On improved Trudinger-Moser type inequalities involving the Leray potential

Feng ZHOU

CPDE and School of Mathematical Science East China Normal University, Shanghai (based on joint works with HuYuan Chen and Yihong Du)

Workshops BIRS: On Nonlocal Problems in Mathematical Physics, Analysis and Geometry

HangZhou, 2024.09.15-20

2 Recall: The Leray-Hardy operators and nonhomogeneous elliptic equations

4 An improved Leray type inequality

Trudinger-Moser type inequality

The Trudinger-Moser inequality

$$\sup_{\int_{\Omega} |\nabla u|^2 dx \le 1, \ u \in C^{\infty}_{c}(\Omega)} \int_{\Omega} e^{4\pi u^2} dx < \infty,$$
(2.1)

where Ω is a bounded domain in \mathbb{R}^2 , is an analogue of the following limiting Sobolev inequality in dimensions $N \geq 3$:

$$\sup_{\int_{\mathbb{R}^N}|\nabla u|^2dx\leq 1,\ u\in C^\infty_c(\mathbb{R}^N)}\int_{\mathbb{R}^N}|u|^{2^*}dx<\infty,\ 2^*=\frac{2N}{N-2}.$$

Outline of the Talk Trudinger-Moser type inequality Recall:

Trudinger-Moser type inequality

Some extensions of (2.1), where $\int_{\Omega} |\nabla u|^2 dx \leq 1$ is replaced by

$$\int_{\Omega} \left[|\nabla u|^2 - V(x)u^2 \right] dx \le 1$$

with a suitable potential function V(x).

٩

•
$$V = V_1 := (1 - |x|^2)^{-2}$$
, Wang-Ye, (Adv. Math., 2012)
• $V = V_2 := \frac{V_{\text{Leray}}(|x|)}{\max\{\sqrt{-\ln |x|}, 1\}}$, Tintarev, (JFA, 2014)

• Psaradakis-Spector, JFA, 2015.

where $V_{\text{Leray}} := \frac{1}{4|x|^2(\ln \frac{1}{|x|})^2}$. Remark that

$$\lim_{r\to 1^-} V_1(r)/V_{\rm Leray}(r) = 1$$

$$\lim_{|x|\to 1^-} V_2(|x|)/V_{\mathrm{Leray}}(|x|) = 1, \ \lim_{|x|\to 0^+} V_2(|x|)/V_{\mathrm{Leray}}(|x|) = 0.$$

Trudinger-Moser type inequality

In a different direction, Adimurthi and Druet (CPDE, 2004) proved the following result: For any bounded domain $\Omega \subset \mathbb{R}^2$,

$$\sup_{\int_{\Omega} |\nabla u|^2 dx \leq 1, \ u \in C^{\infty}_{c}(\Omega)} \int_{\Omega} e^{4\pi u^2 (1+\alpha ||u||_2)} dx \begin{cases} < \infty \text{ if } \alpha \in [0, \lambda_1(\Omega)), \\ = \infty \text{ if } \alpha \geq \lambda_1(\Omega), \end{cases}$$

where $\lambda_1(\Omega)$ stands for the first eigenvalue of $-\Delta$ in $H_0^1(\Omega)$, and $||u||_2 = (\int_{\Omega} u^2 dx)^{1/2}$.

The Hardy-Leray operators

Assume $0 \in \Omega \subset \mathbb{R}^N$ ($N \ge 2$), Ω is a bounded C^2 -domain. The classical Hardy-Leray operators are defined by

$$\mathcal{L}_{\mu} := -\Delta + \frac{\mu}{|x|^2}, \text{ for } \mu \ge \mu_0 := -\frac{(N-2)^2}{4}, N \ge 3$$

and

$$\mathcal{L}_{\mu} := -\Delta + \frac{\mu}{|x|^2 (\ln |x|)^2}, \text{ for } \mu \ge \mu_0 := -\frac{1}{4}, N = 2.$$

Hardy-Leray's inequality and its various improvements have been used in many contexts: The stability of solutions of elliptic and parabolic equations with singular potentials; The foundation of a large part harmonic analysis of singular integral operators such as the Hilbert transform or pseudo-differential operators.

[Ruzhansky-Suragan], Hardy Inequalities on homogeneous groups: 100 Years of Hardy Inequalities, Birkhäuser 2019.

Equations with the Hardy-Leray potentials

We study the nonhomogeneous linear problem

$$\begin{cases} \mathcal{L}_{\mu} u = f & \text{in } \Omega \setminus \{0\}, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(3.2)

where $0 \in \Omega \subset \mathbb{R}^N$ $(N \ge 3)$, $\mu \ge \mu_0 := -\frac{(N-2)^2}{4}$ and $\mathcal{L}_{\mu} := -\Delta + \frac{\mu}{|x|^2}$. A complete picture of the existence and/or non-existence, classification of singularities.

• Connection with the weak solution of

$$\begin{cases} \mathcal{L}_{\mu}u = f + c_{\mu}k\delta_{0} & \text{in} \quad \Omega \setminus \{0\}, \\ u = 0 & \text{on} \quad \partial\Omega. \end{cases}$$
(3.3)

where $k \in \mathbb{R}$, in the $d\mu$ -distribution sense, that is $u \in L^1(\Omega, d\mu)$, $d\mu(x) := \Gamma_{\mu}(x)dx$, $\mathcal{L}^*_{\mu} := -\Delta - \frac{2\tau_+(\mu)}{|x|^2}x \cdot \nabla$.

$$\int_{\Omega} u_k \mathcal{L}^*_{\mu}(\xi) \, d\mu = \int_{\Omega} f\xi \, d\mu + c_{\mu} k\xi(0), \quad \forall \xi \in C^{1.1}_0(\Omega).$$
(3.4)

Outline of the Talk Trudinger-Moser type inequality Recall:

Functions space and some embedding results

• We denote by $\mathcal{H}^1_{\mu,0}(B_1)$, for $\mu \ge -\frac{1}{4}$, the completion of $\mathcal{C}^\infty_c(B_1)$ under the norm

$$||u||_{\mu} = \sqrt{\int_{B_1} \left(|\nabla u|^2 dx + \mu \frac{u^2}{|x|^2 (-\ln|x|)^2} \right) dx},$$

and so $\mathcal{H}^{1}_{\mu,0}(B_{1})$ is a Hilbert space with inner product

$$\langle u,v\rangle_{\mu} = \int_{B_1} \left(\nabla u \cdot \nabla v \, dx + \mu \frac{uv}{|x|^2(-\ln|x|)^2} \right) dx.$$

Set

$$\mathcal{H}^{1}_{0}(B_{1}) = \mathcal{H}^{1}_{0,0}(B_{1}) \text{ and } \hat{\mathcal{H}}^{1}_{0}(B_{1}) = \mathcal{H}^{1}_{-\frac{1}{4},0}(B_{1}).$$

• Denote
$$\mathcal{H}_0^1(B_1) = W_0^{1,2}(B_1)$$
. Then
 $\mathcal{H}_{\mu,0}^1(B_1) = \mathcal{H}_0^1(B_1)$ for $\mu > -\frac{1}{4}$, but $\mathcal{H}_0^1(B_1) \subsetneqq \hat{\mathcal{H}}_0^1(B_1)$.
(3.5)

Some functions spaces

Let $\Omega \subset B_1$ be a bounded domain containing the origin, $\mu \ge -\frac{1}{4}$, and $V: (0,1) \rightarrow [0,\infty)$ a continuous function such that

$$\mu V(r) \ge -V_{\text{Leray}}(r) = -\frac{1}{4r^2(\ln \frac{1}{r})^2}$$
 for $r \in (0, 1)$.

We denote by $\mathcal{H}^1_{\nu,\mu,0}(\Omega)$ the completion of $C^\infty_c(\Omega \setminus \{0\})$ under the norm

$$\|u\|_{V,\mu} = \sqrt{\int_{\Omega} \left(|\nabla u|^2 dx + \mu V u^2 \right) dx},$$

which is a Hilbert space with inner product

$$\langle u, v \rangle_{v,\mu} = \int_{\Omega} \left(\nabla u \cdot \nabla v \, dx + \mu V u v \right) dx.$$

For $\mu \ge -\frac{1}{4}$, we denote

$$m_{\mu} := 4\pi\sqrt{1+4\mu}.$$

Theorem 1.6. Assume that $\mu > 0$ and $V : (0,1) \rightarrow [0,+\infty)$ is a continuous function satisfying

(1.13)
$$V(r) \ge \frac{1}{r^2(-\ln r)^2} \quad \text{in } (0,1)$$

Then the following conclusions hold:

(i) For radially symmetric functions in $\mathcal{H}^1_{V,\mu,0}(B_1)$ we have

$$\sup_{\substack{u \text{ is radial}, \|u\|_{V,\mu} \le 1}} \int_{B_1} e^{m_{\mu} |u|^2} dx < \infty,$$

and this result is optimal: If $\alpha > m_{\mu}$ and

(1.14)
$$\lim_{r \to 0^+} V(r)r^2(-\ln r)^2 = 1$$

then there exists a sequence of radially symmetric functions which concentrate at the origin such that $||u_n||_{V,\mu} \leq 1$ and

$$\int_{B_1} e^{\alpha |u_n|^2} dx \to \infty \quad \text{as } n \to +\infty.$$

(ii) For general functions in $\mathcal{H}^1_{V,\mu,0}(B_1)$ we have

$$\sup_{\|u\|_{V,\mu} \le 1} \int_{B_1} e^{4\pi |u|^2} dx < \infty,$$

Main results

and this result is optimal: If $\alpha > 4\pi$ and (1.14) holds, then there exists a sequence of functions concentrating at some point away from the origin, such that $||u_n||_{V,\mu} \leq 1$ and

$$\int_{B_1} e^{\alpha |u_n|^2} dx \to +\infty \quad \text{as } n \to +\infty.$$

Here a sequence $\{u_n\}$ is said to be concentrating at some point x_0 , if for any $r \in (0, 1)$ and any $\epsilon > 0$ there exists $n_0 > 0$ such that

$$\int_{B_1\setminus B_r(x_0)} \left(|\nabla u_n|^2 dx + \mu V u_n^2 \right) dx < \epsilon.$$

Next we consider the case $\mu \in (-\frac{1}{4}, 0)$.

Next we consider the case $\mu \in (-\frac{1}{4}, 0)$.

Theorem 1.7. Suppose $\mu \in (-\frac{1}{4}, 0)$ and $V : (0, 1) \to [0, +\infty)$ is continuous and verifies

(1.15)
$$V(r) \le \frac{1}{r^2(-\ln r)^2}$$

Then the following conclusions hold:

(i) For radially symmetric functions,

$$\sup_{\substack{u \text{ is radial}, \|u\|_{V,\mu} \le 1}} \int_{B_1} e^{m_{\mu} |u|^2} dx < \infty,$$

and this result is optimal: If $\alpha > m_{\mu}$ and (1.14) holds, then there exists a sequence of radially symmetric functions which concentrate at the origin such that $||u_n||_{V,\mu} \leq 1$ and

$$\int_{B_1} e^{\alpha |u_n|^2} dx \to \infty \quad \text{as } n \to +\infty.$$

(ii) For general functions, if V is decreasing in (0,1) and verifies (1.15), then

$$\sup_{\|u\|_{V,\mu}\leq 1}\int_{B_1}e^{m_{\mu}|u|^2}dx<\infty.$$

(iii) The result in (ii) is optimal: If (1.14) holds, then for any $\alpha > m_{\mu}$, there exists a sequence $\{u_n\}_n$ concentrating at the origin such that $\|u_n\|_{V,\mu} \leq 1$ and

$$\int_{B_1} e^{\alpha |u_n|^2} dx \to \infty \quad \text{as } n \to \infty.$$

Main results

Let us note that $V(r) := \frac{1}{r^2(1-\ln r)^2}$ is decreasing in (0,1] and satisfies both (1.14) and (1.15).

Corollary 1

Let
$$\mu \in (-\frac{1}{4}, 0)$$
, $r_0 = 1/e$ and $V(r) = \frac{1}{r^2(\ln \frac{1}{r})^2}$. Then

$$\sup_{\|u\|_{\mathcal{H}^{1}_{V},\mu,0}(B_{r_{0}})\leq 1}\int_{B_{r_{0}}}e^{m_{\mu}u^{2}}dx<\infty,$$

and the exponent m_{μ} is optimal.

Finally we consider the critical case $\mu = -\frac{1}{4}$.

Theorem 1.9. Suppose that $\mu = -\frac{1}{4}$ and $V \in C((0,1))$ is nonnegative and verifies (1.15). Then the following conclusions hold:

(i) For radially symmetric functions and $p \in (0, 1), \alpha > 0$,

$$\sup_{\substack{u \text{ is radial, } ||u||_{V,-1/4} \le 1}} \int_{B_1} e^{\alpha |u|^p} dx < \infty.$$

(ii) For general functions, if V is decreasing in (0,1), then for $p \in (0,1)$ and $\alpha > 0$,

$$\sup_{\|u\|_{V,-1/4} \le 1} \int_{B_1} e^{\alpha |u|^p} dx < \infty.$$

(iii) If there exist $\theta > 0$ and C > 0 such that

(1.16)
$$|V(r)r^2(-\ln r)^2 - 1| \le C(-\ln r)^{-\theta} \quad for \ r \in (0, \frac{1}{4}),$$

then there exists a sequence $\{u_n\} \subset \mathcal{H}^1_{V,-1/4,0}(B_1)$ such that $\|u_n\|_{\mathcal{H}^1_{V,-1/4}(B_1)} = 1$ and for any $p \geq 1$ and any $\alpha > 0$,

$$\int_{B_1} e^{\alpha |u_n|^p} dx \to \infty \quad \text{as} \ n \to \infty.$$

Trudinger-Moser type inequalities for radial functions

Define

$$\mathcal{H}^1_{\mathrm{rad},\mu,0}(B_1) := \left\{ w \in \mathcal{H}^1_{\mu,0}(B_1) : w \text{ is radially symmetric} \right\}.$$

We will prove the following two theorems in this section.

Theorem 2 Let $\mu > -\frac{1}{4}$. Then $\sup_{u \in \mathcal{H}^{1}_{\mathrm{rad},\mu,0}(B_{1}), \|u\|_{\mu} \leq 1} \int_{B_{1}} e^{4\pi\sqrt{1+4\mu} u^{2}} dx < \infty,$ and the result fails when $4\pi\sqrt{1+4\mu}$ is replaced by any $\alpha > 4\pi\sqrt{1+4\mu}$.

Trudinger-Moser type inequalities for radial functions

Note that $4\pi\sqrt{1+4\mu} = m_{\mu} \to 0$ as $\mu \to -\frac{1}{4}$, which suggests that the inequality should be different for $\mu = -\frac{1}{4}$.

Theorem 3

(i) For any $p \in (0,1)$ and any $\alpha > 0$, there exists $c = c_{p,\alpha}$ depending on p and α such that for every $u \in \mathcal{H}^1_{rad,-1/4,0}(B_1)$ with $\|u\|_{-1/4} \leq 1$, there holds

$$\int_{B_1} e^{\alpha |u|^p} dx \leq c_{p,\alpha}.$$

(ii) For any $p \ge 1$ and any $\alpha > 0$, there exists a sequence $\{u_n\}$ such that $||u_n||_{-1/4} \le 1$,

$$\int_{B_1} e^{\alpha |u_n|^p} dx \to +\infty \quad \text{as } n \to +\infty.$$

Leray inequality

The well-known Leray inequality states:

$$\int_{B_1} |\nabla w|^2 dx - \frac{1}{4} \int_{B_1} \frac{w^2}{|x|^2 (\ln \frac{1}{|x|})^2} dx > 0, \quad \forall w \in C_c^\infty(B_1), \ w \neq 0,$$
(5.6)

where B_1 is the unit ball in \mathbb{R}^2

• $\frac{1}{|x|^2(-\ln|x|)^2}$ has a weaker singularity at 0 than $1/|x|^2$, has a singularity of order $(1 - |x|)^{-2}$ at the boundary ∂B_1 .

Outline of the Talk Trudinger-Moser type inequality Recall:

Leray inequality with a remainder term

• Barbatis, Filippas and Tertikas proved an improved version with a remainder term:

$$\int_{B_1} |\nabla w|^2 dx - \frac{1}{4} \int_{B_1} \frac{w^2}{|x|^2 (\ln \frac{e}{|x|})^2} dx \ge \frac{1}{4} \sum_{i=2}^{\infty} \int_{B_1} \frac{|w|^2}{|x|^2} \prod_{j=1}^{i} X_j^2(|x|) dx,$$
(5.7)

 $\forall w \in C_c^{\infty}(B_1)$, where

$$X_1(r) = (\ln \frac{e}{r})^{-1}, \ X_k(r) = X_1(X_{k-1}(r)) \text{ for } k = 2,$$
 (5.8)

Theorem 1.1. The following inequalities hold:

(i) (Leray's inequality with a remainder term) There exists $\mu_2 > 0$ such that for any $u \in C_c^1(B_1)$

(1.6)
$$\int_{B_1} \left(|\nabla u|^2 - \frac{1}{4} \frac{|u|^2}{|x|^2 (\ln \frac{1}{|x|})^2} \right) dx \ge \mu_2 \int_{B_1} \frac{|u|^2}{|x|^2 (\ln \frac{1}{|x|})^2 (1 + |\ln \ln \frac{1}{|x|}|)^2} dx.$$

(ii) (Leray's inequality with a remainder term for radial functions) For any q > 2, there exists $\mu_q > 0$ such that for every $u \in C^1_{\operatorname{rad},c}(B_1)$,

(1.7)
$$\int_{B_1} \left(|\nabla u|^2 - \frac{1}{4} \frac{|u|^2}{|x|^2 (\ln \frac{1}{|x|})^2} \right) dx \ge \mu_q \left(\int_{B_1} \frac{|u|^q}{|x|^2 \left[(\ln \frac{1}{|x|}) \left(1 + |\ln \ln \frac{1}{|x|}| \right) \right]^{1+\frac{q}{2}}} dx \right)^{\frac{2}{q}}.$$

(iii) (Leray's inequality with a remainder term and singularity at 0 only) For any q > 2 and $r_0 = e^{-1}$, there exists $\mu_q > 0$ such that for every $u \in C_c^1(B_{r_0})$,

(1.8)
$$\int_{B_{r_0}} \left(|\nabla u|^2 - \frac{1}{4} \frac{|u|^2}{|x|^2 (\ln \frac{1}{|x|})^2} \right) dx \ge \mu_q \left(\int_{B_{r_0}} \frac{|u|^q}{|x|^2 \left[\left(\ln \frac{1}{|x|} \right) \left(1 + |\ln \ln \frac{1}{|x|}| \right) \right]^{1+\frac{q}{2}}} dx \right)^{\frac{2}{q}}.$$

Some embedding results

It follows in particular that

(i) for any $\beta > 1$, the following embedding is compact:

$$\hat{\mathcal{H}}_0^1(B_1) \hookrightarrow L^2(B_1, |x|^{-2}(-\ln|x|)^{-2}(1+|\ln\ln\frac{1}{|x|}|)^{-2\beta}dx).$$

Moreover, the embedding inequality (1.6) holds for $u \in \hat{\mathcal{H}}_0^1(B_1)$.

(ii) For any q > 2, $r \in (0, 1)$ and $\beta > 1$, the following embedding is compact:

$$\hat{\mathcal{H}}_0^1(B_r) \hookrightarrow L^q(B_r, |x|^{-2}(-\ln|x|)^{1+\frac{q}{2}}(1+|\ln\ln\frac{1}{|x|}|)^{-\beta(1+\frac{q}{2})}dx).$$

Moreover, the embedding inequality (1.8) holds for $u \in \hat{\mathcal{H}}_0^1(B_1)$.

Thanks for your attention!