Dual formulation of the multi-state Schrödinger Poisson Equation

Gershon Wolansky

Department of Mathematics, Technion 32000 Haifa, ISRAEL

E-mail: gershonw@math.technion.ac.il

September 2024, Hangzhou

K 御 ▶ K 君 ▶ K 君 ▶

4 0 8

Nonlocal Shrodinger equations

$$
(-\Delta + V)\phi + \lambda \phi = 0 \tag{1}
$$

イロト イ押ト イヨト イヨト

on \mathbb{R}^3 , where $V=K*|\phi|^2$ is some symmetric kernel.

 QQQ

Nonlocal Shrodinger equations

The kernel is induced by electrostatic/gravitational potential $K(x) \approx \pm |x|^{-1}$:

$$
-\Delta\phi(x) \pm \left(\int \frac{|\phi(y)|^2}{|x-y|} dy\right) \phi(x) + \phi(x) = 0
$$

K ロ ▶ K 倒 ▶ K 듣 ▶ K 듣 ▶ ...

Nonlocal Shrodinger equations

The "gravitational" case $\mathcal{K}(x)\approx -|x|^{-1}$

$$
-\Delta\phi(x) - \left(\int \frac{|\phi(y)|^2}{|x-y|} dy\right) \phi(x) + \phi(x) = 0
$$

was originally proposed by Ph. Choquard, as an approximation to Hartree–Fock theory for a one component plasma. Equation of similar types also appear to be a prototype of the so-called nonlocal problems, which arise in many situations and as a model of self-gravitating matter.

제 ロン 제 御 에 제 결 에 제 결 사 ... 결

A generalized version in \mathbb{R}^n takes the form

$$
-\Delta\phi - \left(l_{\alpha} * |\phi|^{p}\right)|\phi|^{p-2}\phi + \phi = 0 \tag{1}
$$

where

$$
I_{\alpha} = A(\alpha)|x|^{\alpha - n}; \quad A(\alpha) := \frac{\Gamma\left(\frac{n - \alpha}{2}\right)}{2^{\alpha} \pi^{n/2} \Gamma\left(\alpha/2\right)}\tag{2}
$$

is the Rietz potential, $\alpha \in (0, n)$, $p \in (1, \infty)$ was considered by many authors in the last decades, using its variational structure as a critical point of the functional

$$
E_{p,\alpha}(\phi) = \frac{1}{2} \int_{\mathbb{R}^n} \left(|\nabla u|^2 + |\phi|^2 - \frac{1}{2p} \left(I_\alpha * |\phi|^p \right) |\phi|^p \right) \tag{3}
$$

on an appropriate space.

→ 何 ▶ → ヨ ▶ → ヨ ▶

In particular, existence of solutions the case $p = 2$ (and for more general singular interaction kernels) was studied by

- E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's non-linear equation ,Studies in Appl. Math.57(2)93-105, 1976/77
- P.-L. Lions: The Choquard equation and related questions, Nonlinear Anal., 4 (6) pp. 1063-1072, 1980
- G.P. Menzala: On regular solutions of a nonlinear equation of Choquard's type, Proc. Roy. Soc. Edinburgh Sect. A, 86 (3-4) pp. 291-301, 1980

For existence, regularity and asymptotic behavior of solutions in the general case see V. Moroz and J. Van Schaftingen

- Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp. Math. 17 , no. 5, 2015
- A guide to the Choquard equation, Vitaly Moroz & Jean Van Schaftingen. J. Fixed Point Theory Appl. 19 , no. 1, 773-813, 2017 and references therein. イロメ イ部メ イ君メ イ君メー QQ

The non-linear Schrödinger equation associated with $E_{p,q}$ takes the form

$$
-i\partial_t \psi - \Delta \psi - a(I_\alpha * |\psi|^p)|\psi|^{p-2}\psi = 0.
$$
 (4)

The number $a \in \mathbb{R}$ is the strength of interaction. The case $a > 0$ corresponds to the attractive, gravitation-like dynamics, and is related to Choquard's equation. The case $a < 0$ is the repulsive, electrostatic case and is related to the Hartree system. In this lecture we deal with the attractive case.

K ロ ▶ | K 母 ▶ | K ヨ ▶ | K ヨ ▶ |

Considering an eigenmode $\psi = e^{-i\lambda t} \phi$ we get that ϕ satisfy the non-linear eigenvalue problems

$$
-\Delta\phi - a\left(l_{\alpha}*|\phi|^{p}\right)|\phi|^{p-2}\phi - \lambda\phi = 0 \tag{5}
$$

which can be reduced to $a = \lambda = 1$ by a proper scaling. However, the solutions of the time dependent nonlinear equation preserve the \mathbb{L}^2 norm in time, so it is natural to look for stationary solutions under a prescribed \mathbb{L}^2 norm (say, $\|\phi\|_2=1)$. It is not difficult to see that, in general, one can find a scaling $\phi \mapsto \phi_\beta({\sf x}) = \beta^{-n/2} \phi({\sf x}/\beta)$ which preserves the \mathbb{L}^2 norm and transform the strength of interaction in [\(5\)](#page-7-0) into $a = 1$, making this parameter mathematically insignificant. There is, however, an exceptional case $\alpha = n(p-1) - 2$. In that case the first two terms in [\(5\)](#page-7-0) are scaled identically under \mathbb{L}^2 preserving scaling, so the size of the interaction coefficient a is mathematically significant in that case.

4 ロ X イラ X キ X キ X キ X コ X A Q Q Q

In the case $p = 2$ and in the presence of a prescribed, scalar potential W, the \mathbb{L}^2- constraint version of [\(5\)](#page-7-0) takes the form

$$
-\Delta \phi + W\phi - a\left(\int_{\mathbb{R}^n} \frac{|\phi(y)|^2}{|x-y|^{n-\alpha}} dy\right) \phi - \lambda \phi = 0, \quad \|\phi\|_2 = 1. \quad (6)
$$

A solution is given by a minimizer of the functional

$$
E_a^W(\phi) := \frac{1}{2} \int_{\mathbb{R}^n} (|\nabla \phi|^2 + W |\phi|^2) \, dx - \frac{a}{4} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|\phi(x)|^2 |\phi(y)|^2}{|x - y|^{n - \alpha}} dxdy \tag{7}
$$

restricted to the \mathbb{L}^2 unit sphere $\|\phi\|_2 = 1$. W a prescribed function satisfying

 $\lim_{|x| \to \infty} W(x) = \infty$

イロト 不優 ト 不差 ト 不差 トー 差

Exceptional case

D. Yinbin, L. Lu and S. Wei studied the equation in the exceptional case $\alpha = n - 2$, for $n > 3$, $a > 0$.

$$
-\Delta \phi + W\phi - a\left(\int_{\mathbb{R}^n} \frac{|\phi(y)|^2}{|x-y|^2} dy\right) \phi - \lambda \phi = 0, \quad \|\phi\|_2 = 1.
$$

Constraint minimizers of mass critical Hartree functionals: Existence and mass concentrations, J. Mathematical physics, 56, 2015 In particular, they showed the existence of a critical strength $\bar{a}_c > 0$. depending on n but independent of W , such that E^{W}_{a} is bounded from below on the sphere $\|\phi\|_2 = 1$ iff $a \le \bar{a}_c$. Moreover, a minimizer of \mathcal{E}^W_a exists if $a < \bar{a}_c$, and is a solution. It was also shown that $a_c = ||\bar{\phi}||_2$, where $\bar{\phi}$ is the unique, positive unconstrained solution of the equation of

$$
-\Delta \bar{\phi}(x) - \left(\int_{\mathbb{R}^n} \frac{|\bar{\phi}(y)|^2}{|x-y|^2} dy\right) \bar{\phi}(x) + \bar{\phi}(x) = 0.
$$
 (8)

K ロンス 御 > ス ヨ > ス ヨ > 一 ヨ

Multi state system

The first object is to extend the \mathbb{L}^2 -constraint Choquard equation [\(6\)](#page-8-0) into a $k-$ state system

$$
-\Delta\phi_j + (W - aV)\phi_j - \lambda_j\phi_j = 0 \|\phi_j\|_2 = 1, \quad j = 1 \dots k
$$

where

$$
V(x) = I_{\alpha} * \left(\sum_{i=1}^{k} \beta_{i} \int_{\mathbb{R}^{n}} \frac{\rho_{i}(y)}{|x - y|^{n - \alpha}} dy \right)
$$

$$
\rho_{i} := |\phi_{i}|^{2}
$$

where $(\phi_1,\dots \phi_\mathsf{k})$ constitutes an orthonormal $\mathsf{k}-$ sequence in $\mathbb{L}^2(\mathbb{R}^n)$ and

$$
\beta_j > 0, \qquad \sum_{1}^{k} \beta_j = 1 \tag{9}
$$

イロン イ部ン イ君ン イ君ン 一番

are the probabilities of occupation of the states $j = 1...k$.

Multi state system

The first object is to extend the \mathbb{L}^2 -constraint Choquard equation (6) into a $k-$ state system

and the exceptional case $\alpha = n - 2$

$$
-\Delta\phi_j + W\phi_j - a\left(\sum_{i=1}^k \beta_i \int_{\mathbb{R}^n} \frac{|\phi_i(y)|^2}{|x-y|^2} dy\right) \phi_j - \lambda_j \phi_j = 0
$$

where $(\phi_1,\ldots \phi_\mathsf{k})$ constitutes an orthonormal $\mathsf{k}-$ sequence in $\mathbb{L}^2(\mathbb{R}^n)$ and

$$
\beta_j > 0, \qquad \sum_{1}^{k} \beta_j = 1 \tag{9}
$$

K ロンス 御 > ス ヨ > ス ヨ > 一 ヨ

are the probabilities of occupation of the states $j = 1...k$.

Theorem

If $\{\phi_1, \ldots, \phi_k\}$ is a minimizer of

$$
\mathcal{E}^{(\alpha)}_{\beta,a}(\vec{\psi}) := \frac{1}{2}\sum_{j=1}^k \beta_j \left[\langle \nabla \psi_j, \nabla \psi_j \rangle + \langle W\psi_j, \psi_j \rangle - \frac{a}{2}\sum_{i=1}^k \beta_i \langle |\psi_j|^2, I_{\alpha}*|\psi_i|^2 \rangle \right]
$$

on all k– orthonormal frames $\vec{\psi} = (\psi_1, \dots \psi_k)$, then it is a solution of the $k - state$ Choquard system, while

$$
\lambda_1 < \lambda_2 \leq \ldots, \leq \lambda_k
$$

are successive eigenvalues starting form the minimal level λ_1 and ϕ_i the corresponding eigenstates.

イロト イ押ト イヨト イヨト ニヨ

Dual formulation

The second object is to introduce a dual approach to the \mathbb{L}^2 constraint Choquard problem in the case $p = 2$.

э

4 0 8

→ (御)> → 君)> → 君)>

Dual formulation

The second object is to introduce a dual approach to the \mathbb{L}^2 constraint Choquard problem in the case $p = 2$. Idea: Work with the "gravitational potential" and NOT with the wave function

$$
V = I_{\alpha} * (\sum_{j=1}^k \beta_j |\bar{\phi}_j|^2)
$$

4 日下

 $\mathcal{A} \cap \mathbb{P} \rightarrow \mathcal{A} \supseteq \mathcal{A} \rightarrow \mathcal{A} \supseteq \mathcal{A}$

Dual formulation

The second object is to introduce a dual approach to the \mathbb{L}^2 constraint Choquard problem in the case $p = 2$. *Idea:* Work with the "gravitational potential" and NOT with the wave function

$$
V = I_{\alpha} * (\sum_{j=1}^{k} \beta_j |\bar{\phi}_j|^2)
$$

For the case of single state $k=1$, the dual formulation of E^W_a for $\alpha=2$ on the constraint \mathbb{L}^2 sphere takes the form of the functional $V\mapsto \mathcal H^{W,\alpha}_a(V)$ $\mathcal{H}_{a}^{W,2}(V) = \frac{a}{2}$ Z $\int_{\mathbb{R}^n} |\nabla V|^2 + \lambda_1(V)$

over the *unconstrained* Beppo-Levi space $\mathcal{V} \in \dot{\mathbb{H}}_1(\mathbb{R}^n)$. Here the functional $\lambda_1 = \lambda_1(V)$ is the leading (minimal) eigenvalue of the Schrdinger operator

$$
-\Delta + W - aV \text{ on } \mathbb{R}^n.
$$

イロン イ部ン イ君ン イ君ン 一番

The extension of this dual formulation to the k–system for $\alpha \in (0,2]$ In case $\alpha = 2$ it takes the form

$$
\mathcal{H}^{W,2}_{\beta,a}(V)=\frac{a}{2}\int_{\mathbb{R}^n}|\nabla V|^2+\sum_{j=1}^k\beta_j\lambda_j(V)
$$

where $\lambda_1(V) < \lambda_2(V) \leq \ldots \lambda_k(V)$ are the leading k eigenvalues of the Schrdinger operator, while $\beta_1 > \beta_2 > \dots \beta_k > 0$.

イロト イ母 トイミト イミト ニヨー りんぴ

If $\alpha \neq 2$?

Let us recall some definitions and theorems we use later For $V_1,V_2\in\mathcal{C}_0^\infty(\mathbb{R}^n)$ and $\alpha\in(0,2)$, consider the quadratic form

$$
\left\langle V_1, V_2 \right\rangle_{\alpha/2} := A(-\alpha) \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{(V_1(x) - V_1(y))(V_2(x) - V_2(y))}{|x - y|^{n + \alpha}} dxdy
$$

where the constant $A(-\alpha)$ is defined as in [\(2\)](#page-4-0). If $\alpha = 2$

$$
\left\langle V_1,V_2\right\rangle_{(1)}:=\int_{\mathbb{R}^n}\nabla V_1\cdot \nabla V_2 dx\ .
$$

The closure of $C_0^\infty({\mathbb R}^{n})$ with respect to the norm induced by the inner product $\langle\cdot,\cdot\rangle_{\alpha/2}$ is denoted by $\mathbb{H}_{\alpha/2}$. We denote the associated norm by $\|\|\cdot\||_{\alpha/2}$. 1 Recall that $\mathbb{H}_{\alpha/2}$ is a Hilbert space so, in particular, is weakly locally compact.

 1 Note that $\dot{\mathbb{H}}_{\alpha/2}(\mathbb{R}^n)$ does not contain $\mathbb{L}^2(\mathbb{R}^n).$ In case $\alpha=2$ it is sometimes called Beppo-Levi space. イロメ イ部メ イ君メ イ君メー QQQ

 $\alpha = 2$:

$$
\mathcal{H}_{\beta,a}^{W,2}(V)=\frac{a}{2}\int_{\mathbb{R}^n}|\nabla V|^2+\sum_{j=1}^k\beta_j\lambda_j(V)
$$

where $\lambda_1(V) < \lambda_2(V) \leq \ldots \lambda_k(V)$ are the leading k eigenvalues of the Schrdinger operator, while $\beta_1 > \beta_2 > \dots \beta_k > 0$.

イロン イ部ン イ君ン イ君ン 一番

$$
0 < \alpha < 2:
$$

$$
\mathcal{H}_{\beta,a}^{W,\alpha}(V) = \frac{a}{2} \langle V, V \rangle_{\alpha/2} + \sum_{j=1}^k \beta_j \lambda_j(V)
$$

where $\lambda_1(V) < \lambda_2(V) \leq \ldots \lambda_k(V)$ are the leading k eigenvalues of the Schrdinger operator, while $\beta_1 > \beta_2 > ... \beta_k > 0$.

イロト イ押ト イヨト イヨト ニヨ

$$
\frac{1}{2}\left\langle I_{\alpha} * \rho, \rho \right\rangle := \sup_{V \in C_0^{\infty}(\mathbb{R}^n)} \left\langle \rho, V \right\rangle - \frac{1}{2} \left\langle V, V \right\rangle_{\alpha/2} . \tag{10}
$$

G. Wolansky (Technion)

$$
15 \; / \; 26
$$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

$$
\frac{1}{2}\langle I_{\alpha} * \rho, \rho \rangle := \sup_{V \in C_0^{\infty}(\mathbb{R}^n)} \langle \rho, V \rangle - \frac{1}{2} \langle V, V \rangle_{\alpha/2} . \tag{10}
$$

$$
\mathbf{H}^{(\alpha)}(\phi, V) = \langle (-\Delta + W)\phi, \phi \rangle + a \left[\langle V, V \rangle_{\alpha/2} - \langle V, |\phi|^2 \rangle \right] . \tag{11}
$$

活

メロト メ都 トメ きょ メ きょう

$$
\frac{1}{2}\left\langle I_{\alpha} * \rho, \rho \right\rangle := \sup_{V \in C_0^{\infty}(\mathbb{R}^n)} \left\langle \rho, V \right\rangle - \frac{1}{2} \left\langle V, V \right\rangle_{\alpha/2} . \tag{10}
$$

$$
\mathbf{H}^{(\alpha)}(\phi, V) = \langle (-\Delta + W)\phi, \phi \rangle + a \left[\langle V, V \rangle_{\alpha/2} - \langle V, |\phi|^2 \rangle \right] . \tag{11}
$$

$$
\inf_{V \in C_0^{\infty}(\mathbb{R}^n)} \mathbf{H}^{(\alpha)}(\phi, V) = 2\mathcal{E}_a^{(\alpha)}(\vec{\phi}) \equiv
$$

$$
\frac{1}{2} \left[\langle \nabla \phi, \nabla \phi \rangle + \langle W\phi, \phi \rangle - \frac{a}{2} \langle |\phi^2, I_{\alpha} * |\phi|^2 \rangle \right] .
$$

活

メロト メ都 トメ きょ メ きょう

$$
\frac{1}{2}\left\langle I_{\alpha} * \rho, \rho \right\rangle := \sup_{V \in C_0^{\infty}(\mathbb{R}^n)} \left\langle \rho, V \right\rangle - \frac{1}{2} \left\langle V, V \right\rangle_{\alpha/2} . \tag{10}
$$

$$
\mathbf{H}^{(\alpha)}(\phi, V) = \langle (-\Delta + W)\phi, \phi \rangle + a \left[\langle V, V \rangle_{\alpha/2} - \langle V, |\phi|^2 \rangle \right] . \tag{11}
$$

$$
\inf_{V\in C_0^{\infty}(\mathbb{R}^n)}\mathsf{H}^{(\alpha)}(\phi,V)=2\mathcal{E}_a^{(\alpha)}(\vec{\phi})\equiv
$$

$$
\frac{1}{2}\left[\langle\nabla\phi,\nabla\phi\rangle+\langle W\phi,\phi\rangle-\frac{a}{2}\left\langle|\phi^2,I_{\alpha}*|\phi|^2\right\rangle\right] \ .
$$

Let $\mathcal{H}^{W,\alpha}_{\sf a}(V) = \inf_{\|\phi\|=1} \mathsf{H}^{(\alpha)}(\phi,V)$. $\mathcal{H}^{W,\alpha}_{,a}(V)=\frac{a}{2}\left\langle V,V\right\rangle_{\alpha/2}+\inf_{\|\phi\|_2=1}\left\langle (-\Delta+W-aV)\phi,\phi\right\rangle\;.$

イロト イ御 トイミト イミト ニミー のんぐ

Multi-level case

$$
\mathcal{H}_{\beta,a}^{W,\alpha}(V)=\frac{a}{2}\langle V,V\rangle_{\alpha/2}+\inf_{\vec{\phi}\in\otimes^{k}\mathbb{H}^{1}}\sum_{j=1}^{k}\beta_{j}\langle(-\Delta+W-aV)\phi_{j},\phi_{j}\rangle.
$$

$$
V\in \mathbb{\dot{H}}_{\alpha/2}\mapsto G_{\beta,\mathsf{a}}(V):=\inf_{\vec{\phi}\in\otimes^{k}\mathbb{H}^{1}}\sum_{j=1}^{k}\beta_{j}\left\langle (-\Delta+W-\mathsf{a}V)\phi_{j},\phi_{j}\right\rangle . \quad (12)
$$

画

メロト メ都 トメ ヨ トメ ヨト

Lemma

[Extended Rayleigh-Ritz] If $\beta_1 > \beta_2 \ldots > \beta_k$ then

$$
G_{\beta,a}(V)=\sum_{j=1}^k\beta_j\lambda_j(V)
$$

where $\lambda_i(V)$ are the k lowest eigenvalues of the operator $-\Delta + W - aV$ arranged by increasing order. In particular, $\mathsf{G}_{\beta,\mathsf{a}}$ is concave on $\mathbb{H}_{\alpha/2}.$ If $2 < n < 4 + \alpha$, $0 < \alpha \leq 2$ then $G_{\beta,a}$ is weakly continuous on $\mathbb{H}^{'}_{\alpha/2}.$ Moreover, the minimum in [\(12\)](#page-24-0) is obtained at the eigenfunction $\bar{\phi}_j$ of $-\Delta + W - \mathsf{a}V$ corresponding to λ_j .

イロト イ母 ト イヨ ト イヨ トー

The Euler-Lagrange equation

$$
\partial_V \frac{1}{2} \langle V, V \rangle_{\alpha/2} = (-\Delta)^{\alpha/2} V
$$

$$
\overline{\partial}_V G_{\beta, a} = -a \sum_{j=1}^k \beta_j |\overline{\phi}_j|^2
$$

$$
(-\Delta)^{\alpha/2} V - \sum_{j=1}^k \beta_j |\overline{\phi}_j|^2 = 0 \iff V = I_\alpha * (\sum_{j=1}^k \beta_j |\overline{\phi}_j|^2)
$$

$$
(-\Delta)^{\alpha/2}V - \sum_{j=1} \beta_j |\bar{\phi}_j|^2 = 0 \iff V = I_\alpha * (\sum_{j=1} \beta_j |\bar{\phi}_j|^2)
$$

 \leftarrow \Box \rightarrow

- 4 n⊡ \rightarrow

医毛囊 医牙骨下的

活

Partial Proof

Let $\bar{\phi}_j$ be the normalized eigenvalues of $-\Delta+W -\textit{aV}$ corresponding to $\lambda_j(V).$ Fix some $m\geq j$ and let $\mathbb{H}_m=\textit{Sp}(\bar{\phi}_1,\dots \bar{\phi}_m).$ Let us restrict the supremum (12) to $\mathbb{H}_m^k:=\{\vec{\phi}:=(\phi_1,\ldots \phi_k), \phi_j\in \mathbb{H}_m\}\subset \mathbb{H}^k.$ Then

$$
\phi_j = \sum_{i=1}^m \langle \phi_j, \bar{\phi}_i \rangle \bar{\phi}_i, \quad (-\Delta + W - aV)\phi_j = \sum_{i=1}^m \lambda_i \langle \phi_j, \bar{\phi}_i \rangle \bar{\phi}_i.
$$

Define $\beta_{k+1}=\ldots=\beta_m=0.$ Then we can write, for any $\vec{\phi}\in\mathbb{H}_m^k$

$$
\sum_{j=1}^{k} \beta_j \langle (-\Delta + W - aV)\phi_j, \phi_j \rangle = \sum_{i=1}^{m} \sum_{j=1}^{m} \beta_j \lambda_i |\langle \phi_j, \bar{\phi}_i \rangle|^2. \tag{13}
$$

Denote now $\gamma_{i,j}:=|\braket{\phi_j,\bar{\phi}_i}|^2.$ Then $\{\gamma_{i,j}\}$ is $m\times m,$ bi-stochastic matrix, i.e $\sum_{i=1}^{m}\gamma_{i,j}=\sum_{j=1}^{m'}\gamma_{i,j}=1$ for all $i,j=1\ldots m$. Consider now the infimum of $\sum_{i=1}^{\widetilde{m}}\sum_{j=1}^{\widetilde{m}'}\tilde{\gamma}_{i,j}\tilde{\lambda_{i}}\beta_{j}$ over all bi-stochastic martices $\{\tilde{\gamma}_{i,j}\}.$ By Krain-Milman theorem, the minimum is obtained on an extreme point in the convex set of bi- stochastic matrices. By Birkhoff theorem, the extreme points are permutations so, from[\(13\)](#page-27-0) And Ash Ash Ash Range G. Wolansky (Technion) 19 / 26

$$
\forall \vec{\phi} \in \mathbb{H}_m^k, \quad \sum_{j=1}^k \beta_j \left\langle (-\Delta + W - aV)\phi_j, \phi_j \right\rangle \geq \sum_{j=1}^m \beta_{\pi(j)} \lambda_j
$$

for some permutation $\pi : \{1, \ldots m\} \mapsto \{1, \ldots m\}$. Now, recall that β_i are assumed to be in descending order while λ_i are in ascending order by definition. By the discrete rearangment theorem of Hardy, Littelwood and Polya [?] we obtain that the maximum on the right above is obrained at the identity permutation $\pi(i) = i$, that is, at the identity matrix $\tilde\gamma_{i,j}:=\big<\phi_j,\bar\phi_i\big>=\delta_{i,j}.$ This implies thet the eigenbasis $\bar\phi_1,\ldots\bar\phi_k$ of the k leading eigenvalues is the minimizer of [\(12\)](#page-24-0) on \mathbb{H}_m^k for any $m\geq k.$ In particular, the minimizer of (12) in \mathbb{H}_m^k is independent of m , as long as $m > k$. Suppose there exists some $\vec{\psi} \in \mathbb{H}^k$ which is not contained in and finite dimensional subspace generated by eigenstates, for which [\(12\)](#page-24-0) is strictly smaller than its value on the first $k-$ leading eigenspace. Since the eigenstates of the Schrdinger operator under assumption generate the whole space we can find, for a sufficiently large m , an orthonormal base in \mathbb{H}_m^k for on which the left side of (12) is strictly larger than $\sum_{j=1}^k \beta_j \lambda_j(V)$, and we get a contradiction for this value of m. $\begin{array}{c} 4 \ \square \ \triangleright \ \ 4 \ \overline{\square} \ \triangleright \ \ 4 \ \overline{\square} \ \triangleright \ \ 4 \ \overline{\square} \ \triangleright \ \end{array}$

Theorem (Main)

- a: The functional $V \mapsto \frac{a}{2}\left\langle V,V\right\rangle_{\alpha/2} + \mathsf{G}_{\beta,\mathsf{a}}(V)$ is bounded from below on $\mathbb{H}_{\alpha/2}$ for any $a>0$ if $3\leq n < 2+\alpha.$
- b: In the critical cases $n = 3$, $\alpha = 1$ or $n = 4$, $\alpha = 2$ there exists $\mathsf{a} = \mathsf{a}_{\mathsf{c}}^{(n)}(\vec{\beta}) > 0$ independent of W for which the functional is bounded from below if $a < a_c^{(n)}(\vec{\beta})$ and unbounded if $a > a_c^{(n)}(\vec{\beta})$.
- c: Moreover, in the cases $n=3$ and $n=4,$ a $<$ a $_c^{(n)}(\vec{\beta})$ the functional is coersive on $\mathbb{H}_{\alpha/2}(\mathbb{R}^n)$, namely

$$
\lim_{\|V\|_{\alpha/2}\to\infty}\frac{1}{2}\left\langle V,V\right\rangle_{\alpha/2}+G_{\beta,a}(V)=\infty
$$
 (14)

イロト イ押ト イヨト イヨト

and a minimizer \overline{V} exists.

d: If case [c] holds then there exists a solution of the Choquard system, induced by the minimizing potential \overline{V} .

Proof of Main Theorem

Theorem (Lieb-Thirring)

For the Schrödinger operator $-\Delta - V$ on \mathbb{R}^n with a real valued potential V the numbers $\mu_1(V) \leq \mu_2(V) \leq \cdots \leq 0$ denote the (not necessarily finite) sequence of its negative eigenvalues. Then, for $n > 3$ and $\gamma > 0$

$$
\sum_{j:\mu_j(V)<0}|\mu_j(V)|^{\gamma}\leq L_{\gamma,n}\int V_+^{n/2+\gamma}dx\qquad \qquad (15)
$$

where V_+ = max{0, V} and $L_{\gamma,n}$ is independent of V.

Lemma (Critical Sobolev)

For $\alpha\in(0,2]$, $n>2$, the space $\dot{\mathbb{H}}_{\alpha/2}$ is continuously embedded in $\mathbb{L}^{2n/(n-\alpha)}(\mathbb{R}^n)$, so there exists $\mathcal{S}=\mathcal{S}_{n,\alpha}>0$ such that

$$
||V||_{2n/(n-\alpha)} \leq S_{n,\alpha}\sqrt{\langle V,V\rangle_{\alpha/2}}.
$$

Recall that $\lambda_i(V)$ are the eigenvalues of $-\Delta + W - aV$. Since $W > 0$ it follows that $\lambda_i(V) \geq \mu_i(aV)$. Hence $\mathsf{G}_{\beta,\mathsf{a}}(\mathsf{V}) := \sum_{j=1}^k \beta_j \lambda_j(\mathsf{V}) \geq -\sum_{j;\mu_j(\mathsf{aV}) < 0} \beta_j |\mu_j(\mathsf{aV})|$. By Holder inequality, for $\gamma\geq 1$, $\gamma^{'}=\gamma/(\gamma-1)$ and (15) $G_{\beta,a}(V) \geq \sqrt{ }$ \mathcal{L} \sum k $j=1$ $|\beta_j|^{\gamma'}$ $\overline{1}$ $^{1/\gamma^{'}}$ (\mathcal{L} \sum j ; μ_j (a V) $<$ 0 $|\mu_j(aV)|^{\gamma}$ \setminus $\overline{1}$ $1/\gamma$ ≥

Set now $\gamma = \frac{2n}{n-\alpha} - n/2 \equiv \frac{(4+\alpha)n - n^2}{2(n-\alpha)}$ $\frac{1}{2(n-\alpha)}$. Then, if $2 < n < 2 + \sqrt{1+3\alpha}$ we get $\gamma^{'}_{\mathit{n},\alpha} \geq 1$ and

 $-a^{1+n/2\gamma}L_{\gamma,n}^{1/\gamma}\|\vec{\beta}\|_{\gamma'}\,\left(\,\int V_{-}^{n/2+\gamma}dx\right)^{1/\gamma}\;.$

$$
G_{\beta,a}(V) \geq -a^{\frac{4}{4+\alpha-n}} L_{\gamma,n}^{1/\gamma} {\left\|\beta\right\|}_{\gamma'_{n,\alpha}} \left(\int_{\mathbb{R}^n} V_+^{\frac{2n}{n-\alpha}} \right)^{\frac{2(n-\alpha)}{(4+\alpha)n-n^2}}
$$

Using the critical Sobolev inequality

$$
\mathsf{G}_{\beta,\mathsf{a}}(V) \geq -a^{\frac{4}{4+\alpha-n}}L_{\gamma,n}^{1/\gamma}\|\beta\|_{\gamma'}\cdot S_{n,\alpha}^{\frac{4}{(4+\alpha)-n}}\langle V, W\rangle_{\alpha'\bar{\beta}}^{\frac{2}{(4+\alpha)-n}}\geq \text{ for all } \alpha\in\mathbb{N}
$$
\n6. Wolansky (Technion)

.

$$
\mathcal{H}_{\beta,a}^{W,\alpha}(V) = \frac{a}{2} \langle V, V \rangle_{\alpha/2} + G_{\beta,a}(V) \ge
$$

$$
a \langle V, V \rangle_{\alpha/2}^{\frac{2}{4+\alpha-n}} \left(\frac{1}{2} \langle V, V \rangle_{\alpha/2}^{1-\frac{2}{4+\alpha-n}} - a^{\frac{n-\alpha}{4+\alpha-n}} L_{\gamma,n}^{1/\gamma} ||\beta||_{\gamma'_{n,\alpha}} S_{n,\alpha}^{\frac{4}{(4+\alpha)-n}} \right) (16)
$$

It follows that $\mathcal{H}_{\beta,a}^{W,\alpha}$ $\begin{array}{l} \mu_{\gamma,\alpha}\\ \beta,a \end{array}$ is coersive for any $a>0$ if $3\leq n < 2+\alpha.$ If $n=2+\alpha$ then the functional is coersive if $a<\frac{S}{\alpha}$ $\frac{4}{n-(4+\alpha)}$
 $\sum_{n,\alpha}$ $\frac{\sum\limits_{\gamma,\alpha}^{n}(\gamma-\alpha)}{2L_{\gamma,n}^{1/\gamma}}|\beta|_{\gamma_{n,\alpha}^{\prime}}^{-1}$ $\frac{-1}{\gamma_{n,\alpha}^{\prime}}$. Note that $\gamma_{n,\alpha}'=\infty$ for $n=3, \alpha=1$ and $\gamma_{n,\alpha}'=2$ for $n=4, \alpha=2.$ Hence coersivity holds if

\n- \n
$$
(\alpha, n) = (1, 3): \quad a < \frac{S_{3,1}^{-2}}{2L_{\gamma,3}^{1/\gamma}} |\beta|_{\infty}^{-1} < a_c^{(3)}(\beta)
$$
\n
\n- \n
$$
(\alpha, n) = (2, 4): \quad a < \frac{S_{4,2}^{-2}}{2L_{\gamma,4}^{1/\gamma}} |\beta|_{2}^{-1} < a_c^{(4)}(\beta)
$$
\n
\n

Equi-energy distribution

$$
\vec{\beta} = \mathbf{1}_k := \frac{(k^{-1}, \dots, k^{-1})}{k}
$$

$$
|\vec{\beta}|_{\infty}^{-1} = k \quad ; \quad |\vec{\beta}|_2^{-1} = \sqrt{k}
$$

$$
a_c^{(3)}(\mathbf{1}_k) > O(k) \quad ; \quad a_c^{(4)}(\mathbf{1}_k) > O(k^{1/2})
$$

G. Wolansky (Technion) 25 / 26

so

 299

重

イロト イ部 トイヨ トイヨト

Publication

G. Wolansky: Dual formulation of the constrained solutions of the multi-state Choqard equation,

To appear in :Proc. of the Royal Society of Edinburgh, Section A: Mathematics;

https://doi.org/10.1017/prm.2024.69

 $A \oplus B$ $A \oplus B$ $A \oplus B$

4 0 8