Fractional Optimal Rearrangement Problems

Hayk Mikayelyan
The University of Nottingham Ningbo China

BIRS-IASM Workshop: Nonlocal Problems in

Mathematical Physics, Analysis and Geometry

Hangzhou, PR China
* ok *
September 16-20, 2024

The Uniyevsitu of
" | Nottingham

UNITED KINGDOM - CHINA - MALAYSIA

Non-local rearrangement problems 1/38




The University of
' | Nottingham
NP

A classical rearrangement problem

Let us consider the stationary heat equation

Oru — Au = f(x) in £,
~—

=0
U = Ug on 0f).

o force function modeled by f(x)
e u(x) and f(x) do not depend on time

e constant temperature on the boundary of Q2
Different force functions f result different heat distributions uy.

Problem: Which f makes u be as equally distributed as possible, given
that

/ f(z)dz =B and 0 < f(z) < M?
Q
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A classical rearrangement problem K | Naiion

Let us be the unique solution of the boundary value problem

—Aug(x) = f(z) inQ,
ur =0 on 0f).

Consider the minimization/maximization of the functional

B(f) = / Vs da
Q
over the class of admissible force functions

Rg={f: f=00or f=1, and /Qfdmzﬂ}.

The relaxed problem relates to the minimization/maximization over the
weak-* closure of R

Re={f: 0<f<1, and/fdsr::ﬂ}.
Q



The University of
' | Nottingham
NP

A classical rearrangement problem

Theorem

There exists a unique minimizer f of
d(f) :/ |Vuf|2dx
Q

over the set f € R, and o > 0 such that for the function @ = uy the

following is true ~ .
el0<u<ain(),

* [ =X{a<a} €R,
et =ain{f =0}

Moreover, the function U = « — 1 is the minimizer of the functional
J(w) = / |Vw|? 4 2 max(w, 0)dz,
Q

among functions w € W12(Q) with boundary values a on 95, and solves
the obstacle problem

AU = X{U>0}-
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The obstacle problem B i

Consider the minimization of the functional
J(w) = / |Vw|? 4 2 max(w, 0)dz,
Q

among functions w € W2(Q) with boundary values a > 0 on 9.

There is a unique minimizer U to this problem, which solves the following
equation

AU = x{u>o}-
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A classical rearrangement problem

Theorem

There exists a maximizer f of

B(f) = / Vg *do

over the set f € R, and o > 0 such that for the function @ = ug the
following is true

f = X{a>a} €ER.

Moreover, the function U = o — 1 is the minimizer of the non-convex
functional

J(w) = / |Vw|? — 2max(w, 0)dz,
Q

among functions w € W2(Q) with boundary values a on 95, and solves
the unstable obstacle problem

AU = X{U<0}-
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Fractional setting

For a function u defined in R™ let us define the Gagliardo semi-norm

|u(z) —u(y)®
//anﬂ \JU—3/|"+2S dzd

We also define fractional Sobolev spaces in R™

where 0 < s < 1.

H*(R"™) = {v e L*(R"): [v]Z < oo},
and in a bounded domain D
Hi(D)={ve H(R"): v=0a.e. in D},
as well as dual spaces

H™*(R") = (H*(R")), H™*(D) = (H;(D))".
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Fractional setting

For a function f € H *(D) we say uy € Hj(D) solves the fractional
boundary value problem in D with homogeneous Dirichlet boundary
condition

(=A)Y’uy=f inD,

ur =0 in D€,

if the equation is satisfied in the sense of distributions

//]R% s _|Zf£y)|)rg+(2f) ) drdy = /D fvdx

for any v € H$(D).

Fractional Rearrangement Problem

Minimize/maximize

over f € R.

Non-local rearrangement problems 8/38



The University of
' | Nottingham
NP

The minimization problem

Theorem (Bonder, Cheng, Mikayelyan, 2020)

There exists a unique minimizer f € Rg\ Rp such that

A

®,(f) < 2(f)

for any f € 7@5. Moreover, for some o > 0 the function 4 = u i satisfies
the following conditions

0<a<ainD,

and

f>0, {f<1}c{a=a}, {a<alc{f=1}
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The minimization problem L Notigion

Moreover, the function U := o — 4@ minimizes the functional
J(w) = [v]? —l—/ vt dx
D

over the set HS = {v € Hj (R"): v —a € H5(D)}, and the function U
verifies the inequalities

x>0y < —(=A)°U < xquzoy inD

in the sense of distributions.

Finally, the minimizer of J in H/ is unique and is the unique solution to
the inequalities above.
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Fractional normalized obstacle problem I i

Theorem (Bonder, Cheng, Mikayelyan, 2020)
The function U € H,, satisfies

x>0y < —(=A)*U < xquzoy inD

if and only if it satisfies the equation

—(=A)*U — xqu<oy min{—(=A)*U*; 1} = xqus0y, in D,
U=« in D¢,

among functions

sun(D) = {u € Hjpo(R"): (=A)*u <0 in D}.
Here

min{—(-A)*U";1} =1 - (1+ (-A)*U)*.
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The maximization problem

Theorem (Bonder, Cheng, Mikayelyan, 2021)

There exists a maximizer f € ‘Rg such that

A

®,(f) = (f)

for any f € 7@5. Moreover, for some oo > 0 the function 4 = u i satisfies
the following equation

A

(_A)Sﬁ’ = X{a>a} = f

Open Problem: (including the local case)

D convex = f unique.

Non-local rearrangement problems 12/38



The University of
' | Nottingham
-

Reinforced membrane problem

Hernot and Maillot have considered the following problem, where f > 0
is the external load and w C D is the subset with increased stiffness:

For a fixed function f € L2(D), let w C D and u,, € W,*(D) be the
unique solution of the following problem in a domain D

—Auy(z) + Xw(@)uy(z) = f(z) in D,
Uy (x) =0 on dD.

Minimize the functional

F(w):/D|Vuw|2+quidac (z/Dfuwdx>

over all subsets with given volume |w| = 3.

Q.: For which functions f does the optimal set w exist?
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Reinforced membrane problem

As in the previous examples, one has to consider the relaxed problem.
Consider the weak-* closure of the set of characteristic functions Y, of
given L'-norm f:

Rag={l:0<1<1, and/ldx:ﬂ}.
D

Minimize the functional

F(l)z/D\Vul|2—|—lu52dz (:/Dfuldx>

over functions [ € Ry, where function f € L*(D), and u; € W,"*(D) be
the unique solution of the BVP

~Au(@) + @) = fa) i D,
w(z) =0 on dD.
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Reinforced membrane problem

Henrot and Maillot has shown the existence of the minimizer, as well as
proven some properties.

Moreover, using the auxiliary function ug
—Aug(w) = f(z) in D,
up(x) =0 on 0D,

they have proven that the minimizer is a characteristic function, provided
the function f satisfies one of the following conditions

(I) (N S f in D,
(il) f < —Afin D,
(i) [{z € D : up > v} < B, where v = inf{f(z) : f(z) < up(z)}.

Furthermore, they prove that the minimizer is a characteristic function, in
case of the ball and a non-increasing radial symmetric function f.
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Fractional reinforced membrane

For a fixed function f € L?(D), let | € R and w; € H§(D) be the
unique solution of the following fractional analogue of the reinforced
membrane problem in D

{(—A)Sul(x) +U(z)w(z) = f(z) in D,
w(z) =0 in R™\ D,

where the equation is satisfied in the sense of distributions

/. (u (= _|Zf£y;|)£+(2f)—v(y)) dady+ [ twwdo = [ foda

for any v € H§(D).
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Fractional reinforced membrane

Consider the minimization of the design function

Fy(l) := [ul]§+/Dzu?dx <_/Dfuldx)

over the set [ € 7@[3.

Theorem (Cheng, Mikayelyan, 2024)

F is convex and is weak*—continuous in {f € L*(Q2) : f >0 a.e.}. In
particular, there exists | in Rg such that

inf Fy(w) = min F,(l) = F,(0).
(»JERL} lGR@
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Fractional reinforced membrane

Theorem (Cheng, Mikayelyan, 2024)

Let @ solve (**) with a design function | € Ry, and

QO:{:EGQ : i(x):o},

le{xEQ : i(a:):l},

Q*:{er : 0<Z(:c)<1}.
Then [ minimizes F if and only if the following two conditions hold
v = supﬁ( )= 1nf u( ).

€Qo

I Q. \ > 0, then u( ) =; a.e. in Q.

Theorem (Cheng, Mikayelyan, 2024)

Let Q = By. Assume that f = f(r) is non-negative, radially symmetric
and decreasing in r = |z|. Then, for every R € [0,1], the characteristic
function [ = XBy is @ minimizer of Fy over R with B = | Bgl.
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Cylindrical rearrangement problem B | Reiion

Let us consider the cylindrical domain Q = D, x (0,1),, and the
subclass of force functions which are independent of x,,

RE ={f€Rs : flz)=f(a")}.

Let uy be the unique solution of the boundary value problem

—Auy(z) = f(2') inQ,
up =0 on 0f).

Consider the minimization of the functional

B(f) = /Q Vg 2z

© Sandvik AB, Sweden

over the class of admissible force functions 7%7.
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Cylindrical rearrangement problem B i

Theorem (Mikayelyan, 2018)

The minimization problem

min ®(f)
fERD

has a unique solution f €Rp \ Rp, f > 0 in D, and there exists a
constant o > 0 such that for the function

1

o(2) = vi(a) = /0 u (e’ t)dt

the following is true e domain
v=v; <a,

{f<iclo=a}

{p<alc{f=1}.
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The non-local obstacle I Nofingan

Theorem (Mikayelyan, 2018)

Moreover, the function U(z) = o — () is the minimizer of the convex
functional

J(U):/ |VU|2d$+2/ max(V,0)dz’,
Q D

among functions in U € W12(Q) such that U = a on 92, where

V() = /O U, t)dt.

Theorem (Mikayelyan, 2018)

a=u; € W*(D' x (0,1))
for any D' € D.

Non-local rearrangement problems 21/38



The non-local obstacle I Nofingan

Theorem (Mikayelyan, 2018)

Consider the minimization of the convex functional in the domain
Q=D x(0,1)

u)z/ |Vu|2d3:—|—2/ vhda’
Q D

among functions with prescribed boundary values uw = g = const on OS2,
where v( fo @',z )dx,.

Then the functional J has a unique minimizer u, and

Au(x) = X{v>0} + 2auu(x/7 O)X{v:O} in ).
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Numerical simulations

joint work with Zhilin Li (North Carolina State University)

u(m,y?O) mu(;,(],z)
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Comparison principle

Lemma

Let w1 and uy minimize

u):/ |Vu|2dx+2/ vtda’
Q D

among functions with constant boundary data oy and as respectively,
and 0 < a1 < as. Then the comparison principle does not hold for the
functions u, and us.

uy(x) < wus(x) is not true for all x € Q).
Conjecture
For vi(z fo wj(a/,t)dt, j =1,2,

v1(z’) < wva(a’) in D.
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Comparison principle B | i

Theorem (Chipot, Mikayelyan, 2022)

For 0 < oy < ap and vj(x foujx t)dt, j = 1,2,

vi(a') <wg(a’) in D.

U — g S U —

(92 mn(’LLQ — ul) Z 0

Tn
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Remarks on free boundary regularity

Theorem

Consider the minimizer u of the convex functional
J(u) :/ |Vu|2dx—|—2/ vhda'.
Q D

in the domain Q@ = D x (0,1), where v(z') = fol u(x', xp)de,.

Then
Av = h(x,)X{v>0}a
where
h(z') =1-20,u(z',0) € C*(D),
and

h >0 in {v>0}.
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Remarks on free boundary regularity

If 2 € 0{v > 0} and h(z’) > 0, then we have same regularity as for the
classical obstacle problem.

Open questions:
1. Is it possible to have h(z’) = 0 on 9{v > 0}7?

2. What happens if h(z') = 07
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Technique (unconstrained case)

Lemma

@(f):/ |Vuf\2dx:/fufdx: sup /2fu—|Vu|2da:.
Q Q Q

ueW, % ()

Lemma
The functional ® is

(i) weakly sequentially continuous in L?,
(ii) strictly convex,

(iii) Gateaux differentiable, and ®'(f) can be identified with 2uy.
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Technique (unconstrained case)

Step 1:

The minimizer f of ® over R exists and is unique.
Step 2:

The minimality condition is

0 € 08(f) + 9r (/).

where 9@ is the sub-differential of ® and

. Jo ifger

Thus

2 € 06 (f) = {w eI ¢ &N -l 2 [ (/- f>wdx'}

/Q fadz < /Q fadz.

and for any f € R
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Technique (unconstrained case)

Lemma

For f,g € L7 (D) there exists f € ext(R(f)) such that functional

/fgdxé/ hgdz,
D D

for all h € R(f).

Step 3:
There exists f € R such that for any f € R

/Q fads = /Q fadz < /Q fadz.

Step 4:
Prove that
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Technique (constrained case) L Noiigion

For f € Rp we have f(z) = f(2') and thus

o) = [ [Vusde = [ fusdo= | jontaas
where

vf(:r/):/o up(2',t)dt.

We can consider ® in L%/(Q) or in L*(D).

Lemma

The functional ® is

(i) weakly sequentially continuous in L% () and in L*(D),

(i) strictly convex,

(iii) Gateaux differentiable. Moreover, ®'(f) can be identified with 2uy if
we consider ® in L*(Q) or 2vy if we consider ® in L*(D).
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Technique (constrained case)

Lemma

Let Q =D, x (0,1),, and

n

{Au(x) = f(«') inQ, (1)
u=20 on 0N2.
Then

u(r', z,) = u(z',1 — x,), (2)

and the function v(z') = fol u(z', xp)dx,, satisfies the following equation

{Ax/v = f(2') +20,u(z’,0) in D, 3)

v=20 on O0D.
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Technique (constrained case)

How does the proof work?

Steps 1-3 are similar to unconstrained case
There exists a unique minimizer f € Rp of ®.

There exists f = xp,(z') € ext(Rp) = Rp such that

/fvdw*/f d:c</f Ya(z

for any function f € Rp.

Main challenge: f;é f
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Technique (constrained case)

Step 4:
Claim 1:
a=sup?d < inf 0.
Dy D\ Dy
Claim 2:
f=f=1in{o<al
Claim 3:

{6 >a} c D¥ = {f =0}
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Technique (constrained case)

Claim 4:
D# has no interior. Thus 9 < «.

From (3) and the Hopf's lemma it follows that
Ay o(x') = —20,u(x’,0) > 0 in int(D¥)

and © > « in int(D#). This means that there exists y € 9(int(D¥))
such that 9(y) = 8 > «, which contradicts Claim 3 and continuity of 0.

Claim 5:
f>o.

We need to verify this only in int({0 = «}) where
0=Ay0=—f(2')—20,a(x',0).

and the outer normal derivative of 4 is not vanishing in D by Hopf
lemma.
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