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ftThe HLS inequality

A classical inequality, due to Hardy (’28), Littlewood (’30) and
Sobolev (’38), states that

|H[f , g]| =
∣∣∣∣¨

Rd×Rd

f (x)g(y)

|x− y|λ
dxdy

∣∣∣∣ ≤ C(d, λ, p)‖f‖p‖g‖t

for all f ∈ Lp(Rd) and g ∈ Lt(Rd), where p, t > 1, λ ∈ (0, d), satisfy

1
p

+
λ

d
+

1
t

= 2.
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ftThe sharp constant for HLS inequality

The sharp constant:

CHLS = sup
f 6=0

{
‖|x|−λ ∗ f‖q

‖f‖p

∣∣∣ f ∈ Lp(Rd)

}
,

where 1/p + λ/d = 1 + 1/q.

There is a f ∈ Lp with ‖f‖p = 1 that maximizes CHLS. More-
over, every maximizing f is symmetrically decreasing following
a translation and fulfills a pair of equations (Lieb, ’83, Ann. Math.;

’01, Analysis)

|x|−λ ∗ f = gt−1, |x|−λ ∗ g = f p−1,

for some symmetric g ∈ Lt.
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ftA variant to the HLS (VHLS) inequality

Let d ≥ 3, and let λ = d−2 (Newtonian potential), m∗ = 2d/(d+2)
and m∗ = 2− 2/d. For m ∈ (m∗,m∗],

CHLS,m := sup
h 6=0

{
H[h, h]

‖h‖1−σ
1 ‖h‖1+σ

m
, h ∈ L1(Rd) ∩ Lm(Rd), h ≥ 0

}
with σ = [m(d − 2)]/[(m− 1)d]− 1 ∈ (0, 1).

Proposition
There exists a non-negative, radially symmetric and non-increasing
function V ∈ L1(Rd) ∩ Lm(Rd) with ‖V‖1 = ‖V‖m = 1 that attains
the variational problem CHLS,m.

See (Blanchet/Carrillo/Laurençot, ’09, CVPDE) for m = m∗ and (Kimi-

jima/Nakagawa/Ogawa, ’14, CVPDE) for m ∈ (m∗,m∗).
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ftParabolic-elliptic (PE) Keller-Segel model

The Keller-Segel (Keller/Segel, ’70, JTB) model describes the motion
of cells by chemotactical attraction by means of the coupled system:∂tu = ∆um −∇ · (u∇v), x ∈ Rd,

−∆v = u, x ∈ Rd.
(1)

u = u(x, t) : mass density;

v = v(x, t) : the concentration of the chemical attractant;

m > 1: degenerate diffusion;

Note that v =W ∗ u solves the elliptic problem, where

W(x) =
cd

|x|d−2 , if d > 2.
.
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ftLyapunov functional for PE system

The main implication for us is that there is a natural Lyapunov
functional for (1) defined on the set of centered mass densities ρ ∈
L1
+(Rd) ∩ Lm(Rd) given by

E [ρ] = G[ρ]− I[ρ],

G[ρ] =
1

m− 1

ˆ
Rd
ρm(x)dx, I[ρ] =

1
2

ˆ
Rd
ρ(x)W ∗ ρ(x)dx,

E [ρ](t) ≤ E [ρ0], t > 0,

ρ(x) ≥ 0,
ˆ
Rd
ρ(x)dx = M.
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ftDifferent regimes

The functional E becomes

E [ρλ] = λd(m−1)G[ρ]− λd−2I[ρ]

by taking dilations ρλ(x) := λdρ(λx). By scaling considerations,
one can find 3 different regimes:

Diffusion-dominated regime: m > m∗. The diffusion part dom-
inates and the intuition is that solutions exist globally in time;

Aggregation-dominated regime: m < m∗. Blow-up occurs for
some initial data, but not for all initial data;

Fair-Competition regime: m = m∗. The total mass of system
is the critical quantity. There is a critical value separating the
diffusive behavior from the blow-up behavior.
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ftDichotomy phenomenon for m = m∗

Turn back to

E [u] =
1

m− 1
‖u‖m

m −
cd

2
H[u, u]

(
≤ CHLS,m‖u‖2/d

1 ‖u‖
m
m

)
.

Let

Mc =

[
2

cd(m− 1)CHLS,m

]d/2

.

Characterizing the infimum of the free energy reveals a dichotomous
phenomenon (Blanchet/Carrillo/Laurençot, ’09, CVPDE):

M = ‖u‖1 < Mc (E > 0): Solutions are global;

M = Mc (E = 0): Solutions with finite second moment diverge
to a Dirac mass, but those with radial initial conditions remain
uniformly bounded (Bedrossian/Kim, ’13, SJMA);

M > Mc (E < 0): Solutions blow up in finite time.
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ftThreshold value for m ∈ (m∗,m∗)

Let the function V ∈ L1(Rd)∩ Lm(Rd) be the maximizer for CHLS,m.
Assume that

‖u0‖
mα
β

1 E [u0] < ‖V‖
mα
β

1 E [V]

with {
α := 2

2−m −
d
m ,

β := d − 2
2−m .

Then we have the sharp result (Kimijima/Nakagawa/Ogawa, ’14, CVPDE):

‖u0‖α1 ‖u0‖βm < ‖V‖α1 ‖V‖
β
m =⇒ Global existence;

‖u0‖α1 ‖u0‖βm > ‖V‖α1 ‖V‖
β
m =⇒ Finite-time blow-up.
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ftParabolic-Parabolic (PP) KS model

The PP Keller-Segel model:∂tu = ∆um −∇ · (u∇v),

∂tv = −f = ∆v− v + u,

where m > 1 and d ≥ 3.

The v can be decomposed by
v = ṽ + v̂,

where
ṽ(x) := (B ∗ u)(x), −∆ṽ + ṽ = u,

v̂(x) := (B ∗ f )(x), −∆v̂ + v̂ = f .
Here B is the Bessel kernel.

Question: What is sharp critical mass criterion for the fully parabolic
Keller-Segel model?
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ftLyapunov functional for PP system

∂tu = ∆um −∇ · (u∇v),

∂tv = ∆v− v + u.

Lyapunov functional: Gradient flow of

F [u, v] :=

ˆ
Rd

(
1

m− 1
um +

1
2
|∇v|2 +

1
2

v2 − uv
)

dx.

Note that

F [u, v] = F [u, ṽ] +
1
2
‖∇(v− ṽ)‖2

2 +
1
2
‖v− ṽ‖2

2,

where F [u, ṽ] is Lyapunov functional for∂tu = ∆um −∇ · (u∇ṽ),

ṽ = B ∗ u.

F [u, ṽ] > 0 =⇒ F [u, v] > 0
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ftGlobal well-posedness

∂tu = ∆um −∇ · (u∇v),

∂tv = ∆v− v + u.

Let m = m∗ and d ≥ 3. If M < Mc, then there exists a weak
global solution to the parabolic-parabolic Keller-Segel system
(Blanchet/Laurençot, ’13, CPDE);

Let m ∈ (m∗,m∗) and d ≥ 3. If ‖u0‖
mα
β F [u0, v0] < ‖V‖

mα
β E [V]

and

‖u0‖α1 ‖u0‖βm < ‖V‖α1 ‖V‖βm,

the weak solution is global and uniformly bounded (L./Wang,

preprint).
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ftSharp blow-up criterion

∂tu = ∆um −∇ · (u∇v),

∂tv = ∆v− v + u.

Let m = m∗ and d = 3, 4. If M > Mc, radially symmetric so-
lutions with negative initial energy blow up in finite time (Lau-

rençot/Mizoguchi, ’15, Poincaré);

Let m ∈ (m∗,m∗) and d ≥ 3. If ‖u0‖
mα
β

1 F [u0, v0] < ‖V‖
mα
β

1 E [V]

and

‖u0‖α1 ‖u0‖βm > ‖V‖α1 ‖V‖βm,

there exists a radially symmetric weak solution blowing up in
finite time (L./Wang, preprint).
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ftSharp blow-up criterion

Denoting the second moment by

M2(t) =

ˆ
Rd
|x|2u(x, t)dx

and computing we have

d
dt

M2(t) ≤2(d − 2) F [u, v]︸ ︷︷ ︸
≤F [u0,v0]

−2
(

d − 2
m− 1

− d
)

︸ ︷︷ ︸
>0

‖u‖m
m

+


C‖f‖2M1/4

2 (t), if d = 3,
C‖f‖2, if d = 4,
C(‖f‖θ2 + ‖f‖2), θ ∈ (1, 2), if d > 4.

.
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ftSharp blow-up criterion

The functional F fulfills

F [u, v](t) +

ˆ t

0

(
D[u, v] + ‖f‖2

2
)

dτ ≤ F [u0, v0],

F [u, v] ≥ −C(1 +D[u, v])δ, δ ∈ (0, 1),

where the entropy dissipation D is given by

D[u, v] =

ˆ
Rd

u
∣∣∣∣ m
m− 1

∇um−1 −∇v
∣∣∣∣2 dx.

If Tmax = +∞, then
´∞

0 ‖f‖
2
2dτ <∞. However, M2 will be negative

after some finite time and hence blow-up occurs.
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ftConclusions

In the fair competition regime for degenerate parabolic-elliptic
Keller-Segel model: dichotomy similar to two-dimensional set-
ting.

The sharp critical mass is related to the maximizer for the HLS
inequality;

This criterion for parabolic-parabolic Keller-Segel model is con-
sistent with the parabolic-elliptic version;
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ft
Thanks for your attention!
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