# Blow-up criterion for a degenerate fully parabolic chemotaxis system

#### KE LIN

College of Mathematics

Southwestern University of Finance and Economics, Chengdu

(Joint work with Sheng Wang)

Nonlocal Problems in Mathematical Physics, Analysis and Geometry, Sep. 15-20, 2024



# The HLS inequality

A classical inequality, due to Hardy ('28), Littlewood ('30) and Sobolev ('38), states that

$$|\mathcal{H}[f,g]| = \left| \iint_{\mathbb{R}^d \times \mathbb{R}^d} \frac{f(x)g(y)}{|x-y|^{\lambda}} dx dy \right| \le C(d,\lambda,p) ||f||_p ||g||_t$$

for all  $f \in L^p(\mathbb{R}^d)$  and  $g \in L^t(\mathbb{R}^d)$ , where p, t > 1,  $\lambda \in (0, d)$ , satisfy

$$\frac{1}{p} + \frac{\lambda}{d} + \frac{1}{t} = 2.$$

# The sharp constant for HLS inequality

• The sharp constant:

$$C_{HLS} = \sup_{f \neq 0} \left\{ \frac{\||x|^{-\lambda} * f\|_q}{\|f\|_p} \middle| f \in L^p(\mathbb{R}^d) \right\},$$

where  $1/p + \lambda/d = 1 + 1/q$ .

• There is a  $f \in L^p$  with  $||f||_p = 1$  that maximizes  $C_{HLS}$ . Moreover, every maximizing f is symmetrically decreasing following a translation and fulfills a pair of equations (Lieb, '83, Ann. Math.; '01, Analysis)

$$|x|^{-\lambda} * f = g^{t-1}, \quad |x|^{-\lambda} * g = f^{p-1},$$

for some symmetric  $g \in L^t$ .



# A variant to the HLS (VHLS) inequality

Let  $d \ge 3$ , and let  $\lambda = d-2$  (Newtonian potential),  $m_* = 2d/(d+2)$  and  $m^* = 2 - 2/d$ . For  $m \in (m_*, m^*]$ ,

$$C_{HLS,m} := \sup_{h \neq 0} \left\{ \frac{\mathcal{H}[h,h]}{\|h\|_1^{1-\sigma} \|h\|_m^{1+\sigma}}, h \in L^1(\mathbb{R}^d) \cap L^m(\mathbb{R}^d), \ h \geq 0 \right\}$$
with  $\sigma = [m(d-2)]/[(m-1)d] - 1 \in (0,1).$ 

# A variant to the HLS (VHLS) inequality

Let  $d \ge 3$ , and let  $\lambda = d-2$  (Newtonian potential),  $m_* = 2d/(d+2)$  and  $m^* = 2-2/d$ . For  $m \in (m_*, m^*]$ ,

$$C_{HLS,m} := \sup_{h \neq 0} \left\{ \frac{\mathcal{H}[h,h]}{\|h\|_1^{1-\sigma} \|h\|_m^{1+\sigma}}, h \in L^1(\mathbb{R}^d) \cap L^m(\mathbb{R}^d), \ h \geq 0 \right\}$$

with  $\sigma = [m(d-2)]/[(m-1)d] - 1 \in (0,1)$ .

#### Proposition

There exists a non-negative, radially symmetric and non-increasing function  $V \in L^1(\mathbb{R}^d) \cap L^m(\mathbb{R}^d)$  with  $\|V\|_1 = \|V\|_m = 1$  that attains the variational problem  $C_{HLS,m}$ .

• See (Blanchet/Carrillo/Laurençot, '09, CVPDE) for  $m = m^*$  and (Kimi-jima/Nakagawa/Ogawa, '14, CVPDE) for  $m \in (m_*, m^*)$ .



# Parabolic-elliptic (PE) Keller-Segel model

The Keller-Segel (Keller/Segel, '70, JTB) model describes the motion of cells by chemotactical attraction by means of the coupled system:

$$\begin{cases} \partial_t u = \Delta u^m - \nabla \cdot (u \nabla v), & x \in \mathbb{R}^d, \\ -\Delta v = u, & x \in \mathbb{R}^d. \end{cases}$$
 (1)

- u = u(x, t) : mass density;
- v = v(x, t): the concentration of the chemical attractant;
- m > 1: degenerate diffusion;
- Note that v = W \* u solves the elliptic problem, where

$$\mathcal{W}(x) = \frac{c_d}{|x|^{d-2}}, \text{ if } d > 2.$$



# Lyapunov functional for PE system

The main implication for us is that there is a natural Lyapunov functional for (1) defined on the set of centered mass densities  $\rho \in L^1_+(\mathbb{R}^d) \cap L^m(\mathbb{R}^d)$  given by

$$\mathcal{E}[\rho] = \mathcal{G}[\rho] - \mathcal{I}[\rho],$$

$$\mathcal{G}[\rho] = \frac{1}{m-1} \int_{\mathbb{R}^d} \rho^m(x) dx, \ \mathcal{I}[\rho] = \frac{1}{2} \int_{\mathbb{R}^d} \rho(x) \mathcal{W} * \rho(x) dx,$$

$$\mathcal{E}[\rho](t) \le \mathcal{E}[\rho_0], \quad t > 0,$$

$$\rho(x) \ge 0, \ \int_{\mathbb{R}^d} \rho(x) dx = M.$$

# **Different regimes**

The functional  $\mathcal{E}$  becomes

$$\mathcal{E}[\rho^{\lambda}] = \lambda^{d(m-1)} \mathcal{G}[\rho] - \lambda^{d-2} \mathcal{I}[\rho]$$

by taking dilations  $\rho^{\lambda}(x) := \lambda^{d} \rho(\lambda x)$ . By scaling considerations, one can find 3 different regimes:

• Diffusion-dominated regime:  $m > m^*$ . The diffusion part dominates and the intuition is that solutions exist globally in time;

# **Different regimes**

The functional  $\mathcal{E}$  becomes

$$\mathcal{E}[\rho^{\lambda}] = \lambda^{d(m-1)} \mathcal{G}[\rho] - \lambda^{d-2} \mathcal{I}[\rho]$$

by taking dilations  $\rho^{\lambda}(x) := \lambda^d \rho(\lambda x)$ . By scaling considerations, one can find 3 different regimes:

- Diffusion-dominated regime:  $m > m^*$ . The diffusion part dominates and the intuition is that solutions exist globally in time;
- Aggregation-dominated regime:  $m < m^*$ . Blow-up occurs for some initial data, but not for all initial data;

# **Different regimes**

The functional  $\mathcal{E}$  becomes

$$\mathcal{E}[\rho^{\lambda}] = \lambda^{d(m-1)} \mathcal{G}[\rho] - \lambda^{d-2} \mathcal{I}[\rho]$$

by taking dilations  $\rho^{\lambda}(x) := \lambda^d \rho(\lambda x)$ . By scaling considerations, one can find 3 different regimes:

- Diffusion-dominated regime:  $m > m^*$ . The diffusion part dominates and the intuition is that solutions exist globally in time;
- Aggregation-dominated regime:  $m < m^*$ . Blow-up occurs for some initial data, but not for all initial data;
- Fair-Competition regime:  $m = m^*$ . The total mass of system is the critical quantity. There is a critical value separating the diffusive behavior from the blow-up behavior.



# **Dichotomy phenomenon for** $m = m^*$

Turn back to

$$\mathcal{E}[u] = \frac{1}{m-1} \|u\|_m^m - \frac{c_d}{2} \mathcal{H}[u, u] \left( \leq C_{HLS, m} \|u\|_1^{2/d} \|u\|_m^m \right).$$

Let

$$M_c = \left[\frac{2}{c_d(m-1)C_{HLS,m}}\right]^{d/2}.$$

Characterizing the infimum of the free energy reveals a dichotomous phenomenon (Blanchet/Carrillo/Laurençot, '09, CVPDE):

- $M = ||u||_1 < M_c$  ( $\mathcal{E} > 0$ ): Solutions are global;
- $M = M_c$  ( $\mathcal{E} = 0$ ): Solutions with finite second moment diverge to a Dirac mass, but those with radial initial conditions remain uniformly bounded (Bedrossian/Kim, '13, SJMA);
- $M > M_c$  ( $\mathcal{E} < 0$ ): Solutions blow up in finite time.



# Threshold value for $m \in (m_*, m^*)$

Let the function  $V \in L^1(\mathbb{R}^d) \cap L^m(\mathbb{R}^d)$  be the maximizer for  $C_{HLS,m}$ . Assume that

$$\|u_0\|_1^{\frac{m\alpha}{\beta}}\mathcal{E}[u_0] < \|V\|_1^{\frac{m\alpha}{\beta}}\mathcal{E}[V]$$

with

$$\begin{cases} \alpha := \frac{2}{2-m} - \frac{d}{m}, \\ \beta := d - \frac{2}{2-m}. \end{cases}$$

Then we have the sharp result (Kimijima/Nakagawa/Ogawa, '14, CVPDE):

- $||u_0||_1^{\alpha} ||u_0||_m^{\beta} < ||V||_1^{\alpha} ||V||_m^{\beta} \Longrightarrow$  Global existence;
- $||u_0||_1^{\alpha}||u_0||_m^{\beta} > ||V||_1^{\alpha}||V||_m^{\beta} \Longrightarrow$  Finite-time blow-up.



### Parabolic-Parabolic (PP) KS model

The PP Keller-Segel model:

$$\begin{cases} \partial_t u = \Delta u^m - \nabla \cdot (u \nabla v), \\ \partial_t v = -f = \Delta v - v + u, \end{cases}$$

where m > 1 and d > 3.

The v can be decomposed by

$$v = \tilde{v} + \hat{v}$$

where

$$\tilde{v}(x) := (\mathscr{B} * u)(x), \ -\Delta \tilde{v} + \tilde{v} = u,$$

$$\hat{v}(x) := (\mathscr{B} * f)(x), -\Delta \hat{v} + \hat{v} = f.$$

Here  $\mathcal{B}$  is the Bessel kernel.

## Parabolic-Parabolic (PP) KS model

The PP Keller-Segel model:

$$\begin{cases} \partial_t u = \Delta u^m - \nabla \cdot (u \nabla v), \\ \partial_t v = -f = \Delta v - v + u, \end{cases}$$

where m > 1 and  $d \ge 3$ .

The v can be decomposed by

$$v = \tilde{v} + \hat{v},$$

where

$$\tilde{v}(x) := (\mathscr{B} * u)(x), \ -\Delta \tilde{v} + \tilde{v} = u,$$

$$\hat{v}(x) := (\mathscr{B} * f)(x), -\Delta \hat{v} + \hat{v} = f.$$

Here  $\mathcal{B}$  is the Bessel kernel.

Question: What is sharp critical mass criterion for the fully parabolic Keller-Segel model?



# **Lyapunov functional for PP system**

$$\begin{cases} \partial_t u = \Delta u^m - \nabla \cdot (u \nabla v), \\ \partial_t v = \Delta v - v + u. \end{cases}$$

Lyapunov functional: Gradient flow of

$$\mathcal{F}[u,v] := \int_{\mathbb{R}^d} \left( \frac{1}{m-1} u^m + \frac{1}{2} |\nabla v|^2 + \frac{1}{2} v^2 - uv \right) dx.$$

# **Lyapunov functional for PP system**

$$\begin{cases} \partial_t u = \Delta u^m - \nabla \cdot (u \nabla v), \\ \partial_t v = \Delta v - v + u. \end{cases}$$

Lyapunov functional: Gradient flow of

$$\mathcal{F}[u,v] := \int_{\mathbb{R}^d} \left( \frac{1}{m-1} u^m + \frac{1}{2} |\nabla v|^2 + \frac{1}{2} v^2 - uv \right) dx.$$

Note that

$$\mathcal{F}[u,v] = \mathcal{F}[u,\tilde{v}] + \frac{1}{2} \|\nabla(v - \tilde{v})\|_{2}^{2} + \frac{1}{2} \|v - \tilde{v}\|_{2}^{2},$$

where  $\mathcal{F}[u, \tilde{v}]$  is Lyapunov functional for

$$\begin{cases} \partial_t u = \Delta u^m - \nabla \cdot (u \nabla \tilde{v}), \\ \tilde{v} = \mathcal{B} * u. \end{cases}$$

• 
$$\mathcal{F}[u, \tilde{v}] > 0 \Longrightarrow \mathcal{F}[u, v] > 0$$



# **Global well-posedness**

$$\begin{cases} \partial_t u = \Delta u^m - \nabla \cdot (u \nabla v), \\ \partial_t v = \Delta v - v + u. \end{cases}$$

• Let  $m = m^*$  and  $d \ge 3$ . If  $M < M_c$ , then there exists a weak global solution to the parabolic-parabolic Keller-Segel system (Blanchet/Laurençot, '13, CPDE);

# **Global well-posedness**

$$\begin{cases} \partial_t u = \Delta u^m - \nabla \cdot (u \nabla v), \\ \partial_t v = \Delta v - v + u. \end{cases}$$

- Let  $m = m^*$  and  $d \ge 3$ . If  $M < M_c$ , then there exists a weak global solution to the parabolic-parabolic Keller-Segel system (Blanchet/Laurençot, '13, CPDE);
- Let  $m \in (m_*, m^*)$  and  $d \geq 3$ . If  $||u_0||^{\frac{m\alpha}{\beta}} \mathcal{F}[u_0, v_0] < ||V||^{\frac{m\alpha}{\beta}} \mathcal{E}[V]$  and

$$||u_0||_1^{\alpha}||u_0||_m^{\beta} < ||V||_1^{\alpha}||V||_m^{\beta},$$

the weak solution is global and uniformly bounded (L./Wang, preprint).



$$\begin{cases} \partial_t u = \Delta u^m - \nabla \cdot (u \nabla v), \\ \partial_t v = \Delta v - v + u. \end{cases}$$

• Let  $m = m^*$  and d = 3, 4. If  $M > M_c$ , radially symmetric solutions with negative initial energy blow up in finite time (Laurençot/Mizoguchi, '15, Poincaré);

$$\begin{cases} \partial_t u = \Delta u^m - \nabla \cdot (u \nabla v), \\ \partial_t v = \Delta v - v + u. \end{cases}$$

- Let  $m = m^*$  and d = 3, 4. If  $M > M_c$ , radially symmetric solutions with negative initial energy blow up in finite time (Laurençot/Mizoguchi, '15, Poincaré);
- Let  $m \in (m_*, m^*)$  and  $d \ge 3$ . If  $||u_0||_1^{\frac{m\alpha}{\beta}} \mathcal{F}[u_0, v_0] < ||V||_1^{\frac{m\alpha}{\beta}} \mathcal{E}[V]$  and

$$||u_0||_1^{\alpha}||u_0||_m^{\beta} > ||V||_1^{\alpha}||V||_m^{\beta},$$

there exists a radially symmetric weak solution blowing up in finite time (L./Wang, preprint).



Denoting the second moment by

$$M_2(t) = \int_{\mathbb{R}^d} |x|^2 u(x,t) dx$$

and computing we have

$$\frac{d}{dt}M_{2}(t) \leq 2(d-2) \underbrace{\mathcal{F}[u,v]}_{\leq \mathcal{F}[u_{0},v_{0}]} - 2\underbrace{\left(\frac{d-2}{m-1} - d\right)}_{>0} ||u||_{m}^{m}$$

$$+ \begin{cases}
C||f||_{2}M_{2}^{1/4}(t), & \text{if } d = 3, \\
C||f||_{2}, & \text{if } d = 4, \\
C(||f||_{2}^{\theta} + ||f||_{2}), & \theta \in (1,2), & \text{if } d > 4.
\end{cases}$$

.



The functional  $\mathcal{F}$  fulfills

$$\mathcal{F}[u,v](t) + \int_0^t \left( \mathcal{D}[u,v] + \|\mathbf{f}\|_2^2 \right) d\tau \le \mathcal{F}[u_0,v_0],$$

$$\mathcal{F}[u,v] \ge -C(1+\mathcal{D}[u,v])^{\delta}, \ \delta \in (0,1),$$

where the entropy dissipation  $\mathcal{D}$  is given by

$$\mathcal{D}[u,v] = \int_{\mathbb{R}^d} u \left| \frac{m}{m-1} \nabla u^{m-1} - \nabla v \right|^2 dx.$$

If  $T_{\text{max}} = +\infty$ , then  $\int_0^\infty ||f||_2^2 d\tau < \infty$ . However,  $M_2$  will be negative after some finite time and hence blow-up occurs.



#### **Conclusions**

- In the fair competition regime for degenerate parabolic-elliptic Keller-Segel model: dichotomy similar to two-dimensional setting.
- The sharp critical mass is related to the maximizer for the HLS inequality;
- This criterion for parabolic-parabolic Keller-Segel model is consistent with the parabolic-elliptic version;

# Thanks for your attention!