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Q is a bounded open set of R". For r > 1 we set
Wl’r(Q) ={vel'(Q)]o,vel () |Vi=1,...,n}. (1)

We equip this space with the norm

n 1
Vllira = v[T4+ Y |0gv]Tdx)” 2
Wilea = ( [ 1v > 10:v1'0x) 2)
and we set
W, "(Q) = D(Q) = the closure of D(Q) in WL (Q).  (3)

(D(2) denotes the space of C*°-functions with compact support in
Q).
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It is well known that Wol’r(Q) is a reflexive Banach space which
can be equipped with the equivalent norm

19vll,0= ([ 19v0re)" (@

(V denotes the usual gradient and | | the euclidean norm, i.e.
[Vv(x)| = (Zf((‘)xiv)z)%, | |r.q denotes the L"-norm on §2). The
dual of Wol’r(Q) is denoted by W~=1'(Q), r' = —I7 and consists in
the distributions of the form

f=fh—> 0uf, ficl(Q). (5)

i=1

We use the notation

(Fov) = / fov+ 3 o, vax. (6)
Q i=1
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A model problem

We denote by Q, the open subset of R? defined as

Q= (_gae) X (_17 1) (7)
We will set w = (—1,1) and 9, will denote the boundary of €.
2

1

0 4

-1

If p,g > 1 we would like to consider uy solution to

{—axl (\axl ue|P~20,, u@) — 8y, (\a&u@\q*a&u@) —f inQ,

(8)
up =0 on 0%y.
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A model problem

More precisely we are interested to the asymptotic behaviour of uy
when ¢ — 4o00. f is a function or distribution depending only on
X2.

A natural candidate for the limit of the problem is vy, solution to

{8X2(|6X2uoo|q_28X2uoo) =f inw, )

Uso =0 on Ow,

where dw = {—1,1} is the boundary of w. Let us recast these
problems under their natural weak form.

We can first introduce the weak formulation of (9). If
f e W19 (w) is given by

f = f(XQ) = fo(Xz) - 8X2f1(X2), (10)

where fo, i € L9 (w).
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A model problem

Then, the weak formulation to (9) corresponding to f reads

Uso € W()Lq(w)?
fw |0y oo | 972 Oy oo Oy v dxa = (f,v) (11)
= [, fov+ Ady,vdxo Vv € Wyd(w).

To arrive to a weak formulation for (8) one introduces
Wl,p,q(Qﬁ) —

{v e LP(Q)NLI(Q) | Byv € LP(Q), v € LI(Q)}.  (12)

It is a reflexive Banach space when equipped with the norm

HV’|1,P7‘77QZ = |V’P:Q£ + |V|anZ + ‘axl‘/’P,Qe + |8X2V|q7Q@‘ (13)
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A model problem

Then we define
W,y P9(Q,) = D(Q) = the closure of D(€) in WHP9(Q,).  (14)

If f is defined by (10) if follows easily that there exists a unique uy
weak solution to (8) i.e. satisfying

up € WP 9(Q),
er |Osg Ug|P2 05y UpOry v + Oy tip| 9720, g0, v dx1 o (15)
= (f,v) = [q, fov + Adxv dads Vv € WyP9(Qy).

We are interested in showing that uy — uy, when £ — oo.

The operators defined by (8), (9) are strictly monotone,
hemicontinuous, coercive from Wy P9(Q,), Wy 9(w) into their
duals. Existence and uniqueness of a solution for (15), (11) follows
from classical arguments
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Preliminaries

Let us first prove the following lemma.

Suppose that f is given by (10). If uy is the solution to (15) there
exists a constant C independent of ¢ such that

/ |Oxq te|P + |Oxyue|? dx < CL. (16)
Q

Proof : Taking v = uy in (15) we get

[ 10l ol dx = (F.u) = [ fous + i o
Q,g QZ

< |f0|q/79e|u€‘q79z + ‘f1|q’,Qz‘8X2u€|q,Qg (17)
< (Clholy., +1ila.a, ) 10 u

qvﬂf

this by the Holder and the Poincaré inequality.
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Preliminaries

Then let us notice that for i = 0,1 one has

¢ ) . 1
o= ([ [ 16017 dada)” = @07 £l

Thus from (17) we derive for some constant C = C(q, )
q 5
‘a)@u@’q,ﬂz < Cl7 |0, ulq,0,
Since ' = ﬁ this is equivalent for some new constant to

1
|8X2U£‘q,ﬂz < (Cla.

Going back to (17), the result follows.
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Preliminaries

Somehow one can ignore f thanks to the following remark.

If up is the solution to (15) and us, solution to (11) one has

—2
/ |0y, Up|P™ <0, upOxy v
Q,

+/ {]&Quzlq_zﬁ)qu@—\8X2uoo]q_28X2uoo}6X2v dx =20 (18)
Q,

Vv € WyP ().

Proof : First by (15) if v € W, "”9(y) one has

/ 10 e|P 20, s Do |y ] T 20 i Dy v

e (19)

:/ fov + H0x, Vv dx
Q

Michel Chipot Asymptotic behaviour of some anisotropic problems




Preliminaries

Ifv € Wol’p’q(Qg) one has for almost every x;
v(xs,) € Wy (w).

Thus by (11)

/ |(3X2uoo|‘7_2(9)<2uOo Oy, V(x1,x2) dx2 = / fov + f10x, vdxo.
w w
Integrating in xy it comes

/ |Ox, uoo|‘3’_23X2 Uso Ox,V dx = / fov + f10x, vdx. (20)
Q, Q,

Subtracting from (19), (18) follows.
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Preliminaries

Let us recall the following result which garanties also the strict
monotonicity of the operators at hand.

Lemma

For any q > 1 there exist positive constants cq, C; such that
1€1972¢ — n]9=2n] < Cqlé —nl(|&] + )72 V&,n R, (21)

(€192 — [nl7%n) - (€ = m) = cql€ —nlP(J&] + In)T2 Vé,n e(R“).
22

<

Then we have some monotonicity results.
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Preliminaries

Lemma

Let ug = uy(f) be the solution to (15) and ux = uxo(f) be the
solution to (11). Suppose that f > f, f > 0 then one has

u(F) < up(F) , 0 < up(f) < uso(F). (23)

(If f is not a function, f > 0 means (f,v) >0 Vv € Wol’q(w),
v>0).

The proof uses standard argument using as test functions

(ue(F) — ue(F))" ...

The results coming next could be different following the case where
f = fo(x2) — Ox,fi(x2) is a function (i.e. = fy) or a distribution.

Also p and g do not have a symmetric role. The value 2 is another
threshold for these problems.
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Preliminaries

We can now show :

Lemma

If uy is the solution to (15) and u, solution to (11) one has for
every smooth functin ¢ = ¢(x1) vanishing at {—(.(}

| {1
Q,
+ (’axzudqizaxﬂ—lé - ’axguoo|q72axzuoo) am(”ﬁ - Uoo)}so dx

< / 182y 1]~ Bsy 0 |  — 10| .
Q,

(24)

v
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Preliminaries

Proof : Taking v = (up — uso)p in (18) one gets

| {1l
Q,

+ (]8X2uz|q_28X2u@ — ]8X2uoo|q_28)<2uoo) Oy (g — uoo)}go dx

= _/Q ‘8X1 ué’p_zanué 8x1(,0 (Ug — Uoo) dx.
¢

(25)
(Recall that us is independent of x;). Then (24) follows easily.
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Convergence results

Denote by p = p(x1) a smooth function such that

11
0<p<1l p=1lon (—5,5), p=0near {—1,1}, |0yp| < C.
(26)
and set for a« > 0
o arX1
Y=p =P (?),

Lemma

Let f = fy € L9 (w) and uy, us, be the solutions to (15), (11).
Then it holds for some constant C independent of £

/Qz {|8X1uf|p

+ (\8XQUg|q*28XQUg — \8x2u00]q*2(?x2uoo> Ox, (g — uoo)}pa dx

P C

(27).
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Convergence results

Proof : From (24) one derives

I:/ Oy, up|P
{10

+ (\3XQUg|q_23XQUg — \8X2uoo|q_23X2uoo) Oy, (g — uoo)}pa dx
aC _ _
< 7 ‘8X1u€’p 1‘”@ - Uoo‘pa ! dx.
Q,
(28)
Noting that p®~! = prF_l and using Holder's inequality it
comes

[ {100l (10001720~ 10y 720 ) Bt )}
Q,

1

< Of(/ﬂz | Oy U |P p* dx)pll</91Z |ug — Uoo|Pp©P dx);.

(29)
Thus it follows that

Michel Chipot Asymptotic behaviour of some anisotropic problems



Convergence results

g A

(30)
provided we chose o > p. From the lemma 2.4 one has

up(F) < up(FY) < usa(FF) , too(—F7) < u(—F7) < ug(F),
(notice that uy(—f) = —uy(f)). Then one derives
e = too| < [ug] + [too| < max{uc(FT), uso(F7)} + s (F)].

Since this last function is independent of x; one derives from (30)

/ {105 [P+ (8, ]2, 1= |0y 1o T30y 1 ) Doy (110

Q,

for some new constant C. This is (27).
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Convergence results

Due to the definition of p we have obtained

/ {|6X1 Ug|”+(\&Quz|q_28X2uz—|0X2uoo|q_26X2uoo> 8X2(u£—uoo)} dx

Qg
2
_ ¢
-
It follows, if £ is fixed less than 5, that
Oxqug — 0in LP(Sy,) , Oxup — Oxyloo in LI(Qy,).

One can estimate the convergence rate in some situations. Indeed
one has :
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Convergence results

Theorem

Suppose that p < q. One has

q—p

C
/ O tel? + 10 (e — )7 dx < —e— (31
Q, V4

V.
Theorem

Suppose that p > q, q < 2, f € L}(w). It holds for some positive
constants C

C
/ O P + [0y (1 — 1o)| dx < ——. (32)
Q, Y/

2—q

2
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Convergence results

Suppose that p > q > 2, f € L}(w). It holds for some positive
constants C, «

/ |0y tp|P + [Ox, (ur — Uso)|? dx < T, (33)
Qy

2

v
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