\mu_1(V) \leq \mu_2(V) \leq \cdots \leq 0$ denote the (not necessarily finite) sequence of its negative eigenvalues. Then, for $n \geq 3$ and $\gamma \geq 0$

$$\sum_{i;\mu_j(V)<0} |\mu_j(V)|^{\gamma} \le L_{\gamma,n} \int V_+^{n/2+\gamma} dx$$
(15)

where $V_+ = \max\{0, V\}$ and $L_{\gamma,n}$ is independent of V.

Lemma (Critical Sobolev)

For $\alpha \in (0, 2]$, n > 2, the space $\mathbb{H}_{\alpha/2}$ is continuously embedded in $\mathbb{L}^{2n/(n-\alpha)}(\mathbb{R}^n)$, so there exists $S = S_{n,\alpha} > 0$ such that

$$\|V\|_{2n/(n-\alpha)} \leq S_{n,\alpha} \sqrt{\langle V, V \rangle_{\alpha/2}}$$
.

Recall that $\lambda_j(V)$ are the eigenvalues of $-\Delta + W - aV$. Since $W \ge 0$ it follows that $\lambda_j(V) \ge \mu_j(aV)$. Hence $\mathcal{G}_{\beta,a}(V) := \sum_{j=1}^k \beta_j \lambda_j(V) \ge -\sum_{j;\mu_j(aV)<0} \beta_j |\mu_j(aV)|$. By Holder inequality, for $\gamma \ge 1$, $\gamma' = \gamma/(\gamma - 1)$ and (15) $\mathcal{G}_{\beta,a}(V) \ge -\left(\sum_{i=1}^k |\beta_j|^{\gamma'}\right)^{1/\gamma'} \left(\sum_{i:\mu_i(aV)<0} |\mu_j(aV)|^{\gamma}\right)^{1/\gamma} \ge$

Set now $\gamma = \frac{2n}{n-\alpha} - n/2 \equiv \frac{(4+\alpha)n-n^2}{2(n-\alpha)}$. Then, if $2 < n < 2 + \sqrt{1+3\alpha}$ we get $\gamma'_{n,\alpha} \ge 1$ and

 $-a^{1+n/2\gamma}L_{\gamma,n}^{1/\gamma}\|\vec{\beta}\|_{\gamma'}\left(\int V_{-}^{n/2+\gamma}dx\right)^{1/\gamma} .$

$$\mathcal{G}_{\beta,a}(V) \geq -a^{\frac{4}{4+\alpha-n}} \mathcal{L}_{\gamma,n}^{1/\gamma} \|\beta\|_{\gamma_{n,\alpha}'} \left(\int_{\mathbb{R}^n} V_+^{\frac{2n}{n-\alpha}}\right)^{\frac{2(n-\alpha)}{(4+\alpha)n-n^2}}$$

Using the critical Sobolev inequality

G. Wo

$$\frac{G_{\beta,a}(V) \geq -a^{\frac{4}{4+\alpha-n}} L_{\gamma,n}^{1/\gamma} \|\beta\|_{\gamma'} \int_{n,\alpha}^{\frac{4}{(4+\alpha)-n}} \langle V, V \rangle_{\alpha/2}^{\frac{4}{(4+\alpha)-n}} \geq 23/26$$

$$\mathcal{H}_{\beta,a}^{W,\alpha}(V) = \frac{a}{2} \langle V, V \rangle_{\alpha/2} + \mathcal{G}_{\beta,a}(V) \geq a \langle V, V \rangle_{\alpha/2}^{\frac{2}{4+\alpha-n}} \left(\frac{1}{2} \langle V, V \rangle_{\alpha/2}^{1-\frac{2}{4+\alpha-n}} - a^{\frac{n-\alpha}{4+\alpha-n}} \mathcal{L}_{\gamma,n}^{1/\gamma} \|\beta\|_{\gamma_{n,\alpha}'} \mathcal{S}_{n,\alpha}^{\frac{4}{(4+\alpha)-n}} \right)$$
(16)

It follows that $\mathcal{H}_{\beta,a}^{W,\alpha}$ is coersive for any a > 0 if $3 \le n < 2 + \alpha$. If $n = 2 + \alpha$ then the functional is coersive if $a < \frac{S_{n,\alpha}^{\frac{4}{n-(4+\alpha)}}}{2L_{\gamma,n}^{1/\gamma}} |\beta|_{\gamma'_{n,\alpha}}^{-1}$. Note that $\gamma'_{n,\alpha} = \infty$ for $n = 3, \alpha = 1$ and $\gamma'_{n,\alpha} = 2$ for $n = 4, \alpha = 2$. Hence coersivity holds if

•
$$(\alpha, n) = (1, 3)$$
: $a < \frac{S_{3,1}}{2L_{\gamma,3}^{1/\gamma}} |\beta|_{\infty}^{-1} < a_c^{(3)}(\beta)$
• $(\alpha, n) = (2, 4)$: $a < \frac{S_{4,2}^{-2}}{2L_{\gamma,4}^{1/\gamma}} |\beta|_2^{-1} < a_c^{(4)}(\beta)$

Equi-energy distribution

$$\vec{\beta} = \mathbf{1}_k := \underbrace{\frac{(k^{-1}, \dots, k^{-1})}{k}}_{\substack{|\vec{\beta}|_{\infty}^{-1} = k}}; \quad |\vec{\beta}|_2^{-1} = \sqrt{k}$$
$$a_c^{(3)}(\mathbf{1}_k) > O(k) \quad ; \quad a_c^{(4)}(\mathbf{1}_k) > O(k^{1/2})$$

SO

2

イロト イヨト イヨト イヨト

Publication

G. Wolansky: Dual formulation of the constrained solutions of the multi-state Choqard equation, To appear in :Proc. of the Royal Society of Edinburgh, Section A:

Mathematics;

https://doi.org/10.1017/prm.2024.69

★聞▶ ★ 国▶ ★ 国▶