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1. Brief Review of Results with Local Diffusion

(a) The classical Fisher-KPP equation

Starting from the pioneering works of Fisher (1937) and KPP
(Kolmogorov-Petrovski-Piskunov, 1937), the Cauchy problem

(1)

{
Ut = d∆U + f (U), t > 0, x ∈ RN ,

U(0, x) = U0(x), x ∈ RN ,

has been widely used to describe the spreading of a population
with density U(t, x) at time t and space location x , where the
initial population U0(x) is a nonnegative function with compact
support, and the growth term f (U) is usually a C 1 function
satisfying f (0) = 0. The diffusion term

d∆U

is used to describe the dispersal of the population through random
walk (following the rule of Brownian motion).
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Spreading Speed. A striking feature of (1), with

f (U) = U(1− U) (a prototype Fisher-KPP nonlinearity),

is the following result of Aronson and Weinberger [AM 1978]:

There exists a constant c∗ > 0 such that{
limt→∞ U(t, x) = 1 uniformly in |x | ≤ (c∗ − ε)t,
limt→∞ U(t, x) = 0 uniformly in |x | ≥ (c∗ + ε)t

for any small ε > 0.

Interpretation: The population spreads into new territory with
(asymptotic) speed c∗.
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Minimal speed of traveling waves (Fisher and KPP 1937): For
any c ≥ c∗ := 2

√
d , (1) has a traveling wave solution with velocity

c : U(t, x) := Qc(ct − x), where Q = Qc satisfies the ODE

dQ ′′ − cQ ′ + f (Q) = 0, Q(−∞) = 0, Q(+∞) = 1.

There is no such solution for c < c∗.

Q: What is the spreading front determined by (1)?

Population range Ω(t) := {x : U(t, x) > 0} = RN for t > 0.

Ramification: Nominate a small δ > 0 and regard the population
range as

Ωδ(t) := {x : U(t, x) > δ},
which is a bounded set at any time t > 0, and so

Γδ(t) := ∂Ωδ = {x : U(t, x) = δ}

is the spreading front. The Aronson-Weinberger result implies
that for all large t and arbitrarily small ε > 0,

Γδ(t) ⊂ Aε(t) := {x ∈ RN : (c∗ − ε)t ≤ |x | ≤ (c∗ + ε)t}.
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Logarithmic shifts – the radial case

If the initial function in (1) is radially symmetric, then U is radially
symmetric in x (i.e. U = U(t, |x |)) and

(2) lim
t→∞

∣∣∣∣U(t, |x |)− Qc∗

(
c∗t − N + 2

c∗
d log t + C − |x |

)∣∣∣∣ = 0

for some constant C , uniformly in x ∈ RN . Hence, for small δ > 0,

Ωδ(t) :=
{
x : U(x , t) > δ

}
=
{
x : |x | < Rδ(t)

}
with

Rδ(t)−
(
c∗t − N + 2

c∗
d log t

)
→ Cδ ∈ R1 as t →∞.
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Remarks

When N = 1, the logarithmic shift term in (2) has coefficient
3d
c∗ , which was first obtained in [M. Bramson, Comm. Pure
Appl. Math. 1978], by a probabilistic method for a problem
concerning branching Brownian motion; it is now known as
the Bramson correction term1

For N ≥ 2, (2) follows from [J. Gartner, Math. Nachr. 1982]
(probabilistic method).

Logarithmic shifts – general case

If U is not radially symmetric, then it follows from the radial result
that, for any δ ∈ (0, 1), there exist C δ1 ≤ C δ2 , such that for all large

t, the boundary of Ωδ(t) :=
{
x : U(x , t) > δ

}
is a smooth closed

hypersurface contained in the spherical shell{
x ∈ RN : C δ1 ≤ |x | −

[
c∗t − N + 2

c∗
d log t

]
≤ C δ2

}
.

1A recent result [J. Nolen, J.-M. Roquejoffre, L. Ryzhik, CCM 2019] shows
that the correction term in 1-d can be further sharpened to

− 3d
2

log t + Cu0 − 3
√
dπ
a

t−1/2 + O(t−1+ε).
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(b) The Fisher-KPP equation with free boundary

(3)


ut − d∆u = f (u) for x ∈ Ω(t), t > 0,

u = 0 and ut = µ|∇xu|2 for x ∈ ∂Ω(t), t > 0,

u(0, x) = u0(x) for x ∈ Ω0.

Population range: Ω(t) ⊂ RN , Ω(0) = Ω0,

Range boundary (free boundary): Γ(t) := ∂Ω(t),

f (u) = u(1− u) (for simplicity),

Ω0 bounded domain with smooth boundary,

u0 ∈ C 1(Ω0), positive in Ω0, u0|∂Ω0 = 0.

Remark: If f (u) ≡ 0, then (3) reduces to the well-known
one-phase Stefan problem for ice melting, which has been studied
extensively since the 1960s by many people including A. Friedman,
D. Kinderlehrer, L. Nirenberger, L. Caffaralli, ...
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Physical meaning of the free boundary condition:
Each point x ∈ Γ(t) moves in the direction of the outer
normal to Γ(t) at x , with velocity µ|∇xu(t, x)|.
In the spherically symmetric setting, where

Γ(t) = {x : |x | = h(t)} and u = u(t, r), r = |x |,

this can be simplified to h′(t) = −µur (t, h(t)).

The free boundary condition can be deduced from the
assumption that k units of the species is lost per unit volume
at the front [G. Bunting, Y. Du and K. Krakowski, Netw.
Heterogeneous Media 2012]. (µ = d/k .)

It was shown in [Y. Du and Z.M. Guo, J. Diff. Eqns. 2012]
that problem (3) has a unique weak solution defined for all
t > 0. The free boundary is understood as

Γ(t) = ∂Ω(t), Ω(t) := {x : u(t, x) > 0}.
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Basic results

Theorem 1. ([Y. Du, H. Matano and K. Wang, ARMA 2014])
1 Ω(t) is expanding: Ω0 ⊂ Ω(t) ⊂ Ω(s) if 0 < t < s.
2 Γ(t) \ (convex hull of Ω0) is smooth.
3 Spreading-vanishing dichotomy:

Let Ω∞ := ∪t>0Ω(t). Then either

(a) Ω∞ is a bounded set, or (b) Ω∞ = RN .

Moreover,
in case (a), vanishing happens: limt→∞ ‖u(t, ·)‖L∞(Ω(t)) = 0;

in case (b), spreading happens: limt→∞ u(t, x) = 1 ∀x ∈ RN .

Furthermore, in case (b), for all large t, Γ(t) is a smooth
closed hypersurface contained in the spherical shell{

x ∈ RN : 0 ≤ |x | − R(t) ≤ π

2
diam(Ω0)

}
,

where R(t) is a continuous function satisfying

lim
t→∞

R(t)

t
= c∗0 > 0.
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The number c∗0 is called the spreading speed of (3), and it is
determined by the following result.

Theorem 2. ([Y. Du and B. Lou, J. Eur. Math. Soc. 2015])

For any µ > 0 there exists a unique pair (c, q) = (c∗0 , qc∗0 ) solving
the system

(4)

{
dq′′ − cq′ + f (q) = 0, q > 0 in (0,∞),
q(0) = 0, q(∞) = 1, µq′(0) = c .

We call qc∗0 a semi-wave with speed c∗0 .

Remark: The spreading-vanishing dichotomy was first observed in
[Y. Du and Z. Lin, SIAM J. Math. Anal. 2010] in the case N = 1,
where the free boundary model was first proposed.
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Figure: Annulus with a cut2

2
S Liu, Y Du, X Liu International J. Comp. Math., 97(2020), 959-979
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Traveling wave 

Q=1

Q=0

Semi-wave

q=1

q=0

c₀ 
Q=Q(c₀t-x) 

c₀� q=q(c₀�t-x) 
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Theorem 3. (Logarithmic shift [Y. Du, H. Matsuzawa and M. Zhou, JMPA 2015])
Suppose u0 and Ω0 are radially symmetric in (3), so that

u = u(t, |x |), Ω(t) =
{
x ∈ RN : |x | < R(t)

}
.

If spreading happens, then, as t →∞,

(5)

{
u(t, |x |)− qc∗0 (R(t)− |x |)→ 0 uniformly in x ,

R(t)− [c∗0 t − (N − 1)c∗1d log t]→ C = C (u0) ∈ R1,

where c∗0 is given in Theorem 2, and c∗1 > 0 is given by

c∗1 =
1

ζ c∗0
, ζ = 1 +

c∗0
µ2
∫∞

0 q′c∗0
(z)2e−c

∗
0 zdz

.

Remark: By Theorem 3, in case (b) of Theorem 1 (without radial
symmetry), there exist C1 ≤ C2 such that, for all large t,

Γ(t) ⊂
{
C1 ≤ |x | −

[
c∗0 t − (N − 1)c∗1d log t

]
≤ C2

}
.
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Theorem 4. (Limiting problem as µ→∞)

(a) ([Y. Du and Z.M. Guo, J. Diff. Eqns. 2012])

If u and Ω(t) in (3) are denoted by uµ and Ωµ(t),
respectively, then as µ→∞,

Ωµ(t)→ RN(∀t > 0), uµ → U in C 1,2
loc ((0,∞)× RN),

where U is the unique solution of (1) with U0 = u0.

(b) ([Y. Du and B. Lou, J. Eur. Math. Soc. 2015])

c∗0 = c∗0 (µ) increases to c∗ as µ→∞.

Remark: Theorem 4 indicates that (1) is the limiting problem of
(3) as µ→∞.
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For both (1) and (3), further results have been obtained by many
people, including successful extensions to

more general f (u),

systems of equations,

various heterogeneous environments.

Yet, in both (1) and (3), using d∆u (local diffusion) to describe
the spatial dispersal of a population is not ideal in many situations,
and replacing it by a nonlocal diffusion operator is sometimes more
realistic.

The nonlocal version of (1) has been extensively investigated in the
past 10-20 years, and fast progress is still being made. Research on
the nonlocal version of (3) has just started.
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2. The classical Fisher-KPP model with nonlocal diffusion

At any time t > 0, an individual at location x can jump to any
other location y with probability J(x − y). Under this assumption,
the term duxx should be replaced by

d

∫
R
J(x − y)

[
u(t, y)− u(t, x)

]
dy . (nonlocal diffusion operator)

Thus a widely used nonlocal version of (1) is

(6)

 ut =d

∫
R
J(x−y)

[
u(t, y)−u(t, x)

]
dy+f (u), x ∈ R, t > 0,

u(0, x) = u0(x) for x ∈ R.
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(i) Usual assumptions on the convolution kernel J(x):

J ∈ C (R), is nonnegative and even,

∫
R
J(x)dx = 1.

(ii) Thin-tailed and fat-tailed convolution kernel:

J(x) is “thin-tailed” if

(Jthin) :

∫ ∞
0

J(x)eλxdx <∞ for some λ > 0.

Otherwise it is called “fat-tailed”.

When the convolution kernel in (6) is thin-tailed, much of the
basic theory for (1) carries over (by work of P. Bates, J. Coville, P.
Fife, W. Shen, X. Wang, H. Weinberger, H. Yagisida, ...).
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On the other hand, accelerated spreading happens when the kernel
function is fat-tailed:

Weinberger (SIMA 1982): Let u(t, x) be the solution of (6).
Then u(t, x) > 0 for t > 0, x ∈ R, and limt→∞ u(t, x) = 1 locally
uniformly for x ∈ R. Moreover, for any given δ ∈ (0, 1), if
[gδ(t), hδ(t)] is the smallest interval containing
Ωδ(t) := {x : u(t, x) > δ}, then

lim
t→∞

hδ(t)

t
= lim

t→∞

gδ(t)

−t
=

{
c∗ ∈ (0,∞) if J is thin-tailed,
∞ if J is fat-tailed3.

J. Garnier (SIMA 2011): Examples of J are given such that
hδ(t) and −gδ(t) behave like{

eαt (α > 0) when J(x) ∼ |x |σ (σ < −2),

tβ (β > 1) when J(x) ∼ e−|x |
1/β

.

And many further results along this line appeared in recent years.

3Weinberger & X.-Q. Zhao (Math. Bios. 2010)
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(iii) The fractional Laplacian (−∆)s (0 < s < 1):

Convolution kernel of (−∆)s :

k(|z |) = cN,s |z |−(N+2s), cN,s :=
4sΓ(N2 + s)

πN/2|Γ(s)|
,

which is singluar at 0 and
∫
RN k(|z |)dz =∞. The convolution

operator is understood as∫
RN

u(t, y)− u(t, x)

|x − y |N+2s
dy := lim

ε→0

∫
RN\Bε(0)

u(t, y)− u(t, x)

|x − y |N+2s
dy .
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Accelerated spreading speed [Cabré-Roquejoffre(CMP 2013)]:

If −d∆u in (1) is replaced by (−∆u)s with s ∈ (0, 1), then as
t →∞, for any small ε > 0,{

u(t, x)→ 0 uniformly in
{
|x | ≥ e(σ∗+ε)t

}
;

u(t, x)→ 1 uniformly in
{
|x | ≤ e(σ∗−ε)t

}
,

where
σ∗ :=

1

N + 2s
.

So the spreading front propagates exponentially in time.
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3. The 1-D free boundary model with nonlocal diffusion

(7)



ut=d

∫
R
J(x − y)

[
u(t, y)−u(t, x)

]
dy+f (u), g(t)<x<h(t),

u(t, g(t)) = u(t, h(t)) = 0,

h′(t)= µ

∫ h(t)

g(t)

∫ +∞

h(t)
J(x − y)u(t, x)dydx ,

g ′(t)= −µ
∫ h(t)

g(t)

∫ g(t)

−∞
J(x − y)u(t, x)dydx ,

u(0, x) = u0(x), h(0) = −g(0) = h0, x ∈ [−h0, h0],

where x = g(t) and x = h(t) are the moving boundaries to be
determined together with u(t, x), which is always assumed to be
identically 0 for x ∈ R \ [g(t), h(t)].
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The initial function u0(x) satisfies u0 ∈ C ([−h0, h0]), and

u0(−h0) = u0(h0) = 0 and u0(x) > 0 in (−h0, h0),

so [−h0, h0] represents the initial population range of the species.

We assume that the kernel function J : R→ R is continuous and
nonnegative, and has the properties

(J): J(0) > 0,

∫
R
J(x)dx = 1, J(x) = J(−x), sup

R
J <∞.

As before, for simplicity, we take the special Fisher-KPP type
nonlinearity

f (u) = u(1− u).

Note that

d

∫
R
J(x−y)

[
u(t, y)−u(t, x)

]
dy =d

∫ h(t)

g(t)
J(x−y)u(t, y)dy−du(t, x).
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Meaning of the free boundary conditions

The total population mass moved out of the range [g(t), h(t)] at
time t through its right boundary x = h(t) per unit time is given by

d

∫ h(t)

g(t)

∫ ∞
h(t)

J(x − y)u(t, x)dydx .

As we assume that u(t, x) = 0 for x 6∈ [g(t), h(t)], this quantity of
mass is lost in the spreading process of the species. We may call
this quantity the outward flux at x = h(t) and denote it by Jh(t).
Similarly we can define the outward flux at x = g(t) by

Jg (t) := d

∫ h(t)

g(t)

∫ g(t)

−∞
J(x − y)u(t, x)dydx .

Then the free boundary conditions in (7) can be interpreted as
assuming that the expanding rate of the front is proportional to
the outward flux (by a factor µ/d):

g ′(t) = −µJg (t), h′(t) = µJh(t).
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Remarks:

Problem (7) was first proposed in

(i) Jiafeng Cao, Y. Du, Fang Li and Wan-Tong Li, JFA 2019,
(ii) C. Cortázar, F. Quirós and N. Wolanski, Interfaces Free

Bound. 2019.

In (ii) the case f (u) ≡ 0 was considered. The free boundary
conditions were proposed independently in these two papers.

For a plant species, seeds carried across the range boundary
may fail to establish due to numerous reasons, such as
isolation from other members of the species causing poor or
no pollination, or causing overwhelming attacks from enemy
species. However, some of those not very far from the range
boundary may survive, which results in the expansion of the
population range. The free boundary condition here assumes
that this survival rate is roughly a constant for a given species.
For an animal species, a similar consideration can be applied.
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Main results
(a) Spreading-vanishing dichotomy and criteria [Cao-Du-Li-Li, JFA 2019]

Theorem 5 (Existence and uniqueness:) Problem (7) has a unique
solution (u, g , h) defined for all t > 0.

Theorem 6 (Spreading-vanishing dichotomy): Let (u, g , h) be the
unique solution of (7). Then one of the following happens:

Spreading

{
limt→+∞(g(t), h(t)) = R,
limt→+∞ u(t, x) = 1 locally uniformly in R,

Vanishing

{
limt→+∞(g(t), h(t)) = (g∞, h∞) is a finite interval,

limt→+∞ ‖u(t, ·)‖L∞([g(t),h(t)]) = 0.

Theorem 7 (Spreading-vanishing criteria):

(α) If d ≤ f ′(0) = 1, then spreading always happens.

(β) If d > f ′(0) = 1, then there exists a unique `∗ > 0 such that
spreading always happens if h0 ≥ `∗; and for h0 ∈ (0, `∗),
there exists a unique µ∗ > 0 so that spreading happens
exactly when µ > µ∗.
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(b) Spreading speed [Y. Du, Fang Li and Maolin Zhou, JMPA 2021]

We need to introduce a key condition on the kernel function,
namely

(J1):

∫ ∞
0

xJ(x) dx < +∞.

Theorem 8 (Spreading speed): Suppose (J) is satisfied, and
spreading happens to the unique solution (u, g , h) of (7). Then the
following conclusions hold.

If (J1) is satisfied, then there exists a unique c0 > 0 such that

lim
t→∞

h(t)

t
= lim

t→∞

g(t)

−t
= c0. (linear spreading)

If (J1) does not hold, then

lim
t→∞

h(t)

t
= lim

t→∞

g(t)

−t
=∞. (accelerated spreading)
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The spreading speed c0 is determined by semi-wave solutions to
(7). These are pairs (c , φ) determined by the following system:

(8)


d

∫ 0

−∞
J(x−y)φ(y)dy−dφ(x)+cφ′(x)+f (φ(x))=0, x<0,

φ(−∞) = 1, φ(0) = 0,

c = µ

∫ 0

−∞

∫ +∞

0
J(x − y)φ(x)dydx .

Theorem 9 (Semi-wave): Suppose (J) holds. Then (8) has a
solution pair (c , φ) = (c0, φ0) with φ0 ∈ C 1((−∞, 0]) monotone
if and only if (J1) holds. Moreover, when (J1) holds, there exists
a unique solution pair, and c0 > 0, φ′0(x) < 0.
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(c) Sharper estimates of the spreading rate
[Y. Du, Wenjie Ni, J. Eur. Math. Soc., 2023 (online)]

We will use the notation

η(t) ∼ ξ(t) if and only if c1ξ(t) ≤ η(t) ≤ c2ξ(t)

for some positive constants c1 ≤ c2.

Theorem 10 (Sharper estimates): Suppose (J) is satisfied, and
spreading happens to the unique solution (u, g , h) of (7). If
additionally

J(x) ∼ |x |−α for |x | � 1,

(
and so

{
(J) ⇐⇒ {α > 1}
(J1)⇐⇒ {α > 2}

)
then

c0t + g(t), c0t − h(t) ∼ 1 if α > 3,

c0t + g(t), c0t − h(t) ∼

{
ln t if α = 3,

t3−α if 3 > α > 2,
(shifts)

−g(t), h(t) ∼

{
t ln t if α = 2,

t
1

α−1 if 2 > α > 1.
(acceleration)
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Comparisons

Under condition (J),{
accelerated spreading for (6)

}
⇐⇒

{
J does not satisfy (Jthin)

}
.{

accelerated spreading for (7)
}
⇐⇒

{
J does not satisfy (J1)

}
.

For the corresponding local diffusion problems (1) and (3),
accelerated spreading never happens.

Under condition (J),

(Jthin)=⇒ (J1)

(∫ ∞
0

J(x)eλxdx <∞ =⇒
∫ ∞

0

J(x)xdx <∞
)

(J1) 6=⇒ (Jthin).

Therefore, accelerated spreading happens less often in the
nonlocal free boundary problem (7) than in the corresponding
problem (6).
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4. The nonlocal free boundary problem in RN with radial
symmetry [Y. Du and Wenjie Ni, SIMA 2022 & JFA (to appear)]

The radially symmetric version of (7) in RN (N ≥ 2) is

(9)



ut = d

∫
Bh(t)

J(|x−y |)u(t, |y |)dy−du+f (u), t>0, x ∈Bh(t),

u = 0, t>0, x ∈∂Bh(t),

h′(t)=
µ

|∂Bh(t)|

∫
Bh(t)

∫
RN\Bh(t)

J(|x−y |)u(t, |x |)dydx , t>0,

h(0) = h0, u(0, |x |) = u0(|x |), x ∈ Bh0 ,

where Bh(t) = {x ∈ RN : |x | < h(t)}, and u = u(t, |x |) is radially
symmetric. The initial function u0 satisfies{

u0 is radial and continuous in Bh0 ,

u0 > 0 in Bh0 , u0 = 0 on ∂Bh0 .

As before, for simplicity

f (u) = u(1− u).
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For (9), our basic assumptions on the kernel function J(|x |) are

(J): J ∈ C (R+) ∩ L∞(R+), J ≥ 0, J(0) > 0,

∫
RN

J(|x |)dx = 1.

For r := |x | with x ∈ RN and ρ > 0, define

J̃(r , ρ) = J̃(|x |, ρ) :=

∫
∂Bρ

J(|x − y |)dSy .

Then (9) can be rewritten into the equivalent form

(10)



ut(t, r)=d

∫ h(t)

0

J̃(r , ρ)u(t, ρ)dρ− du + f (u), t>0, r ∈ [0,h(t)),

u(t, h(t)) = 0, t>0,

h′(t)=
µ

hN−1(t)

∫ h(t)

0

∫ +∞

h(t)

J̃(r , ρ)rN−1u(t, r)dρdr , t>0,

h(0) = h0, u(0, r) = u0(r), r ∈ [0, h0].

(Here a universal constant is absorbed by µ.)
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Theorem 11 (Existence and uniqueness): Suppose (J) is satisfied.
Then problem (9), or equivalently (10), admits a unique positive
solution (u, h) defined for all t > 0.

Theorem 12 (Spreading-vanishing dichotomy): Suppose (J) is
satisfied. Let (u, h) be the solution of (9). Then one of the
following alternatives must occur :

(i) Spreading: limt→∞ h(t) =∞ and

limt→∞ u(t, |x |) = 1 locally uniformly in RN ,

(ii) Vanishing: limt→∞ h(t) = h∞ <∞ and

limt→∞ u(t, |x |) = 0 uniformly for x ∈ Bh(t).

Theorem 13 (Spreading-vanishing criteria): In Theorem 12,

(1) if d ≤ f ′(0) = 1, then spreading always happens,
(2) if d > f ′(0) = 1 then there exists L∗ > 0 such that

(i) for h0 ≥ L∗, spreading always happens,
(ii) for 0 < h0 < L∗, there is µ∗ > 0 such that spreading happens

if and only if µ > µ∗.

Here L∗ is independent of u0, but µ∗ depends on u0.
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Spreading speed of (9)

We need to introduce the following function, which will determine
the spreading speed. For any ξ ∈ R, define

J∗(ξ) :=

∫
RN−1

J(|(ξ, x ′)|)dx ′,(11)

where x ′ = (x2, ..., xN) ∈ RN−1.

Condition (J) impliesJ∗ ∈ C (R) ∩ L∞(R) is nonnegative, even, J∗(0) > 0,∫
R
J∗(ξ)dξ =

∫
RN

J(|x |)dx = 1.

Moreover,

J∗(ξ) = ωN−1

∫ ∞
|ξ|

J(r)r(r2 − ξ2)(N−3)/2dr ,∫ ∞
0

J∗(ξ)ξdξ =
ωN−1

N − 1

∫ ∞
0

J(r)rNdr .

where ωk denotes the area of the unit sphere in Rk .
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Theorem 14 (Spreading speed): In Theorem 12, if spreading
happens, then

lim
t→∞

h(t)

t
=

{
c0 if J∗ satisfies (J1),

∞ if J∗ does not satisfy (J1),

where c0 is given by Theorem 9 with J replaced by J∗.

Theorem 15 (Rate of spreading) In Theorem 12, if there exists

β > N such that J(r) ∼ r−β for all large r , and if spreading
happens, then for all large t,

h(t) ∼ t1/(β−N) if β ∈ (N,N + 1),

h(t) ∼ t ln t if β = N + 1,

|c0t − h(t)| = O(tN+2−β) if β ∈ (N + 1,N + 2],

c0t − h(t) ∼ ln t if β > N + 2.
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Remarks:

|c0t − h(t)| = O(tN+2−β) =⇒ c0t − h(t) ∼ tN+2−β

when N = 3 (we believe this is true for all N ≥ 2).
In dimension 1, when β > N + 2 = 3, it holds
c0t − h(t) ∼ 1 for t � 1 (no logarithmic shift!).
The change of pattern only happens for β > N + 2.
By Theorem 10,

{N = 1} =⇒


h(t) ∼ t1/(β−1) if β ∈ (1, 2),

h(t) ∼ t ln t if β = 2,

c0t − h(t) ∼ t3−β if β ∈ (2, 3],

c0t − h(t) ∼ 1 if β > 3.

The difficulties in treating the high dimensional case mainly arise
from

J∗(ξ) = ωN−1

∫ ∞
|ξ|

J(r)r(r2 − ξ2)(N−3)/2dr

J̃(r , ρ) = ωN−1
2ρ

(2r)N−2

∫ ρ+r

|ρ−r |

( [
(ρ+ r)2 − η2

]
[η2−(ρ−r)2]

) N−3
2

ηJ(η)dη.
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5. Other extensions (1-D):

Epidemic models with nonlocal diffusion
(Y. Du and Wenjie Ni [Nonlinearity 2020], Meng Zhao, Wan-Tong Li and Y. Du [CPAA 2020], Meng Zhao,

Yang Zhang, Wan-Tong Li and Y. Du [JDE 2020], T-Y. Chang and Y. Du [ERA 2021], Rong Wang and Y.

Du [JDE 2022], Y. Du, Wenjie Ni and Rong Wang [Nonlinearity 2023])

Accelerated spreading and sharp estimates of spreading rate for
cooperative systems including epidemic models
(Y. Du, Wan-Tong Li, Wenjie Ni and Meng Zhao [JDDE 2022], Y. Du and Wenjie Ni [JDE 2021], Y. Du

and Wenjie Ni [Preprint 2021], ...)

More precise rate of acceleration and varied free boundary conditions
(Y. Du and Wenjie Ni [Math. Ann. 2024], Y. Du, Wenjie Ni and Xin Long [Preprint 2024]).

Lotka-Volterra systems
(Y. Du, M.X. Wang and Meng Zhao [DCDS-A 2021], Y. Du, Wenjie Ni and Linfei Shi [Preprint, 2024],

M.X. Wang and collaborators, ...)

Approximation by local diffusion models
(Y. Du and Wenjie Ni [CCM 2022])

Fisher-KPP with fixed and free boundary
(Lei Li, W.T. Li, M.X. Wang [JDE 2022])
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Thank You!
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