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Outline of the Talk

€ Trudinger-Moser type inequality

© Recall: The Leray-Hardy operators and nonhomogeneous elliptic
equations

© Main results

O An improved Leray type inequality
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Trudinger-Moser type inequality

Trudinger-Moser type inequality

The Trudinger-Moser inequality

sup / ™ dx < o0, (2.1)
Jo |[Vul2dx<1, ueC=(Q) /Q

where Q is a bounded domain in R?, is an analogue of the
following limiting Sobolev inequality in dimensions N > 3:

. 2N
sup / ul? dx < 0o, 2¥ = ——.
Jon |Vul2dx<1, ue Ce°(RN) /RN N — 2
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Trudinger-Moser type inequality

Trudinger-Moser type inequality

Some extensions of (2.1), where [ |Vu|?dx <1 is replaced by

/Q {]Vu\z - V(X)Uz} dx <1

with a suitable potential function V/(x).
o V=V :=(1-|x[?)"2, Wang-Ye, (Adv. Math., 2012)

_ . VLeray(|X’) .
o V=V, = YA RTE Tintarev, (JFA, 2014)

@ Psaradakis-Spector, JFA, 2015.

where Vieray := 4|X‘2(I1nﬁ)2. Remark that

lim Vi(r)/Vieray(r) =1

r—1-—

i Va([x])/ Vieray (Ix]) = 1, lim Va([x])/ Vieray (|x]) =

| x|—= |x|—
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Trudinger-Moser type inequality

Trudinger-Moser type inequality

In a different direction, Adimurthi and Druet (CPDE, 2004) proved
the following result: For any bounded domain Q C R?,

(< 00 if a € [0,(Q)),

sup / A (kallull) gy
Q \ZOO ifozZ)\l(Q),

Jo IVu[2dx<1, ueC(Q)

where \1() stands for the first eigenvalue of —A in H}(), and
Jull2 = (Jqy uPd) 2.
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Recall: ~

The Hardy-Leray operators

Assume 0 € Q € RV (N > 2), Q is a bounded C?-domain. The
classical Hardy-Leray operators are defined by

(N —2)

EM::—A—FL for > pp = — i

|27

N >3

and

L 1
L, =—-A f > pp = ——, N =2.
S P P

Hardy-Leray's inequality and its various improvements have been
used in many contexts: The stability of solutions of elliptic and
parabolic equations with singular potentials; The foundation of a
large part harmonic analysis of singular integral operators such as
the Hilbert transform or pseudo-differential operators.

|[Ruzhansky-Suragan], Hardy Inequalities on homogeneous groups:
100 Years of Hardy Inequalities, Birkhauser 2019.
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Recall: ~

Equations with the Hardy-Leray potentials

We study the nonhomogeneous linear problem

L,u=TfF in Q\{0},
u \ {0} .
u=>0 on 0f2,
where 0 € Q C RN (N >3), 1> o := —(sz)z and
L, =—A+ ﬁ A complete picture of the existence and/or
non-existence, classification of singularities.
@ Connection with the weak solution of
L,u=F+c,kd in Q\{0},
% pneo \{ } (3.3)
u=20 on Of2.

where k € R, in the du-distribution sense, that is
ue LNQ, dp), du(x) == Tu(x)dx, L = —A — 2 Ly,

[x|2

/ ukL;,(€) dp = / fEdu+c,ké(0), VE € GH(Q). (3.4)
Q Q
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Recall: ~

Functions space and some embedding results

o We denote by 7—[ o(B1), for p > —z, the completion of
C2°(B1) under the norm

lull, = / ([Vulax + g
=\ e, X2(— ln\x\))

and so 7—[ o(B1) is a Hilbert space with inner product

uv
u,v), = Vu-Vvdx+pu dx.
(s v /Bl( R

Set
Ho(B1) = Hoo(B1) and Hg(Bi) =Hl, ((Br).

o Denote H{(B1) = Wol’z(Bl). Then

ML o(Br) = HE(By) for > —3%, but HY(B1) & HE(B).
(3.5)
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Some functions spaces

Let {2 C B; be a bounded domain containing the origin, p > —%,

and V :(0,1) — [0,00) a continuous function such that

1

(In %)2

We denote by 7—[3%0(Q) the completion of C2°(2\ {0}) under the

norm
Jully e = \/ [ (1VuPdx + nvi) ax
Q

which is a Hilbert space with inner product

pV(r) > —Vieray(r) = P for r € (0, 1).

(u, V>v,u:/ (Vu-VvdX—l—,uVuv)dx.
Q
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For p > —%, we denote

my, = 4m\/1 + 4p.

Theorem 1.6. Assume that p > 0 and V : (0,1) — [0,4+00) is a continuous function satisfying

1
1.1 > — i 1).
(113) V)2 g i (0D
Then the following conclusions hold:

(i) For radially symmetric functions in 7-[‘1/,“’0(31) we have

2
sup / el dr < o0,
By

uisradial,||ully,, <1

and this result s optimal: If o > m,, and

(1.14) lim V(r)r?(=Inr)? =1,

r—0+

then there exists a sequence of radially symmetric functions which concentrate at the origin
such that |uyl, , <1 and

2
/ elnl® gy 5 0o as m — 400,
By

(ii) For general functions in 7-[‘1/’#’0(31) we have

2
sup / e dr < o,
l[ullv,, <1 B



Main results

and this result is optimal: If o > 4m and

1.14

holds, then there exists a sequence of

functions concentrating at some point away from the origin, such that ||unl|, , <1 and

2
/ elunl”de s 4100 as n — +00.
B4

Here a sequence {u,} is said to be concentrating at some point xg,
if for any r € (0,1) and any € > 0 there exists ng > 0 such that

/ (\Vun\QdX — ,uVu,%) dx < e.
B1\B:(x0)

Next we consider the case p € (—1,0).
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Next we consider the case p € (—1,0).

Theorem 1.7. Suppose 1 € (—%,0) and V : (0,1) — [0, +00) is continuous and verifies

1

(1.15) V) < e

Then the following conclusions hold:

(i) For radially symmetric functions,

2
sup / el dy < oo,
B1

uisradial,||u||v,, <1

and this result is optimal: If o > m, and holds, then there exists a sequence of
radially symmetric functions which concentrate at the origin such that ||uy||, , <1 and

/ elunl®dy 5 0o as n — +oo.
By
(ii) For general functions, if V is decreasing in (0,1) and verifies , then

2
sup / el dr < 0.
llullv,,<1J By

iii) The result in (ii) is optimal: I, holds, then for any o > m,,, there exists a sequence
(iii) 4 Y w q
{un}n concentrating at the origin such that ||u,|l, ., <1 and

2
/ elUnl®dr 5 00 as n— oo.
B1



Main results

Let us note that V/(r) := r2(1_1|nr)2

satisfies both (1.14) and (1.15).

Corollary 1

Let i € (—%,O), ro=1/e and V(r) = -1+ . Then

2 1y2 -
r(In )

is decreasing in (0, 1] and

2
sup / e dx < oo,
<1JB

Hu”fH]\'/’lu,o(Bro)_ o

and the exponent m,, is optimal.
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) 4

=

Finally we consider the critical case y = —
Theorem 1.9. Suppose that = —% and V € C((0,1)) is nonnegative and verifies . Then
the following conclusions hold:

(i) For radially symmetric functions and p € (0,1), a > 0,
sup / e dr < 0.
B1

wis radial, [|ullv,—1/4<1

(ii) For general functions, if V is decreasing in (0,1), then for p € (0,1) and o > 0,
sup / e’ dy < .
llullv,~1/4<1 Y B1
(iii) If there exist @ > 0 and C > 0 such that

(1.16) V(r)r?(=lnr)2 - 1| < C(—lnr)_9 forr € (0, }L)’

then there exists a sequence {un} C 7—[‘1/,_1/4,0(31) such that HU"HH%/’_l/LL(Bl) =1 and for
any p > 1 and any o > 0,

p
/ elunlPde s 50 as n — oo.
B1



Trudinger-Moser type inequalities for radial functions

Define
radﬂo(Bl) = {W S 7—[1 o(B1) : w is radially symmetric} :

We will prove the following two theorems in this section.

Let yw > —%. Then

2
sup / e TVITAL U oy 0,
B1

ueHY , o(B1), [lullu<1

rad,u,0

and the result fails when 4w+/1 + 41 is replaced by any
a > 4m/1 4+ 4.
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Trudinger-Moser type inequalities for radial functions

Note that 47v/1 + 4y =m, — 0 as u — —3, which suggests that
the inequality should be different for y = —3

(/) For any p € (0,1) and any o > 0, there exists ¢ = ¢cp o
depending on p and « such that for every u € ’Hrad Y o(B1) with
|ul|—1/a <1, there holds

p
/ P gy < ¢
By

(/i) For any p > 1 and any o > 0, there exists a sequence {up,}
such that ||up||_1/4 < 1,

-I>|—\

/ alunl®dx — +00 as n — +oo.
B1
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Leray inequality

The well-known Leray inequality states:

1 e
szdx——/ dx >0, Vwe CX(By), w=#0,
Bl‘ ‘ 4 B1 ‘X|2(|n |71|)2 ( )

(5.6)
where Bj is the unit ball in R?

o IX,Q(_lln TP has a weaker singularity at 0 than 1/|x|?, has a

singularity of order (1 — |x|)™2 at the boundary 9B;.
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Leray inequality with a remainder term

@ Barbatis, Filippas and Tertikas proved an improved version
with a remainder term:

Vwl|?d 1/ w? dx > 150:/ —‘W‘zﬂxz(y d
w| ax—— X > — =[x )ax,
B; 4 B, ’X‘2(|n ﬁ)z 4 i—9 B4 ‘X‘2 j=1 !

(5.7)

Vwe C(By), where

X1(r) = (In &)1 Xi(r) = Xe(Xk—1(r)) for k =2,.... (5.8)
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Theorem 1.1. The following inequalities hold:
(i) (Leray’s inequality with a remainder term) There exists pio > 0 such that for any u € C}(By)

1 |uf? Jul?
(1.6) / Vul® = J 57 )de 2 “2/ dx
. ( 1 |x|2(lnﬁ)2) B1 (I )2(1+ | Inln )

(ii) (Leray’s inequality with a remainder term for radial functions) For any q > 2, there exists
fig > 0 such that for every u € CL  (B1),

rad,c
1 Juf? Juf?
(1.7) / |Vu|2 — ————— |dz > / 0@ |
o 7SR 2 U T

(iii) (Leray’s inequality with a remainder term and singularity at 0 only) For any q¢ > 2 and
ro = e~ 1, there exists iy > 0 such that for every u € CX(B,,),

1 |u|2 |u|q %
(1.8) / Vul* = 5017 )47 > 1 / P
By ( 1 |x|2<lnm>2) ( P faf2 [ (in ) (14 nn )] |

QN




Some embedding results

It follows in particular that

(i)

for any 8 > 1, the following embedding is compact:

1

x|

H(By) < L2(By, |x|72(= In|x])"2(1 + | InIn =)~ *’dx).

Moreover, the embedding inequality (1.6) holds for

uc 7:\[(1)(81)

For any ¢ > 2, r € (0,1) and 8 > 1, the following embedding
IS compact:

H(B,) = LI(B,, |x|72(= In|x|)"* (1+\|n|n ) PO+2) gy,

x|

Moreover, the embedding inequality (1.8) holds for
uc H%(Bl)
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Thanks for your attention!
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