Asymptotic behaviour of some anisotropic problems

Michel Chipot, University of Zurich

Hangzhou, September 15-20, 2024

Basic notation

 Ω is a bounded open set of \mathbb{R}^n . For $r>1$ we set

$$
W^{1,r}(\Omega)=\{v\in L^r(\Omega)\mid \partial_{x_i}v\in L^r(\Omega)\mid \forall i=1,\ldots,n\}.
$$
 (1)

We equip this space with the norm

$$
||v||_{1,r,\Omega} = \Big(\int_{\Omega} |v|^r + \sum_{i=1}^n |\partial_{x_i} v|^r dx\Big)^{\frac{1}{r}}
$$
(2)

and we set

$$
W_0^{1,r}(\Omega) = \overline{\mathcal{D}(\Omega)} = \text{ the closure of } \mathcal{D}(\Omega) \text{ in } W^{1,r}(\Omega). \tag{3}
$$

 $(\mathcal{D}(\Omega))$ denotes the space of C^{∞} -functions with compact support in Ω).

Basic notation

It is well known that $W_0^{1,r}$ $C_0^{(1,1)}(\Omega)$ is a reflexive Banach space which can be equipped with the equivalent norm

$$
\left| |\nabla v| \right|_{r,\Omega} = \left(\int_{\Omega} |\nabla v(x)|^r dx \right)^{\frac{1}{r}}.
$$
 (4)

(∇ denotes the usual gradient and $\vert \ \vert$ the euclidean norm, i.e. $|\nabla v(x)| = (\sum_1^n (\partial_{x_i} v)^2)^{\frac{1}{2}}$, $|_{r,\Omega}$ denotes the L^r -norm on Ω). The dual of $W^{1,r}_0$ $\mu_0^{1,r}(\Omega)$ is denoted by $W^{-1,r'}(\Omega)$, $r'=\frac{r}{r-1}$ and consists in the distributions of the form

$$
f = f_0 - \sum_{i=1}^n \partial_{x_i} f_i, \quad f_i \in L^{r'}(\Omega). \tag{5}
$$

We use the notation

$$
\langle f, v \rangle = \int_{\Omega} f_0 v + \sum_{i=1}^n f_i \partial_{x_i} v dx.
$$
 (6)

 Ω

We denote by Ω_ℓ the open subset of \mathbb{R}^2 defined as

$$
\Omega_{\ell} = (-\ell, \ell) \times (-1, 1). \tag{7}
$$

We will set $\omega=(-1,1)$ and $\partial\Omega_\ell$ will denote the boundary of Ω_ℓ .

If $p, q > 1$ we would like to consider u_ℓ solution to $\int -\partial_{x_1}\left(|\partial_{x_1}u_{\ell}|^{p-2}\partial_{x_1}u_{\ell}\right) - \partial_{x_2}\left(|\partial_{x_2}u_{\ell}|^{q-2}\partial_{x_2}u_{\ell}\right) = f$ in Ω_{ℓ} , $u_{\ell} = 0$ on $\partial \Omega_{\ell}$. (8)

つへへ

More precisely we are interested to the asymptotic behaviour of u_{ℓ} when $\ell \to +\infty$. f is a function or distribution depending only on $X2$.

A natural candidate for the limit of the problem is u_{∞} solution to

$$
\begin{cases}\n-\partial_{x_2}\left(|\partial_{x_2}u_{\infty}|^{q-2}\partial_{x_2}u_{\infty}\right) = f \text{ in } \omega, \\
u_{\infty} = 0 \text{ on } \partial \omega,\n\end{cases}
$$
\n(9)

where $\partial \omega = \{-1, 1\}$ is the boundary of ω . Let us recast these problems under their natural weak form.

We can first introduce the weak formulation of [\(9\)](#page-4-0). If $f \in W^{-1,q'}(\omega)$ is given by

$$
f = f(x_2) = f_0(x_2) - \partial_{x_2} f_1(x_2), \qquad (10)
$$

where $f_0, f_1 \in L^{q'}(\omega)$.

Then, the weak formulation to (9) corresponding to f reads

$$
\begin{cases}\n u_{\infty} \in W_0^{1,q}(\omega), \\
 \int_{\omega} |\partial_{x_2} u_{\infty}|^{q-2} \partial_{x_2} u_{\infty} \partial_{x_2} v \, dx_2 = \langle f, v \rangle \\
= \int_{\omega} f_0 v + f_1 \partial_{x_2} v dx_2 \quad \forall v \in W_0^{1,q}(\omega).\n\end{cases}
$$
\n(11)

To arrive to a weak formulation for [\(8\)](#page-3-0) one introduces

$$
W^{1,p,q}(\Omega_{\ell}) =
$$

\n
$$
\{v \in L^{p}(\Omega_{\ell}) \cap L^{q}(\Omega_{\ell}) \mid \partial_{x_{1}}v \in L^{p}(\Omega_{\ell}), \ \partial_{x_{2}}v \in L^{q}(\Omega_{\ell})\}. \tag{12}
$$

\nIt is a reflexive Banach space when equipped with the norm
\n
$$
||v||_{1,p,q,\Omega_{\ell}} = |v|_{p,\Omega_{\ell}} + |v|_{q,\Omega_{\ell}} + |\partial_{x_{1}}v|_{p,\Omega_{\ell}} + |\partial_{x_{2}}v|_{q,\Omega_{\ell}}. \tag{13}
$$

→ 伊 ▶ → ヨ ▶ → ヨ ▶

 $2Q$

后

Then we define

$$
W_0^{1,p,q}(\Omega_\ell) = \overline{\mathcal{D}(\Omega_\ell)} = \text{ the closure of } \mathcal{D}(\Omega_\ell) \text{ in } W^{1,p,q}(\Omega_\ell). \quad (14)
$$

If f is defined by [\(10\)](#page-4-1) if follows easily that there exists a unique u_{ℓ} weak solution to [\(8\)](#page-3-0) i.e. satisfying

$$
\begin{cases}\nu_{\ell} \in W_0^{1,p,q}(\Omega_{\ell}),\\ \int_{\Omega_{\ell}} |\partial_{x_1} u_{\ell}|^{p-2} \partial_{x_1} u_{\ell} \partial_{x_1} v + |\partial_{x_2} u_{\ell}|^{q-2} \partial_{x_2} u_{\ell} \partial_{x_2} v \, dx_1 dx_2\\ = \langle f, v \rangle = \int_{\Omega_{\ell}} f_0 v + f_1 \partial_{x_2} v \, dx_1 dx_2 \quad \forall v \in W_0^{1,p,q}(\Omega_{\ell}).\end{cases} (15)
$$

We are interested in showing that $u_\ell \to u_\infty$ when $\ell \to \infty$. The operators defined by [\(8\)](#page-3-0), [\(9\)](#page-4-0) are strictly monotone, hemicontinuous, coercive from $W_0^{1,p,q}$ $W^{1,p,q}_0(\Omega_\ell)$, $W^{1,q}_0$ $\binom{1}{0}^{\prime 1,q}(\omega)$ into their duals. Existence and uniqueness of a solution for [\(15\)](#page-6-0), [\(11\)](#page-5-0) follows from classical arguments

 Ω

Preliminaries

Let us first prove the following lemma.

Lemma

Suppose that f is given by [\(10\)](#page-4-1). If u_ℓ is the solution to [\(15\)](#page-6-0) there exists a constant C independent of ℓ such that

$$
\int_{\Omega_{\ell}} |\partial_{x_1} u_{\ell}|^p + |\partial_{x_2} u_{\ell}|^q \, dx \leq C\ell. \tag{16}
$$

Proof : Taking $v = u_\ell$ in (15) we get

$$
\int_{\Omega_{\ell}} |\partial_{x_1} u_{\ell}|^p + |\partial_{x_2} u_{\ell}|^q dx = \langle f, u_{\ell} \rangle = \int_{\Omega_{\ell}} f_0 u_{\ell} + f_1 \partial_{x_2} u_{\ell} dx
$$
\n
$$
\leq |f_0|_{q', \Omega_{\ell}} |u_{\ell}|_{q, \Omega_{\ell}} + |f_1|_{q', \Omega_{\ell}} |\partial_{x_2} u_{\ell}|_{q, \Omega_{\ell}} \tag{17}
$$
\n
$$
\leq (C|f_0|_{q', \Omega_{\ell}} + |f_1|_{q', \Omega_{\ell}}) |\partial_{x_2} u_{\ell}|_{q, \Omega_{\ell}}
$$

this by the Hölder and the Poincaré inequali[ty.](#page-6-1)

 298

Then let us notice that for $i = 0, 1$ one has

$$
|f_i|_{q',\Omega_{\ell}} = \Big(\int_{-\ell}^{\ell}\int_{\omega} |f_i(x_2)|^{q'} dx_2 dx_1\Big)^{\frac{1}{q'}} = (2\ell)^{\frac{1}{q'}} |f_i|_{q',\omega}.
$$

Thus from [\(17\)](#page-7-0) we derive for some constant $C = C(q, f)$

$$
|\partial_{x_2} u_\ell|_{q,\Omega_\ell}^q \leq C \ell^{\frac{1}{q'}} |\partial_{x_2} u_\ell|_{q,\Omega_\ell}
$$

Since $q' = \frac{q}{q}$ $\frac{q}{q-1}$ this is equivalent for some new constant to

$$
|\partial_{x_2} u_\ell|_{q,\Omega_\ell} \leq C \ell^{\frac{1}{q}}.
$$

Going back to [\(17\)](#page-7-0), the result follows.

A + + = + + = +

Somehow one can ignore f thanks to the following remark.

Lemma

If u_ℓ is the solution to (15) and u_∞ solution to (11) one has

$$
\int_{\Omega_{\ell}} |\partial_{x_1} u_{\ell}|^{p-2} \partial_{x_1} u_{\ell} \partial_{x_1} v
$$
\n
$$
+ \int_{\Omega_{\ell}} \left\{ |\partial_{x_2} u_{\ell}|^{q-2} \partial_{x_2} u_{\ell} - |\partial_{x_2} u_{\infty}|^{q-2} \partial_{x_2} u_{\infty} \right\} \partial_{x_2} v \, dx = 0 \qquad (18)
$$
\n
$$
\forall v \in W_0^{1, p, q}(\Omega_{\ell}).
$$

Proof : First by [\(15\)](#page-6-0) if $v \in W_0^{1,p,q}$ $\eta^{1,p,q}_0(\Omega_\ell)$ one has

$$
\int_{\Omega_{\ell}} |\partial_{x_1} u_{\ell}|^{p-2} \partial_{x_1} u_{\ell} \partial_{x_1} v + |\partial_{x_2} u_{\ell}|^{q-2} \partial_{x_2} u_{\ell} \partial_{x_2} v
$$
\n
$$
= \int_{\Omega_{\ell}} f_0 v + f_1 \partial_{x_2} v \, dx
$$
\n(19)

 Q Q

If $v \in W_0^{1,p,q}$ $\mathcal{O}_0^{(1,p,q)}(\Omega_\ell)$ one has for almost every x_1

$$
v(x_1,\cdot) \in W_0^{1,q}(\omega).
$$

Thus by [\(11\)](#page-5-0)

$$
\int_{\omega} |\partial_{x_2} u_{\infty}|^{q-2} \partial_{x_2} u_{\infty} \partial_{x_2} v(x_1,x_2) dx_2 = \int_{\omega} f_0 v + f_1 \partial_{x_2} v dx_2.
$$

Integrating in x_1 it comes

$$
\int_{\Omega_{\ell}} |\partial_{x_2} u_{\infty}|^{q-2} \partial_{x_2} u_{\infty} \partial_{x_2} v \, dx = \int_{\Omega_{\ell}} f_0 v + f_1 \partial_{x_2} v dx. \tag{20}
$$

Subtracting from [\(19\)](#page-9-0), [\(18\)](#page-9-1) follows.

A + + = +

 $2Q$

后

Let us recall the following result which garanties also the strict monotonicity of the operators at hand.

Lemma

For any $q > 1$ there exist positive constants c_q , C_q such that

$$
||\xi|^{q-2}\xi - |\eta|^{q-2}\eta| \le C_q |\xi - \eta|(|\xi| + |\eta|)^{q-2} \quad \forall \xi, \eta \in \mathbb{R}^n, \quad (21)
$$

$$
(|\xi|^{q-2}\xi - |\eta|^{q-2}\eta) \cdot (\xi - \eta) \ge c_q |\xi - \eta|^2 (|\xi| + |\eta|)^{q-2} \quad \forall \xi, \eta \in \mathbb{R}^n.
$$

(22)

Then we have some monotonicity results.

A + + = +

Lemma

Let $u_{\ell} = u_{\ell}(f)$ be the solution to [\(15\)](#page-6-0) and $u_{\infty} = u_{\infty}(f)$ be the solution to [\(11\)](#page-5-0). Suppose that $f \geq \tilde{f}$, $f \geq 0$ then one has

$$
u_{\ell}(\tilde{f})\leq u_{\ell}(f) \quad , \quad 0\leq u_{\ell}(f)\leq u_{\infty}(f). \tag{23}
$$

(If f is not a function, $f \ge 0$ means $\langle f, v \rangle \ge 0$ $\forall v \in W_0^{1,q}$ $\binom{1}{0}^{1, q}(\omega)$, $v \geq 0$).

The proof uses standard argument using as test functions $(u_{\ell}(\tilde{f}) - u_{\ell}(f))^+$...

The results coming next could be different following the case where $f = f_0(x_2) - \partial_{x_2} f_1(x_2)$ is a function (i.e. $= f_0$) or a distribution.

Also p and q do not have a symmetric role. The value 2 is another threshold for these problems.

イロト イ押ト イチト イチト

We can now show:

Lemma

If u_ℓ is the solution to (15) and u_∞ solution to (11) one has for every smooth functin $\varphi = \varphi(x_1)$ vanishing at $\{-\ell.\ell\}$

$$
\int_{\Omega_{\ell}} \left\{ |\partial_{x_1} u_{\ell}|^p \right. \left. + \left(|\partial_{x_2} u_{\ell}|^{q-2} \partial_{x_2} u_{\ell} - |\partial_{x_2} u_{\infty}|^{q-2} \partial_{x_2} u_{\infty} \right) \partial_{x_2} (u_{\ell} - u_{\infty}) \right\} \varphi \, dx \leq \int_{\Omega_{\ell}} |\partial_{x_1} u_{\ell}|^{p-1} |\partial_{x_1} \varphi| |u_{\ell} - u_{\infty}| \, dx.
$$
\n(24)

A + + = +

 \equiv

Proof : Taking $v = (u_{\ell} - u_{\infty})\varphi$ in [\(18\)](#page-9-1) one gets

$$
\int_{\Omega_{\ell}} \left\{ |\partial_{x_1} u_{\ell}|^p \right. \left. + \left(|\partial_{x_2} u_{\ell}|^{q-2} \partial_{x_2} u_{\ell} - |\partial_{x_2} u_{\infty}|^{q-2} \partial_{x_2} u_{\infty} \right) \partial_{x_2} (u_{\ell} - u_{\infty}) \right\} \varphi \, dx \n= - \int_{\Omega_{\ell}} |\partial_{x_1} u_{\ell}|^{p-2} \partial_{x_1} u_{\ell} \partial_{x_1} \varphi (u_{\ell} - u_{\infty}) \, dx.
$$
\n(25)

(Recall that u_{∞} is independent of x_1). Then [\(24\)](#page-13-0) follows easily.

AD - 4 E - 1

 298

Convergence results

Denote by $\rho = \rho(x_1)$ a smooth function such that $0\leq \rho\leq 1,\,\, \rho=1$ on $(-\frac{1}{2})$ $\frac{1}{2},\frac{1}{2}$ $\{\frac{\overline{-}}{2}\},\ \rho=0$ near $\{-1,1\},\ |\partial_{x_1}\rho|\leq C.$ (26)

and set for $\alpha > 0$

$$
\varphi = \rho^{\alpha} = \rho^{\alpha} \left(\frac{x_1}{\ell} \right),
$$

Lemma

Let $f = f_0 \in L^{q'}(\omega)$ and u_ℓ , u_∞ be the solutions to [\(15\)](#page-6-0), [\(11\)](#page-5-0). Then it holds for some constant C independent of ℓ

$$
\int_{\Omega_{\ell}} \left\{ |\partial_{x_1} u_{\ell}|^p \right. \\ \left. + \left(|\partial_{x_2} u_{\ell}|^{q-2} \partial_{x_2} u_{\ell} - |\partial_{x_2} u_{\infty}|^{q-2} \partial_{x_2} u_{\infty} \right) \partial_{x_2} (u_{\ell} - u_{\infty}) \right\} \rho^{\alpha} dx \\ \leq \frac{C}{\ell^{p-1}} \qquad (27).
$$

Convergence results

Proof : From [\(24\)](#page-13-0) one derives

$$
I = \int_{\Omega_{\ell}} \left\{ |\partial_{x_1} u_{\ell}|^p \right\}+ \left(|\partial_{x_2} u_{\ell}|^{q-2} \partial_{x_2} u_{\ell} - |\partial_{x_2} u_{\infty}|^{q-2} \partial_{x_2} u_{\infty} \right) \partial_{x_2} (u_{\ell} - u_{\infty}) \right\} \rho^{\alpha} dx\n\leq \frac{\alpha C}{\ell} \int_{\Omega_{\ell}} |\partial_{x_1} u_{\ell}|^{p-1} |u_{\ell} - u_{\infty}| \rho^{\alpha-1} dx.
$$
\n(28)

Noting that $\rho^{\alpha-1} = \rho^{\frac{\alpha}{p'}} \rho^{\frac{\alpha}{p}-1}$ and using Hölder's inequality it comes

$$
\int_{\Omega_{\ell}} \left\{ |\partial_{x_1} u_{\ell}|^p + \left(|\partial_{x_2} u_{\ell}|^{q-2} \partial_{x_2} u_{\ell} - |\partial_{x_2} u_{\infty}|^{q-2} \partial_{x_2} u_{\infty} \right) \partial_{x_2} (u_{\ell} - u_{\infty}) \right\} \rho^{\alpha} \leq \frac{\alpha C}{\ell} \Big(\int_{\Omega_{\ell}} |\partial_{x_1} u_{\ell}|^p \rho^{\alpha} dx \Big)^{\frac{1}{p'}} \Big(\int_{\Omega_{\ell}} |u_{\ell} - u_{\infty}|^p \rho^{\alpha-p} dx \Big)^{\frac{1}{p}}.
$$
\n(29)

Thus it follows that

A + + = +

 298

$$
I \leq \left(\frac{\alpha C}{\ell}\right)^p \int_{\Omega_{\ell}} |u_{\ell} - u_{\infty}|^p \rho^{\alpha - p} dx \leq \left(\frac{\alpha C}{\ell}\right)^p \int_{\Omega_{\ell}} |u_{\ell} - u_{\infty}|^p dx,
$$
\n(30)

provided we chose $\alpha > p$. From the lemma 2.4 one has

$$
u_{\ell}(f) \leq u_{\ell}(f^+) \leq u_{\infty}(f^+) , \quad u_{\infty}(-f^-) \leq u_{\ell}(-f^-) \leq u_{\ell}(f),
$$

(notice that $u_{\ell}(-f) = -u_{\ell}(f)$). Then one derives

$$
|u_{\ell}-u_{\infty}|\leq |u_{\ell}|+|u_{\infty}|\leq \max\{u_{\infty}(f^+),u_{\infty}(f^-)\}+|u_{\infty}(f)|.
$$

Since this last function is independent of x_1 one derives from [\(30\)](#page-17-0)

$$
\int_{\Omega_{\ell}}\left\{|\partial_{x_1}u_{\ell}|^p+\left(|\partial_{x_2}u_{\ell}|^{q-2}\partial_{x_2}u_{\ell}-|\partial_{x_2}u_{\infty}|^{q-2}\partial_{x_2}u_{\infty}\right)\partial_{x_2}(u_{\ell}-u_{\infty})\right\}\rho^{\alpha}\,dx
$$

≤

 $\mathcal{C}_{0}^{(n)}$ ℓ^{p-1}

for some new constant C . This is (27) .

 290

Convergence results

Due to the definition of ρ we have obtained

$$
\int_{\Omega_{\frac{\ell}{2}}}\left\{|\partial_{x_1}u_{\ell}|^p+\left(|\partial_{x_2}u_{\ell}|^{q-2}\partial_{x_2}u_{\ell}-|\partial_{x_2}u_{\infty}|^{q-2}\partial_{x_2}u_{\infty}\right)\partial_{x_2}(u_{\ell}-u_{\infty})\right\}dx
$$

$$
\leq \frac{C}{\ell^{p-1}}
$$

It follows, if ℓ_0 is fixed less than $\frac{\ell}{2}$, that

$$
\partial_{x_1} u_\ell \to 0 \text{ in } L^p(\Omega_{\ell_0}) \ , \ \partial_{x_2} u_\ell \to \partial_{x_2} u_\infty \text{ in } L^q(\Omega_{\ell_0}).
$$

One can estimate the convergence rate in some situations. Indeed one has :

Convergence results

Theorem

Suppose that $p < q$. One has

$$
\int_{\Omega_{\frac{\ell}{2}}} |\partial_{x_1} u_{\ell}|^p + |\partial_{x_2}(u_{\ell} - u_{\infty})|^q \ dx \leq \frac{C}{\ell^{\frac{pq}{q-p}-1}}
$$
(31)

Theorem

Suppose that $p \ge q$, $q < 2$, $f \in L^1(\omega)$. It holds for some positive constants C

$$
\int_{\Omega_{\frac{\ell}{2}}} |\partial_{x_1} u_{\ell}|^p + |\partial_{x_2}(u_{\ell} - u_{\infty})|^q \ dx \leq \frac{C}{\ell^{\frac{pq}{2-q}-1}}.\tag{32}
$$

K ロ ト K 倒 ト K 走 ト

- 로

不同 医

Theorem

Suppose that $p \geq q \geq 2$, $f \in L^1(\omega)$. It holds for some positive constants C, α

$$
\int_{\Omega_{\frac{\ell}{2}}} |\partial_{x_1} u_{\ell}|^p + |\partial_{x_2}(u_{\ell} - u_{\infty})|^q \ dx \leq C e^{-\alpha \ell}.
$$
 (33)

 4.17 ± 1.0

4 桐 ト 4 戸 ト

重

ALCOHOL:

讀 N. Bruyère, Comportement asymptotique de problèmes posés dans des cylindres. Problèmes d'unicité pour les systèmes de Boussinesq," PhD thesis, Université de Rouen, 2007.

- M. Chipot: ℓ goes to plus infinity. Birkhäuser Advanced Text, 2002.
- M. Chipot: Asymptotic Issues for Some Partial Differential Equations. (2016), Imperial College Press. Second edition, (2024), World Scientific.
- M. Chipot: Asymptotic behaviour of some anisotropic problems. Ħ Asymptotic Analysis, 139 (2024) 217-243, DOI 10.3233/ASY-241906.
- M. Chipot, S. Mardare, Asymptotic behaviour of the Stokes problem in cylinders becoming unbounded in one direction, J. Math. Pures Appl. 90, (2008), 133-159.

マーティ ミュマミン

へのへ

讀 P. Jana, Anisotropic p-Laplace equations on long cylindrical domain. Opuscula Math. 44, No 2, (2024), 249-265. https://doi.org/10.7494/OpMath.2024.44.2.249,

晶 P. Marcellini, Regularity and existence of solutions of elliptic equations with (p, q) -growth conditions. J. Differ. Equ. 90, (1991), p. 1-30.

 Ω

Journal of Elliptic and Parabolic Equations

Editor-in-Chief Prof. Dr. Michel M. Chipot

Michel Chipot [Asymptotic behaviour of some anisotropic problems](#page-0-0)

E

THANK YOU !

Michel Chipot **[Asymptotic behaviour of some anisotropic problems](#page-0-0)**

K ロ X イ団 X X ミ X X モ X ミ コ Y Q Q C