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Trudinger-Moser type inequality

The Trudinger-Moser inequality

supR
⌦ |ru|2dx1, u2C1

c (⌦)

Z

⌦
e
4⇡u2

dx < 1, (2.1)

where ⌦ is a bounded domain in R2, is an analogue of the
following limiting Sobolev inequality in dimensions N � 3:

supR
RN |ru|2dx1, u2C1

c (RN)

Z

RN
|u|

2⇤
dx < 1, 2⇤ =

2N

N � 2
.
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Trudinger-Moser type inequality

Some extensions of (2.1), where
R
⌦ |ru|

2
dx  1 is replaced by

Z

⌦

h
|ru|

2
� V (x)u2

i
dx  1

with a suitable potential function V (x).

V = V1 := (1� |x |
2)�2, Wang-Ye, (Adv. Math., 2012)

V = V2 :=
VLeray(|x |)

max{
p

� ln |x |,1}
, Tintarev, (JFA, 2014)

Psaradakis-Spector, JFA, 2015.

where VLeray := 1
4|x |2(ln 1

|x| )
2 . Remark that

lim
r!1�

V1(r)/VLeray(r) = 1

lim
|x |!1�

V2(|x |)/VLeray(|x |) = 1, lim
|x |!0+

V2(|x |)/VLeray(|x |) = 0.
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Trudinger-Moser type inequality

In a di↵erent direction, Adimurthi and Druet (CPDE, 2004) proved
the following result: For any bounded domain ⌦ ⇢ R2,

supR
⌦ |ru|2dx1, u2C1

c (⌦)

Z

⌦
e
4⇡u2(1+↵kuk2)dx

8
<

:
< 1 if ↵ 2 [0,�1(⌦)),

= 1 if ↵ � �1(⌦),

where �1(⌦) stands for the first eigenvalue of �� in H
1
0 (⌦), and

kuk2 = (
R
⌦ u

2
dx)1/2.
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The Hardy-Leray operators

Assume 0 2 ⌦ ⇢ RN (N � 2), ⌦ is a bounded C
2-domain. The

classical Hardy-Leray operators are defined by

Lµ := ��+
µ

|x |2
, for µ � µ0 := �

(N � 2)2

4
, N � 3

and

Lµ := ��+
µ

|x |2(ln |x |)2
, for µ � µ0 := �

1

4
, N = 2.

Hardy-Leray’s inequality and its various improvements have been
used in many contexts: The stability of solutions of elliptic and
parabolic equations with singular potentials; The foundation of a
large part harmonic analysis of singular integral operators such as
the Hilbert transform or pseudo-di↵erential operators.

[Ruzhansky-Suragan], Hardy Inequalities on homogeneous groups:
100 Years of Hardy Inequalities, Birkhäuser 2019.

Feng ZHOU On improved Trudinger-Moser type inequalities involving the Leray potential


































































UPVM

Outline of the Talk Trudinger-Moser type inequality Recall: The Leray-Hardy operators and nonhomogeneous elliptic equations Main results An improved Leray type inequality

Equations with the Hardy-Leray potentials

We study the nonhomogeneous linear problem
(
Lµu = f in ⌦ \ {0},

u = 0 on @⌦,
(3.2)

where 0 2 ⌦ ⇢ RN (N � 3), µ � µ0 := �
(N�2)2

4 and
Lµ := ��+ µ

|x |2 . A complete picture of the existence and/or

non-existence, classification of singularities.
Connection with the weak solution of(

Lµu = f + cµk�0 in ⌦ \ {0},

u = 0 on @⌦.
(3.3)

where k 2 R, in the dµ-distribution sense, that is
u 2 L

1(⌦, dµ), dµ(x) := �µ(x)dx , L⇤
µ := ���

2⌧+(µ)
|x |2 x ·r.

Z

⌦
ukL

⇤

µ(⇠) dµ =

Z

⌦
f ⇠ dµ+cµk⇠(0), 8 ⇠ 2 C

1.1
0 (⌦). (3.4)
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Functions space and some embedding results

We denote by H
1
µ,0(B1), for µ � �

1
4 , the completion of

C
1
c (B1) under the norm

kukµ =

sZ

B1

⇣
|ru|2dx + µ

u2

|x |2(� ln |x |)2

⌘
dx ,

and so H
1
µ,0(B1) is a Hilbert space with inner product

hu, viµ =

Z

B1

⇣
ru ·rv dx + µ

uv

|x |2(� ln |x |)2

⌘
dx .

Set

H
1
0(B1) = H

1
0,0(B1) and Ĥ

1
0(B1) = H

1
�

1
4 ,0

(B1).

Denote H
1
0(B1) = W

1,2
0 (B1). Then

H
1
µ,0(B1) = H

1
0(B1) for µ > �

1
4 , but H

1
0(B1) & Ĥ

1
0(B1).

(3.5)
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Some functions spaces

Let ⌦ ⇢ B1 be a bounded domain containing the origin, µ � �
1
4 ,

and V : (0, 1) ! [0,1) a continuous function such that

µV (r) � �VLeray(r) = �
1

4r2(ln 1
r )

2
for r 2 (0, 1).

We denote by H
1
V ,µ,0

(⌦) the completion of C1
c (⌦ \ {0}) under the

norm

kukV ,µ =

sZ

⌦

⇣
|ru|2dx + µVu2

⌘
dx ,

which is a Hilbert space with inner product

hu, viV ,µ =

Z

⌦

⇣
ru ·rv dx + µVuv

⌘
dx .

Feng ZHOU On improved Trudinger-Moser type inequalities involving the Leray potential


























































































































UPVM

Outline of the Talk Trudinger-Moser type inequality Recall: The Leray-Hardy operators and nonhomogeneous elliptic equations Main results An improved Leray type inequality

Main results

Here a sequence {un} is said to be concentrating at some point x0,
if for any r 2 (0, 1) and any ✏ > 0 there exists n0 > 0 such that

Z

B1\Br (x0)

⇣
|run|

2
dx + µVu2n

⌘
dx < ✏.

Next we consider the case µ 2 (�1
4 , 0).
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Main results

Let us note that V (r) := 1
r2(1�ln r)2 is decreasing in (0, 1] and

satisfies both (1.14) and (1.15).

Corollary 1

Let µ 2 (�1
4 , 0), r0 = 1/e and V (r) = 1

r2(ln 1
r )

2 . Then

sup
kuk

H
1
V ,µ,0(Br0 )

1

Z

Br0

e
mµu2dx < 1,

and the exponent mµ is optimal.

Feng ZHOU On improved Trudinger-Moser type inequalities involving the Leray potential













































































































































UPVM

Outline of the Talk Trudinger-Moser type inequality Recall: The Leray-Hardy operators and nonhomogeneous elliptic equations Main results An improved Leray type inequality

Trudinger-Moser type inequalities for radial functions

Define

H
1
rad,µ,0(B1) :=

�
w 2 H

1
µ,0(B1) : w is radially symmetric

 
.

We will prove the following two theorems in this section.

Theorem 2

Let µ > �
1
4 . Then

sup
u2H1

rad,µ,0(B1), kukµ1

Z

B1

e
4⇡

p
1+4µ u2

dx < 1,

and the result fails when 4⇡
p
1 + 4µ is replaced by any

↵ > 4⇡
p
1 + 4µ.
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Trudinger-Moser type inequalities for radial functions

Note that 4⇡
p
1 + 4µ = mµ ! 0 as µ ! �

1
4 , which suggests that

the inequality should be di↵erent for µ = �
1
4 .

Theorem 3

(i) For any p 2 (0, 1) and any ↵ > 0, there exists c = cp,↵

depending on p and ↵ such that for every u 2 H
1
rad,�1/4,0(B1) with

kuk�1/4  1, there holds

Z

B1

e
↵|u|p

dx  cp,↵.

(ii) For any p � 1 and any ↵ > 0, there exists a sequence {un}

such that kunk�1/4  1,

Z

B1

e
↵|un|pdx ! +1 as n ! +1.
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Leray inequality

The well-known Leray inequality states:

Z

B1

|rw |
2
dx�

1

4

Z

B1

w
2

|x |2(ln 1
|x |)

2
dx > 0, 8w 2 C

1

c (B1), w 6⌘ 0,

(5.6)
where B1 is the unit ball in R2

1
|x |2(� ln |x |)2 has a weaker singularity at 0 than 1/|x |2, has a

singularity of order (1� |x |)�2 at the boundary @B1.
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Leray inequality with a remainder term

Barbatis, Filippas and Tertikas proved an improved version
with a remainder term:

Z

B1

|rw |
2
dx�

1

4

Z

B1

w
2

|x |2(ln e
|x |)

2
dx �

1

4

1X

i=2

Z

B1

|w |
2

|x |2

iY

j=1

X
2
j (|x |)dx ,

(5.7)
8 w 2 C

1
c (B1), where

X1(r) = (ln e
r )

�1, Xk(r) = X1(Xk�1(r)) for k = 2, .... (5.8)
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Some embedding results

It follows in particular that

(i) for any � > 1, the following embedding is compact:

Ĥ
1
0(B1) ,! L

2
�
B1, |x |

�2(� ln |x |)�2
�
1 + | ln ln

1

|x |
|
�
�2�

dx
�
.

Moreover, the embedding inequality (1.6) holds for
u 2 Ĥ

1
0(B1).

(ii) For any q > 2, r 2 (0, 1) and � > 1, the following embedding
is compact:

Ĥ
1
0(Br ) ,! L

q
�
Br , |x |

�2(� ln |x |)1+
q
2
�
1+| ln ln

1

|x |
|
�
��(1+ q

2 )dx
�
.

Moreover, the embedding inequality (1.8) holds for
u 2 Ĥ

1
0(B1).
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Thanks for your attention!
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