
Dr
aft

Fractional Optimal Rearrangement Problems

Hayk Mikayelyan
The University of Nottingham Ningbo China

BIRS-IASM Workshop: Nonlocal Problems in

Mathematical Physics, Analysis and Geometry

Hangzhou, PR China
⋆ ⋆ ⋆

September 16-20, 2024

Non-local rearrangement problems 1/38



Dr
aft

A classical rearrangement problem

Let us consider the stationary heat equation
∂tu︸︷︷︸
=0

− ∆u = f(x) in Ω,

u = u0 on ∂Ω.

• force function modeled by f(x)

• u(x) and f(x) do not depend on time

• constant temperature on the boundary of Ω

Different force functions f result different heat distributions uf .

Problem: Which f makes u be as equally distributed as possible, given
that ∫

Ω
f(x)dx = B and 0 ≤ f(x) ≤ M?
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A classical rearrangement problem

Let uf be the unique solution of the boundary value problem{
−∆uf (x) = f(x) in Ω,

uf = 0 on ∂Ω.

Consider the minimization/maximization of the functional

Φ(f) =
∫

Ω
|∇uf |2dx

over the class of admissible force functions

Rβ = {f : f = 0 or f = 1, and
∫

Ω
fdx = β}.

The relaxed problem relates to the minimization/maximization over the
weak-* closure of Rβ

R̄β = {f : 0 ≤ f ≤ 1, and
∫

Ω
fdx = β}.
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A classical rearrangement problem
Theorem

There exists a unique minimizer f̂ of

Φ(f) =
∫

Ω
|∇uf |2dx

over the set f ∈ R̄, and α > 0 such that for the function û = uf̂ the
following is true

• 0 < û ≤ α in Ω,
• f = χ{û<α} ∈ R,
• û = α in {f̂ = 0}.

Moreover, the function U = α − û is the minimizer of the functional

J(w) =
∫

Ω
|∇w|2 + 2 max(w, 0)dx,

among functions w ∈ W 1,2(Ω) with boundary values α on ∂Ω, and solves
the obstacle problem

∆U = χ{U>0}.
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The obstacle problem

Consider the minimization of the functional

J(w) =
∫

Ω
|∇w|2 + 2 max(w, 0)dx,

among functions w ∈ W 1,2(Ω) with boundary values α > 0 on ∂Ω.

There is a unique minimizer U to this problem, which solves the following
equation

∆U = χ{U>0}.
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A classical rearrangement problem
Theorem

There exists a maximizer f̂ of

Φ(f) =
∫

Ω
|∇uf |2dx

over the set f ∈ R̄, and α > 0 such that for the function û = uf̂ the
following is true

f = χ{û>α} ∈ R.

Moreover, the function U = α − û is the minimizer of the non-convex
functional

J(w) =
∫

Ω
|∇w|2 − 2 max(w, 0)dx,

among functions w ∈ W 1,2(Ω) with boundary values α on ∂Ω, and solves
the unstable obstacle problem

∆U = χ{U<0}.
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Fractional setting

For a function u defined in Rn let us define the Gagliardo semi-norm

[u]2s := 1
2

∫∫
Rn×Rn

|u(x) − u(y)|2

|x − y|n+2s
dxdy,

where 0 < s < 1.

We also define fractional Sobolev spaces in Rn

Hs(Rn) = {v ∈ L2(Rn) : [v]2s < ∞},

and in a bounded domain D

Hs
0(D) = {v ∈ Hs(Rn) : v = 0 a.e. in Dc},

as well as dual spaces

H−s(Rn) = (Hs(Rn))′, H−s(D) = (Hs
0(D))′.
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Fractional setting

For a function f ∈ H−s(D) we say uf ∈ Hs
0(D) solves the fractional

boundary value problem in D with homogeneous Dirichlet boundary
condition {

(−∆)suf = f in D,

uf = 0 in Dc,

if the equation is satisfied in the sense of distributions

1
2

∫∫
R2n

(uf (x) − uf (y))(v(x) − v(y))
|x − y|n+2s

dxdy =
∫

D

fv dx

for any v ∈ Hs
0(D).

Fractional Rearrangement Problem

Minimize/maximize
Φs(f) = [uf ]2s

over f ∈ R̄.
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The minimization problem

Theorem (Bonder, Cheng, Mikayelyan, 2020)

There exists a unique minimizer f̂ ∈ R̄β \ Rβ such that

Φs(f̂) ≤ Φs(f)

for any f ∈ R̄β . Moreover, for some α > 0 the function û = uf̂ satisfies
the following conditions

0 ≤ û ≤ α in D,

and
f̂ > 0, {f̂ < 1} ⊂ {û = α}, {û < α} ⊂ {f̂ = 1}.
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The minimization problem

Moreover, the function Û := α − û minimizes the functional

J(v) = [v]2s +
∫

D

v+ dx

over the set Hs
α = {v ∈ Hs

loc(Rn) : v − α ∈ Hs
0(D)}, and the function Û

verifies the inequalities

χ{U>0} ≤ −(−∆)sU ≤ χ{U≥0} in D

in the sense of distributions.
Finally, the minimizer of J in Hs

α is unique and is the unique solution to
the inequalities above.
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Fractional normalized obstacle problem

Theorem (Bonder, Cheng, Mikayelyan, 2020)
The function U ∈ Hα satisfies

χ{U>0} ≤ −(−∆)sU ≤ χ{U≥0} in D

if and only if it satisfies the equation{
−(−∆)sU − χ{U≤0} min{−(−∆)sU+; 1} = χ{U>0}, in D,

U = α in Dc,

among functions

Hs
sub(D) = {u ∈ Hs

loc(Rn) : (−∆)su ≤ 0 in D} .

Here

min{−(−∆)sU+; 1} = 1 − (1 + (−∆)sU)+.
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The maximization problem

Theorem (Bonder, Cheng, Mikayelyan, 2021)

There exists a maximizer f̂ ∈ Rβ such that

Φs(f̂) ≥ Φs(f)

for any f ∈ R̄β . Moreover, for some α > 0 the function û = uf̂ satisfies
the following equation

(−∆)sû = χ{û>α} = f̂ .

Open Problem: (including the local case)

D convex ⇒ f̂ unique.
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Reinforced membrane problem

Hernot and Maillot have considered the following problem, where f ≥ 0
is the external load and ω ⊂ D is the subset with increased stiffness:

For a fixed function f ∈ L2(D), let ω ⊂ D and uω ∈ W 1,2
0 (D) be the

unique solution of the following problem in a domain D{
−∆uω(x) + χω(x)uω(x) = f(x) in D,

uω(x) = 0 on ∂D.

Minimize the functional

F (ω) =
∫

D

|∇uω|2 + χωu2
ωdx

(
=

∫
D

fuωdx

)
over all subsets with given volume |ω| = β.

Q.: For which functions f does the optimal set ω exist?
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Reinforced membrane problem

As in the previous examples, one has to consider the relaxed problem.
Consider the weak-* closure of the set of characteristic functions χω of
given L1-norm β:

R̄β = {l : 0 ≤ l ≤ 1, and
∫

D

ldx = β}.

Minimize the functional

F (l) =
∫

D

|∇ul|2 + lu2
l dx

(
=

∫
D

fuldx

)
over functions l ∈ R̄β , where function f ∈ L2(D), and ul ∈ W 1,2

0 (D) be
the unique solution of the BVP{

−∆ul(x) + l(x)ul(x) = f(x) in D,

ul(x) = 0 on ∂D.
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Reinforced membrane problem

Henrot and Maillot has shown the existence of the minimizer, as well as
proven some properties.

Moreover, using the auxiliary function u0{
−∆u0(x) = f(x) in D,

u0(x) = 0 on ∂D,

they have proven that the minimizer is a characteristic function, provided
the function f satisfies one of the following conditions

(i) u0 ≤ f in D,

(ii) f ≤ −∆f in D,

(iii) |{x ∈ D : u0 > γ}| < β, where γ = inf{f(x) : f(x) < u0(x)}.

Furthermore, they prove that the minimizer is a characteristic function, in
case of the ball and a non-increasing radial symmetric function f .
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Fractional reinforced membrane

For a fixed function f ∈ L2(D), let l ∈ R̄β and ul ∈ Hs
0(D) be the

unique solution of the following fractional analogue of the reinforced
membrane problem in D{

(−∆)s
ul(x) + l(x)ul(x) = f(x) in D,

ul(x) = 0 in Rn \ D,

where the equation is satisfied in the sense of distributions

∫∫
R2n

(uf (x) − uf (y))(v(x) − v(y))
|x − y|n+2s

dxdy +
∫

D

lulv dx =
∫

D

fv dx

for any v ∈ Hs
0(D).
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Fractional reinforced membrane

Consider the minimization of the design function

Fs(l) := [ul]2s +
∫

D

lu2
l dx

(
=

∫
D

fuldx

)
over the set l ∈ R̄β .

Theorem (Cheng, Mikayelyan, 2024)
Fs is convex and is weak∗−continuous in {f ∈ L∞(Ω) : f ≥ 0 a.e.}. In
particular, there exists l̂ in R̄β such that

inf
ω∈Rβ

Fs(ω) = min
l∈R̄β

Fs(l) = Fs(l̂).
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Fractional reinforced membrane

Theorem (Cheng, Mikayelyan, 2024)

Let û solve (**) with a design function l̂ ∈ R̄β , and

Ω0 =
{

x ∈ Ω : l̂(x) = 0
}

,

Ω1 =
{

x ∈ Ω : l̂(x) = 1
}

,

Ω∗ =
{

x ∈ Ω : 0 < l̂(x) < 1
}

.

Then l̂ minimizes Fs if and only if the following two conditions hold
γl̂ = sup

x∈Ω0

û(x) = inf
x∈Ω1

û(x).

If |Ω∗| > 0, then û(x) = γl̂ a.e. in Ω∗.

Theorem (Cheng, Mikayelyan, 2024)
Let Ω = B1. Assume that f = f(r) is non-negative, radially symmetric
and decreasing in r = |x|. Then, for every R ∈ [0, 1], the characteristic
function l̂ = χBR

is a minimizer of Fs over R̄β with β = |BR|.
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Cylindrical rearrangement problem

Let us consider the cylindrical domain Ω = Dx′ × (0, 1)xn
and the

subclass of force functions which are independent of xn

R̄D
β = {f ∈ R̄β : f(x) = f(x′)}.

Let uf be the unique solution of the boundary value problem{
−∆uf (x) = f(x′) in Ω,

uf = 0 on ∂Ω.

Consider the minimization of the functional

Φ(f) =
∫

Ω
|∇uf |2dx

over the class of admissible force functions R̄D
β .

© Sandvik AB, Sweden
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Cylindrical rearrangement problem

Theorem (Mikayelyan, 2018)
The minimization problem

min
f∈R̄D

Φ(f)

has a unique solution f̂ ∈ R̄D \ RD, f̂ > 0 in D, and there exists a
constant α > 0 such that for the function

v̂(x′) = vf̂ (x′) =
∫ 1

0
uf̂ (x′, t)dt

the following is true

v̂ = vf̂ ≤ α,

{f̂ < 1} ⊂ {v̂ = α},

{v̂ < α} ⊂ {f̂ = 1}.
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The non-local obstacle

Theorem (Mikayelyan, 2018)

Moreover, the function Û(x) = α − û(x) is the minimizer of the convex
functional

J(U) =
∫

Ω
|∇U |2dx + 2

∫
D

max(V, 0)dx′,

among functions in U ∈ W 1,2(Ω) such that U = α on ∂Ω, where

V (x′) =
∫ 1

0
U(x′, t)dt.

Theorem (Mikayelyan, 2018)

û = uf̂ ∈ W 2,2(D′ × (0, 1))

for any D′ ⋐ D.

Non-local rearrangement problems 21/38



Dr
aft

The non-local obstacle

Theorem (Mikayelyan, 2018)
Consider the minimization of the convex functional in the domain
Ω = D × (0, 1)

J(u) =
∫

Ω
|∇u|2dx + 2

∫
D

v+dx′

among functions with prescribed boundary values u = g = const on ∂Ω,
where v(x′) =

∫ 1
0 u(x′, xn)dxn.

Then the functional J has a unique minimizer u, and

∆u(x) = χ{v>0} + 2∂νu(x′, 0)χ{v=0} in Ω.
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Numerical simulations
joint work with Zhilin Li (North Carolina State University)

u(x, y, 0) u(x, 0, z)

v(x, y) f(x, y)
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Comparison principle

Lemma

Let u1 and u2 minimize

J(u) =
∫

Ω
|∇u|2dx + 2

∫
D

v+dx′

among functions with constant boundary data α1 and α2 respectively,
and 0 < α1 < α2. Then the comparison principle does not hold for the
functions u1 and u2.

u1(x) ≤ u2(x) is not true for all x ∈ Ω.

Conjecture

For vj(x′) =
∫ 1

0 uj(x′, t)dt, j = 1, 2,

v1(x′) ≤ v2(x′) in D.
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Comparison principle

Theorem (Chipot, Mikayelyan, 2022)

For 0 < α1 < α2 and vj(x′) =
∫ 1

0 uj(x′, t)dt, j = 1, 2,

v1(x′) ≤ v2(x′) in D.

⇕

u2 − α2 ≤ u1 − α1

⇕

∂2
xnxn

(u2 − u1) ≥ 0
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Remarks on free boundary regularity

Theorem
Consider the minimizer u of the convex functional

J(u) =
∫

Ω
|∇u|2dx + 2

∫
D

v+dx′.

in the domain Ω = D × (0, 1), where v(x′) =
∫ 1

0 u(x′, xn)dxn.

Then
∆v = h(x′)χ{v>0},

where
h(x′) = 1 − 2∂νu(x′, 0) ∈ Cα(D),

and
h ≥ 0 in {v ≥ 0}.
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Remarks on free boundary regularity

If x′ ∈ ∂{v > 0} and h(x′) > 0, then we have same regularity as for the
classical obstacle problem.

Open questions:

1. Is it possible to have h(x′) = 0 on ∂{v > 0}?

2. What happens if h(x′) = 0?
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Technique (unconstrained case)

Lemma

Φ(f) =
∫

Ω
|∇uf |2dx =

∫
Ω

fuf dx = sup
u∈W 1,2

0 (Ω)

∫
Ω

2fu − |∇u|2dx.

Lemma
The functional Φ is

(i) weakly sequentially continuous in L2,

(ii) strictly convex,

(iii) Gâteaux differentiable, and Φ′(f) can be identified with 2uf .
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Technique (unconstrained case)

Step 1:
The minimizer f̂ of Φ over R̄ exists and is unique.
Step 2:
The minimality condition is

0 ∈ ∂Φ(f̂) + ∂ξR̄(f̂),

where ∂Φ is the sub-differential of Φ and

ξR̄(g) =
{

0 if g ∈ R̄
∞ if g /∈ R̄

.

Thus

−2û ∈ ∂ξR̄(f̂) =
{

w ∈ L2(Ω) : ξR̄(f) − ξR̄(f̂) ≥
∫

Ω
(f − f̂)wdx′

}
and for any f ∈ R̄ ∫

Ω
f̂ ûdx ≤

∫
Ω

fûdx.
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Technique (unconstrained case)

Lemma

For f, g ∈ L2
+(D) there exists f̃ ∈ ext(R̄(f)) such that functional∫

D

f̃gdx ≤
∫

D

hgdx,

for all h ∈ R̄(f).

Step 3:
There exists f̃ ∈ R such that for any f ∈ R̄∫

Ω
f̂ ûdx =

∫
Ω

f̃ ûdx ≤
∫

Ω
fûdx.

Step 4:
Prove that

f̃ = f̂ .
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Technique (constrained case)

For f ∈ R̄D we have f(x) = f(x′) and thus

Φ(f) =
∫

Ω
|∇uf |2dx =

∫
Ω

fuf dx =
∫

D

f(x′)vf (x′)dx′,

where
vf (x′) =

∫ 1

0
uf (x′, t)dt.

We can consider Φ in L2
D(Ω) or in L2(D).

Lemma
The functional Φ is
(i) weakly sequentially continuous in L2

D(Ω) and in L2(D),
(ii) strictly convex,
(iii) Gâteaux differentiable. Moreover, Φ′(f) can be identified with 2uf if
we consider Φ in L2(Ω) or 2vf if we consider Φ in L2(D).

Non-local rearrangement problems 31/38



Dr
aft

Technique (constrained case)

Lemma

Let Ω = Dx′ × (0, 1)xn and{
−∆u(x) = f(x′) in Ω,

u = 0 on ∂Ω.
(1)

Then

u(x′, xn) = u(x′, 1 − xn), (2)

and the function v(x′) =
∫ 1

0 u(x′, xn)dxn satisfies the following equation

{
−∆x′v = f(x′) + 2∂νu(x′, 0) in D,

v = 0 on ∂D.
(3)
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Technique (constrained case)

How does the proof work?

Steps 1-3 are similar to unconstrained case

There exists a unique minimizer f̂ ∈ R̄D of Φ.

There exists f̃ = χD0(x′) ∈ ext(R̄D) = RD such that∫
D

f̂ v̂dx′ =
∫

Ω
f̃(x′)û(x)dx ≤

∫
Ω

f(x′)û(x)dx

for any function f ∈ R̄D.

Main challenge: f̃ ̸= f̂ .
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Technique (constrained case)

Step 4:

Claim 1:
α = sup

D0

v̂ ≤ inf
D\D0

v̂.

Claim 2:
f̂ = f̃ = 1, in {v̂ < α}.

Claim 3:
{v̂ > α} ⊂ D# := {f̂ = 0}.
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Technique (constrained case)

Claim 4:
D# has no interior. Thus v̂ ≤ α.

From (3) and the Hopf’s lemma it follows that

∆x′ v̂(x′) = −2∂νu(x′, 0) > 0 in int(D#)

and v̂ ≥ α in int(D#). This means that there exists y ∈ ∂(int(D#))
such that v̂(y) = β > α, which contradicts Claim 3 and continuity of v̂.

Claim 5:
f̂ > 0.

We need to verify this only in int({v̂ = α}) where

0 = ∆x′ v̂ = −f̂(x′) − 2∂ν û(x′, 0).

and the outer normal derivative of û is not vanishing in D by Hopf
lemma.
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