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Functions of Bounded Variation (BV)

Definition: u ∈ BV (Ω) if u ∈ L1(Ω) and:

ˆ
Ω
u(x)

∂δ

∂xj
(x)dx = −

ˆ
Ω
δ(x)dµj(x) ∀δ ∈ C∞c (Ω,R),

where ∀j , µj := uxj is a finite signed Radon measure.

The BV semi-norm:

‖Du‖Ω := sup
{ˆ

Ω
u div g : g ∈ C∞c (Ω,RN), |g(x)| ≤ 1,∀x ∈ Ω

}
.

W 1,1(Ω) ( BV (Ω). For u ∈W 1,1(Ω): ‖Du‖Ω =
´

Ω |∇u|.
For u ∈ BV (Ω), ∃ a “jump set”, Ju of dimension N − 1, with
the normal νu s.t.:

(i) At HN−1-a.e. each x ∈ Ω \ Ju, u is approximately continuous,
(ii) the approximate limits u+, u− exist on both sides of Ju.
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Sobolev Space W r ,q for the case r ∈ (0, 1)

Definition: Given r ∈ (0, 1), u ∈W r ,q(Ω,R) if u ∈ Lq(Ω,R)
and:

[u]qW r,q :=

ˆ
Ω

ˆ
Ω

∣∣u(x)− u(y)
∣∣q

|x − y |N+rq
dxdy < +∞,

The W r ,q semi-norm: [u]W r,q .

The W r ,q norm: ‖u‖W r,q := [u]W r,q + ‖u‖Lq .
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Approximate limit of function

Definition

Given u ∈ L1
loc(Ω,Rd), we say that u has approximate limit at

x ∈ Ω if ∃z ∈ Rd such that

lim
ρ→0+

 
Bρ(x)

|u(y)− z |dy = 0. (1)

The set Su ⊂ Ω of points where this property does not hold is
called the approximate discontinuity set.
For any x ∈ Ω the vector z , uniquely determined by (1), is called
the approximate limit of u at x and denoted by ũ(x)
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Approximate limit-oscillation point

Definition

Given u ∈ L1
loc(Ω,Rd), we say that x ∈ Ω is an approximate

limit-oscillation point of u if

lim
ρ→0+

(
inf
c∈Rd

 
Bρ(x)

|u(y)− c |dy

)
= 0. (2)

The set S ′u of points where this property does not hold is called
the reduced approximate discontinuity set.
Obviously S ′u ⊂ Su.
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Remark

Let u ∈ L1
loc(Ω,Rd). Then, for every x ∈ Ω we have

lim
ρ→0+

(
inf
c∈Rd

 
Bρ(x)

|u(y)− c |dy

)
= 0 if and only if

lim
ρ→0+

 
Bρ(x)

|u(y)− uBρ(x)|dy = 0. (3)
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A classical result

Theorem (Adams-Hedberg, Ziemer, Evans-Gariepy)

Let Ω ⊂ RN be an open set, 1 ≤ p ≤ N and u ∈W 1,p(Ω).

Then, there exists E ⊂ RN such that capp(E ) = 0 and

lim
ρ→0+

 
Bρ(x)

∣∣∣u(y)− lim
ε→0+

uBε(x)

∣∣∣pdy = 0 ∀x ∈ Ω \ E . (4)

I.e. we have capp

(
Su
)

= 0 (see Definition 1).
Here capp is the p−capacity.

Remark

Recall that for 1 ≤ p < N there exists a constant C , such that
capp(E ) ≤ CHN−p(E ) ∀E ⊂ RN .

However, if 1 < p < N then HN−p(E ) <∞ implies capp(E ) = 0.
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Our result: replacing zero capacity condition with zero
HN−p condition

Theorem (Hashash-P 2023)

Let Ω ⊂ RN be an open set, 1 ≤ p ≤ N and u ∈W 1,p(Ω).

Then, there exists E ⊂ RN such that HN−p(E ) = 0 and

lim
ρ→0+

 
Bρ(x)

∣∣∣u(y)− uBρ(x)

∣∣∣pdy = 0 ∀x ∈ Ω \ E . (5)

I.e. we have HN−p(S ′u) = 0 (see Definition 2).

Example (Hashash-P 2023): uBρ(x) in (5) cannot be replaced by
limε→0+ uBε(x) in the general case.
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A similar result in the fractional space W r ,q

Theorem (Hashash-P 2023)

Let Ω ⊂ RN be an open set, r ∈ (0, 1) and q ≥ 1, such that
rq ≤ N and let u ∈W r ,q(Ω).

Then, there exists E ⊂ RN such that HN−rq(E ) = 0 and

lim
ρ→0+

 
Bρ(x)

∣∣∣u(y)− uBρ(x)

∣∣∣qdy = 0 ∀x ∈ Ω \ E . (6)

I.e. we have HN−rq(S ′u) = 0.

Example (Hashash-P 2023): uBρ(x) in (6) cannot be replaced by
limε→0+ uBε(x) in the general case.
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∣∣∣qdy = 0 ∀x ∈ Ω \ E . (6)

I.e. we have HN−rq(S ′u) = 0.

Example (Hashash-P 2023): uBρ(x) in (6) cannot be replaced by
limε→0+ uBε(x) in the general case.
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On approximation by Lipschitz and Hölder maps

Theorem (Ziemer, Evans-Gariepy)

Let Ω ⊂ RN be an open set and p ≥ 1. Let either
u ∈W 1,p

loc (Ω,Rd) in the case p > 1, or u ∈ BVloc(Ω,Rd) in the
case p = 1, and let K ⊂ Ω be a compact set. Then for every ε > 0
there exists a compact set K0 ⊂ K such that LN (K \ K0) < ε and
u ∈ C 0,1(K0,Rd).

Theorem (Hashash-P 2023)

Let Ω ⊂ RN be an open set and q ≥ 1, r ∈ (0, 1). Let
u ∈W r ,q

loc (Ω,Rd) and let K ⊂ Ω be a compact set. Then for every
ε > 0 there exists a compact set K0 ⊂ K such that
LN (K \ K0) < ε and u ∈ C 0,r (K0,Rd).
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Besov spaces B s
q,∞

Given q ≥ 1 and s ∈ (0, 1), u ∈ Lq(RN) belongs to Besov space
Bs
q,∞(RN) if we have

sup
ρ∈(0,∞)

{
sup
|h|≤ρ

(ˆ
RN

(∣∣u(x + h)− u(x)
∣∣

ρs

)q

dx

)}
<∞. (7)

Moreover, u ∈ Lqloc(Ω) belongs to Besov space
(
Bs
q,∞
)
loc

(Ω) if

∀K ⊂⊂ Ω ∃uK ∈ Bs
q,∞(RN) such that uK (x) = u(x) ∀x ∈ K .

Then clearly, u ∈ Lq(RN) belongs to Besov space Bs
q,∞(RN) if and

only if we have

lim sup
|h|→0

ˆ
RN

∣∣u(x + h)− u(x)
∣∣q

|h|sq
dx <∞, (8)

and u ∈ Lqloc(Ω) belongs to Besov space
(
Bs
q,∞
)
loc

(Ω) if and only
if ∀K ⊂⊂ Ω we have

lim sup
|h|→0

ˆ
K

∣∣u(x + h)− u(x)
∣∣q

|h|sq
dx <∞. (9)
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Generalized approximate limit-oscillation point

Definition

Given u ∈ L1
loc(Ω,Rd), we say that x ∈ Ω is a generalized

approximate limit-oscillation point of u if

lim inf
ρ→0+

(
inf
c∈Rd

 
Bρ(x)

|u(y)− c |dy

)
= 0. (10)

The set S ′′u of points where this property does not hold is called
the generalized approximate discontinuity set.
Obviously S ′′u ⊂ S ′u ⊂ Su.
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Approximate jump points

Definition

Let Ω ⊂ RN be an open set, u ∈ L1
loc(Ω,Rd) and x ∈ Ω. We say

that x is an approximate jump point of u if ∃a, b ∈ Rd and
∃ν ∈ SN−1 such that a 6= b and

lim
ρ→0+

 
B+
ρ (x ,ν)

|u(y)− a|dy = 0, lim
ρ→0+

 
B−
ρ (x ,ν)

|u(y)− b|dy = 0,

(11)
where

B+
ρ (x , ν) := {y ∈ Bρ(x) : (y − x) · ν > 0}

B−ρ (x , ν) := {y ∈ Bρ(x) : (y − x) · ν < 0} . (12)

The triple (a, b, ν), uniquely determined, up to a permutation of
(a, b) and the sign of ν, is denoted by (u+(x), u−(x), νu(x)). The
set of approximate jump points is denoted Ju.
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Remark

Obviously we have Ju ⊂ S ′′u ⊂ S ′u ⊂ Su.

Theorem (Giacomo Del Nin)

Let Ω ⊂ RN be an open set and let u ∈ L1
loc(Ω,Rd). Then the

jump set Ju is countably (N − 1)−rectifiable.

Theorem (Federer-Vol’pert)

Let Ω ⊂ RN be a open set, and u ∈ BVloc(Ω,Rd). Then, the jump
set Ju is countably (N − 1)−rectifiable set, oriented with the jump
vector νu(x), and moreover, we have HN−1

(
Su \ Ju

)
= 0.
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Theorem (De Lellis-Otto, Ghiraldin-Lamy)

Let Ω ⊂ R2 be a open set, and u ∈
(
B

1
3

3,∞

)
loc

(Ω,R2), satisfying

∣∣u(x)
∣∣2 = 1 for L2 a.e. x ∈ Ω (13)

and
div u = 0 in the sense of distributions in Ω , (14)

Then, the jump set Ju is countably 1−rectifiable set, oriented with
the jump vector νu(x), and moreover, we have H1

(
S ′u \ Ju

)
= 0.
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Our result for the Besov space B s
q,∞

Theorem (Hashash-P 2023)

Let Ω ⊂ RN be an open set, s ∈ (0, 1) and q ≥ 1, such that
sq ≤ N and let u ∈

(
Bs
q,∞
)
loc

(Ω).

Then, there exists a HN−sq σ-finite set E ⊂ RN such that

lim inf
ρ→0+

 
Bρ(x)

∣∣∣u(y)− uBρ(x)

∣∣∣qdy = 0 ∀x ∈ Ω \ E . (15)

I.e. the set S ′′u is a HN−sq σ-finite set.

Example (Hashash-P 2023): uBρ(x) in (15) cannot be replaced by
limε→0+ uBε(x) in the general case.

Arkady Poliakovsky FP



Our result for the Besov space B s
q,∞

Theorem (Hashash-P 2023)

Let Ω ⊂ RN be an open set, s ∈ (0, 1) and q ≥ 1, such that
sq ≤ N and let u ∈

(
Bs
q,∞
)
loc

(Ω).

Then, there exists a HN−sq σ-finite set E ⊂ RN such that

lim inf
ρ→0+

 
Bρ(x)

∣∣∣u(y)− uBρ(x)

∣∣∣qdy = 0 ∀x ∈ Ω \ E . (15)

I.e. the set S ′′u is a HN−sq σ-finite set.

Example (Hashash-P 2023): uBρ(x) in (15) cannot be replaced by
limε→0+ uBε(x) in the general case.

Arkady Poliakovsky FP



Our result for the Besov space B s
q,∞

Theorem (Hashash-P 2023)

Let Ω ⊂ RN be an open set, s ∈ (0, 1) and q ≥ 1, such that
sq ≤ N and let u ∈

(
Bs
q,∞
)
loc

(Ω).

Then, there exists a HN−sq σ-finite set E ⊂ RN such that

lim inf
ρ→0+

 
Bρ(x)

∣∣∣u(y)− uBρ(x)

∣∣∣qdy = 0 ∀x ∈ Ω \ E . (15)

I.e. the set S ′′u is a HN−sq σ-finite set.

Example (Hashash-P 2023): uBρ(x) in (15) cannot be replaced by
limε→0+ uBε(x) in the general case.

Arkady Poliakovsky FP



Our result for the Besov space B s
q,∞

Theorem (Hashash-P 2023)

Let Ω ⊂ RN be an open set, s ∈ (0, 1) and q ≥ 1, such that
sq ≤ N and let u ∈

(
Bs
q,∞
)
loc

(Ω).

Then, there exists a HN−sq σ-finite set E ⊂ RN such that

lim inf
ρ→0+

 
Bρ(x)

∣∣∣u(y)− uBρ(x)

∣∣∣qdy = 0 ∀x ∈ Ω \ E . (15)

I.e. the set S ′′u is a HN−sq σ-finite set.

Example (Hashash-P 2023): uBρ(x) in (15) cannot be replaced by
limε→0+ uBε(x) in the general case.

Arkady Poliakovsky FP



Our result for the Besov space B s
q,∞

Theorem (Hashash-P 2023)

Let Ω ⊂ RN be an open set, s ∈ (0, 1) and q ≥ 1, such that
sq ≤ N and let u ∈

(
Bs
q,∞
)
loc

(Ω).

Then, there exists a HN−sq σ-finite set E ⊂ RN such that

lim inf
ρ→0+

 
Bρ(x)

∣∣∣u(y)− uBρ(x)

∣∣∣qdy = 0 ∀x ∈ Ω \ E . (15)

I.e. the set S ′′u is a HN−sq σ-finite set.

Example (Hashash-P 2023): uBρ(x) in (15) cannot be replaced by
limε→0+ uBε(x) in the general case.

Arkady Poliakovsky FP



Thank you for your attention!
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