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Introduction

The modified KdV (mKdV) hierarchy

The KdV equation
Qτ + Qyyy + 6 QQy = 0

The Camassa-Holm (CH) hierarchy

The CH equation

mt + 2uxm + umx = 0, m = u − uxx

(Fokas, Fuchssteiner, 1981; Camassa-Holm, 1993)
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The modified KdV (mKdV) hierarchy

The (focusing) mKdV equation

Qτ + Qyyy − 6 Q2Qy = 0

The modified Camassa-Holm (mCH) hierarchy

The mCH equation

mt +
(
(u2
− u2

x ) m
)
x

= 0, m = u − uxx

(Fokas, 1995; Olver, Rosenau, 1996; Fuchssteiner, 1996)
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The Novikov hierarchy

The Novikov equation

mt = 3uuxm + u2mx , m = u − uxx

(Novikov, 1999)

The Sawada-Kotera (SK) hierarchy

The SK equation

Qτ + Qyyyyy + 5(QQyy )y + 5Q2Qy = 0

(Sawada, Kotera, 1974)
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The Kaup-Kupershmidt (KK) hierarchy

The KK equation

Pτ + Pyyyyy + 20PPyyy + 50PyPyy + 80P2Py = 0

The Degasperis-Procesi (DP) hierarchy

The DP equation
nt = 3vxn + vnx , n = v − vxx
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The 2CH hierarchy

The 2CH system

mt + 2uxm + umx + ρρx = 0, m = u − uxx ,

ρt + (ρu)x = 0,
(1)

(Olver, Rosenau, 1996)

The two-component integrable hierarchy

The A2CH system

Pτ(τ, y) = ρy , Qτ(τ, y) =
1
2
ρPy (τ, y) + ρyP(τ, y),

ρyyy + 2ρyQ(τ, y) + 2(ρQ(τ, y))y = 0.
(2)
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The Geng-Xue hierarchy

The Geng-Xue system

mt + 3vuxm + uvmx = 0, m = u − uxx ,

nt + 3uvxn + uvnx = 0, n = v − vxx .
(3)

(Geng, Xue, 2009)

The dDWW hierarchy

The dDWW system

ρt = ((ρ+ v) u)x , ρ = v − vx ,

γt = (γu + 2v)x , γ = u + ux ,
(4)

(Kang, Liu, Olver, Qu, 2020)
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The hierarchy of 1 + n-KdV system

The 1 + n-KdV system

wt = wxxx +
3
2

(
w2 + 〈u, u〉

)
x
,

ut = uxxx + 3 (wu)x .
(5)

The hierarchy of (1 + n)-component CH system

The (1 + n)-component CH system

ρt + 2wxρ+ wρx + 〈u,m〉x + 〈ux ,m〉 = 0,

mt + 2wxm + wmx + 2ρux + ρxu + Π(u, ux )m = 0,

ρ = w − wxx , m = u − uxx .

(6)

(Kang, Liu, Qu, 2022)
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The Camassa-Holm (CH) type equations ( CH, mCH, etc. . . . )

Support nonlinear dispersion

Describe wave-breaking phenomena for appropriate initial data

Possess a notable variety of non-smooth soliton-like solutions

• peakon, multi-peakon, compacton solutions, . . .

The mCH equation

Physical background

Geometric derivation

Cubic nonlinearity

New features: wave breaking and multi-peakon dynamics
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Some results on the mCH equation

Derivation of mCH (Fokas 1995; Fuchsseteiner, 1996; Olver, Rosenau, 1996)

Integrability of mCH (Olver, Rosenau, 1996; Schiff, 1996; Qiao, 2006; Hone,
Wang, 2008; Maruno, 2013; Chang, Szmigielski, 2016; Xia, Zhou, Qiao, 2016;
Wang, Liu, Mao, 2020)

Well-posedness of solutions to Cauchy problem (Gui, Liu, Olver, Qu, 2013)

Wave breaking phenomena (Gui, Liu, Olver, Qu, 2013; Chen, Liu, Qu, Zhang,
2015-2017)

Stability of single peakons and periodic peakons (Qu, Liu, Liu, 2013, 2014)

Inverse scattering method and RH problem (Anne Bouted de Monvel et al, 2020;
Yang, Fan, 2022; )
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Geometric formulation of the mCH equations

Consider the Euclidean-invariant plane curve flow for C ⊆ R2

∂C
∂t

= f n + g t, (7)

where t and n are the Euclidean tangent and normal vectors, while the normal and
tangent velocities, f and g, are arbitrary Euclidean differential invariants, meaning that
they depend on the curvature and its derivatives with respect to the arc-length s of the
curve C. If the flow is intrinsic, meaning that it preserves arc length, if and only if

gs − κf = 0.

The curvature invariant satisfies

κt =<[f ], where < = ∂2
s + κ2 + κs∂

−1
s κ

is the recursion operator of the mKdV equation

κt = κsss +
3
2
κ2κs ,

which is equivalent to the mKdV flow with f = κs , g = 1
2κ

2 (Goldstein, Petrich, 1992).
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In particular, if we set f = −2us , κ = m ≡ u − uss , then

g = −(u2
− u2

s ) + b ,

where b is a constant. Therefore, u(t , s) satisfies the equation

mt +
(
(u2
− u2

s )m
)
s

+ (b + 2)usss − bus = 0.

Setting x = s + (b + 2)t , it becomes

mt +
(
(u2
− u2

x )m
)
x

+ 2ux = 0, m = u − uxx ,

which is equivalent, up to rescaling, to the mCH equation. The preceding derivation
implies that the mCH equation can be regarded as a Euclidean-invariant version of the
CH equation, just as the mKdV equation is a Euclidean-invariant counterpart to the
KdV equation from the viewpoint of curve flows in Klein geometries.
(Gui, Liu, Olver, Qu, 2013)
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Tri-Hamiltonian duality method

Olver, Rosenau (1996); Fuchssteiner (1996)

KEY Issue:

The most bi-Hamiltonian integrable soliton equations actually support a
compatible trio of Hamiltonian structures through a particular scaling
argument.

Several CH-type equations were obtained from the classical integrable
equationns (Olver, Rosenau, 1996)

• the KdV equation ←→ the CH equation

• the mKdV equation ←→ the mCH equation

• the Ito equation ←→ the two-component CH equation

• the Schrödinger equation ←→ the Fokas-Lenells equation
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Motivation

It is anticipated that the original soliton equations should be related to
their dual counterparts in a certain manner.

(Fokas, Fuchssteiner, 1981; Fuchssteiner, 1996):

• The CH equation ←→ The first negative flow of the KdV hierarchy

The link between the shallow water integrable systems and the negative flows of
the classical soliton hierarchies by the Reciprocal-type transformations

• Two-component Camassa-Holm system
←→ The first negative flow of the AKNS hierarchy

• The Degasperis-Procesi equation
←→ a negative flow in the Kaup-Kupershmidt hierarchy

• The Novikov equation (Hone, Wang, 2008)
←→ a negative flow in the Sawada-Kotera hierarchy

Liouville correspondences between the integrable systems and their dual integrable systems



Introduction

Motivation

It is anticipated that the original soliton equations should be related to
their dual counterparts in a certain manner.

(Fokas, Fuchssteiner, 1981; Fuchssteiner, 1996):

• The CH equation ←→ The first negative flow of the KdV hierarchy

The link between the shallow water integrable systems and the negative flows of
the classical soliton hierarchies by the Reciprocal-type transformations

• Two-component Camassa-Holm system
←→ The first negative flow of the AKNS hierarchy

• The Degasperis-Procesi equation
←→ a negative flow in the Kaup-Kupershmidt hierarchy

• The Novikov equation (Hone, Wang, 2008)
←→ a negative flow in the Sawada-Kotera hierarchy

Liouville correspondences between the integrable systems and their dual integrable systems



Introduction

Motivation

It is anticipated that the original soliton equations should be related to
their dual counterparts in a certain manner.

(Fokas, Fuchssteiner, 1981; Fuchssteiner, 1996):

• The CH equation ←→ The first negative flow of the KdV hierarchy

The link between the shallow water integrable systems and the negative flows of
the classical soliton hierarchies by the Reciprocal-type transformations

• Two-component Camassa-Holm system
←→ The first negative flow of the AKNS hierarchy

• The Degasperis-Procesi equation
←→ a negative flow in the Kaup-Kupershmidt hierarchy

• The Novikov equation (Hone, Wang, 2008)
←→ a negative flow in the Sawada-Kotera hierarchy

Liouville correspondences between the integrable systems and their dual integrable systems



Introduction

Motivation

It is anticipated that the original soliton equations should be related to
their dual counterparts in a certain manner.

(Fokas, Fuchssteiner, 1981; Fuchssteiner, 1996):

• The CH equation ←→ The first negative flow of the KdV hierarchy

The link between the shallow water integrable systems and the negative flows of
the classical soliton hierarchies by the Reciprocal-type transformations

• Two-component Camassa-Holm system
←→ The first negative flow of the AKNS hierarchy

• The Degasperis-Procesi equation
←→ a negative flow in the Kaup-Kupershmidt hierarchy

• The Novikov equation (Hone, Wang, 2008)
←→ a negative flow in the Sawada-Kotera hierarchy

Liouville correspondences between the integrable systems and their dual integrable systems



Introduction

Questions

Is it possible to establish the correspondence between their respective
hierarchies?

Is it possible to relate the conservation laws between their respective
hierarchies?

Is there generalized Miura transformation relating CH and mCH equations and
their hierarchies?

Is there generalized Miura transformation relating DP and Novikov equations and
their hierarchies?

How about the multi-component integrable systems?
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The Liouville correspondence between the CH hierarchy and the KdV hierarchy

(McKean, 2003; Lenells, 2004):

• The CH hierarchy ←→ The KdV hierarchy

• The correspondence between the Hamiltonian conservation laws of
the CH hierarchy and the KdV hierarchy

Key ingredients:

• The tri-Hamiltonian dual structure of the constituent Hamiltonian
operators

• The relationship between the corresponding Hamiltonian operators under
the Liouville transformations
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The correspondence between the mCH and the mKdV
hierarchies

A Liouville transformation between the isospectral problems of the mCH and the
mKdV equations

The mCH equation

mt +
(
(u2
− u2

x ) m
)
x

= 0, m = u − uxx (8)

• The isospectral problems (Schiff, 1996; Qiao, 2006):

Ψx =

(
−

1
2

1
2λm

−
1
2λm 1

2

)
Ψ, Ψ =

(
ψ1
ψ2

)
(9)

Ψt =

(
λ−2 + 1

2 (u2
− u2

x ) −λ−1(u − ux ) − 1
2λm(u2

− u2
x )

λ−1(u + ux ) + 1
2λm(u2

− u2
x ) −λ−2

−
1
2 (u2

− u2
x )

)
Ψ

• ∂t (Ψx ) = ∂x (Ψt ) ⇒ the mCH equation (8)
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hierarchies

A Liouville transformation between the isospectral problems of the mCH and
mKdV equations

The mKdV equation

Qτ + Qyyy − 6 Q2Qy = 0 (10)

• The isospectral problems:

Φy =

(
−µ Q
−Q µ

)
Φ, Φ =

(
φ1
φ2

)
(11)

Φτ =

(
−4µ3

− 2µQ2 4µ2Q + 2Q3
− 2µQy + Qyy

−4µ2Q − 2Q3
− 2µQy −Qyy 4µ3 + 2µQ2

)
Φ

• ∂τ(Φy ) = ∂y (Φτ) ⇒ the mKdV equation (10)
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hierarchies

A Liouville transformation between the isospectral problems of the mCH and
mKdV equations

The Liouville transformation (Kang, Liu, Olver, Qu, 2016)

Φ =

(
−1 −1
−1 1

)
Ψ, y =

∫ x
m(ξ) dξ (12)

will convert the isospectral problem (9) into the isospectral problem (11), with

Q =
1

2m
and λ = −2µ.

The following coordinate transformations

y =

∫ x
m(t , ξ) dξ, τ = t , Q(τ, y) =

1
2m(t , x)

. (13)
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hierarchies

The mCH hierarchy

The mCH equation written in the bi-Hamiltonian form (Olver, Rosenau, 1996)

mt = K
δH1

δm
= J

δH2

δm
, m = u − uxx (14)

� A pair of compatible Hamiltonian operators

K = −∂x m ∂−1
x m ∂x and J = −

(
∂x − ∂

3
x

)
� The corresponding Hamiltonian functionals

H1[m] =

∫ (
u2 + u2

x

)
dx , H2[m] =

1
4

∫ (
u4 + 2u2u2

x −
1
3

u4
x

)
dx (15)

Recursion operator : R = K J−1
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hierarchies

The mCH hierarchy

The positive flows

mt = Kn = K
δHn−1

δm
= J

δHn

δm

=
(
KJ

−1
)n−1

(−2 mx ), n = 1,2, . . .
(16)

� The seed equation: mt = K1[m] = −2mx , with H0[m] =
∫

m dx

� The mCH equation: mt = K2 = −
(
(u2
− u2

x ) m
)
x

= RK1[m]

The negative flows

mt = K−n = K
δH−(n+1)

δm
= J

δH−n

δm

= −
(
JK

−1
)n−1
J

1
m2 , n = 1,2, . . .

(17)

� The Casimir equation:

mt = K−1 = J
δH−1

δm
= J

δHC

δm
=

( 1
m2

)
x
−

( 1
m2

)
xxx

(18)
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The mKdV hierarchy

The positive flows

Qτ = K̄n = K̄
δH̄n−1

δQ
= J̄

δH̄n

δQ

= −
(
K̄J̄

−1
)n−1

(4 Qy ), n = 1,2, . . . .
(19)

� A pair of compatible Hamiltonian operators:

K̄ =
1
4
∂3

y − ∂yQ∂−1
y Q∂y , J̄ = ∂y

� Recursion operator : R̄ = K̄ J̄−1

The negative flows

Qτ = K̄−n = K̄
δH̄−(n+1)

δQ
= J̄

δH̄−n

δQ
⇐⇒ R̄

nQτ = 0, n = 1,2, . . . . (20)
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hierarchies

REMARK on the negative flows of the mKdV hierarchy

(
K̄J̄

−1
)n

Qτ = 0 =⇒
(1
4
∂y −Q∂−1

y Q
) (
K̄J̄

−1
)n−1

Qτ = C̄−n , n = 1,2, . . .

(21)

Case 1. C̄−n = 0, n = 1,2, . . .

n = 1
Qτ =

(1
4
∂y −Q ∂−1

y Q
)
−10 = sin(2 ∂−1

y Q) (22)

� The sine-Gordon equation: Uyτ = sin(2 U), (U = ∂−1
y Q)

� The corresponding Casimir functional

H̄S = −
1
2

∫
cos(2 ∂−1

y Q) dy ,
δH̄S

δQ
= − ∂−1

y sin(2 ∂−1
y Q) (23)
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REMARK for the negative flows of the mKdV hierarchy

Case 1. C̄−n = 0, n = 1,2, . . .

n ≥ 1
Qτ =

(
J̄K̄

−1
)n−1

sin(2 ∂−1
y Q), n = 1,2, . . . (24)

� R̃n−1Uτ = sin(2 U), (U = ∂−1
y Q) n = 1,2, . . .

� R̃ = 1
4∂

2
y − U2

y + Uy∂−1
y Uyy

− − − the recursion operator of the sine-Gordon equation

� Uτ + R̃n−1(4 Uy ) = 0, for n = 1,2, . . .
− − − the positive flows in the potential mKdV hierarchy

• n = 2, the potential mKdV equation: Uτ + Uyyy + 2 U3
y = 0

Case 2. C̄−n , 0, n = 1,2, . . .

(1
4
∂y −Q∂−1

y Q
) (
K̄J̄

−1
)n−1

Qτ = C̄−n , C̄−n , 0, n = 1,2, . . . (25)
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Theorem

Under the transformations

Q(τ, y) =
1

2m(t , x)
, y =

∫ x
m(t , ξ) dξ, τ = t , (26)

for each l ∈ Z, the (mCH)l+1 equation is related to the (mKdV)−l equation. More
precisely, for each integer n ≥ 0, (i). m solves the equation

mt +
(
KJ

−1
)n

(2 mx ) = 0, n = 0,1, . . . . (27)

if and only if Q satisfies Qτ = 0 for n = 0 or(1
4
∂y −Q∂−1

y Q
) (
K̄J̄

−1
)n−1

Qτ = C̄−n , C̄−n = 1/(−4)n , n = 1,2, . . . ; (28)
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Theorem

(Continued)
(ii). For n ≥ 1, m is a solution of the following rescaled version of (17),

mt = K−n =
(−1)n+1

22n−1

(
JK

−1
)n−1
J

1
m2 , n = 1,2, . . . , (29)

if and only if Q satisfies the equation

Qτ +
(
K̄J̄

−1
)n

(4 Qy ) = 0, n = 0,1, . . . , (30)

In addition, for n = 0, the corresponding equation mt = 0 is equivalent to
Qτ + 4Qy = 0. (Kang, Liu, Olver, Qu, 2016)

(mCH)n , (mCH)−n , (mKdV)n , (mKdV)−n , − − − the n-th equation in the positive
and negative directions of the mCH and mKdV hierarchies
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KET Issue for the proof of the theorem

The relations between the respective recursion operators admitted by the two
hierarchies

Lemma

Let K , J be the two compatible Hamiltonian operators (21) for the mCH equation (8),
and K̄ , J̄ the two of compatible Hamiltonian operators (23) for the mKdV equation
(10). Assume m(t , x) and Q(τ, y) be related by the transformations (26).

THEN, for each integer n ≥ 0, the following formulae hold:

(i).
(
KJ

−1
)n (

1 − ∂2
x

)
= 1

(−4)n

(
1 +

Qy
4Q3 ∂y −

1
4Q2 ∂

2
y

) (
J̄K̄

−1
)n

;

(ii). ∂x
(
K
−1
J

)n
∂−1

x = (−4)n
(
K̄J̄

−1
)n

;

(iii). (1 − ∂2
x )

(
K
−1
J

)n
= −(−4)n 1

Q

(
1
4∂y −Q∂−1

y Q
) (
K̄J̄

−1
)n 1

Q ∂y .

The reciprocal relation which adheres to the conservative structure of the mCH
flows
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The correspondence between the Hamiltonian
conservation laws of the mCH and mKdV equations

An infinite hierarchy of Hamiltonian conservation laws of the bi-Hamiltonian
system

The mCH equation

K
δHn−1

δm
= J

δHn

δm
, n ∈ Z, (31)

� K = −∂x m ∂−1
x m ∂x , J = −

(
∂x − ∂3

x

)
The mKdV equation

K̄
δH̄n−1

δQ
= J̄

δH̄n

δQ
, n ∈ Z (32)

� K̄ = − 1
4∂

3
y + ∂yQ∂−1

y Q∂y , J̄ = −∂y
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� K̄ = − 1
4∂

3
y + ∂yQ∂−1

y Q∂y , J̄ = −∂y
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The correspondence between the Hamiltonian
conservation laws of the mCH and mKdV equations

The relationship between the variational derivatives of δHn/δm and δH̄n/δQ

Lemma

Let {Hn} and {H̄n} be the hierarchies of conserved functionals determined by the
recursive formulae (31) and (32), respectively. THEN their corresponding variational
derivatives satisfy the relation

δH−n

δm
= (−1)n−122n−1

J̄
−1QJ̄

δH̄n

δQ
, 0 , n ∈ Z. (33)

The change of the variational derivative under the Liouville transformations

Lemma

Let m(t , x) and Q(τ, y) be related by the transformations (26). IfH(m) = H̄(Q), THEN

δH
δm

= −
1
Q

(1
4
J̄

2
− J̄

−1
K̄

)
δH̄
δQ

,

where J̄ and K̄ are the Hamiltonian operators admitted by the mKdV equation.
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The correspondence between the Hamiltonian
conservation laws of the mCH and mKdV equations

Theorem

For any non-zero integer n, each Hamiltonian conserved functional H̄n(Q) of the mKdV
equation in (32) yields the Hamiltonian conservation law H−n(m) of the mCH equation
in (31), under the Liouville transformations (26), according to the following identity

H−n(m) = (−1)n22n−1
H̄n(Q), 0 , n ∈ Z. (34)

(Kang, Liu, Olver, Qu, 2016)

REMARK
A direct application of relation (34) is to derive another Casimir functional, in
addition to the Hamitonial functional H̄S of the sine-Gordon equation, for the
Hamiltonian operator K̄ .

� H1[m] =
∫ (

u2 + u2
x

)
dx and

⇓

H̄−1(Q) = −8 H̄C (Q), where H̄C (Q) =
∫

m
(
1 − ∂2

x

)−1
m dx
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The transformation mapping the mCH equation into
the CH equation

Motivation

Miura T.
KdV⇐================⇒ mKdVy dual dual

y
CH⇐===============⇒ mCH
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The transformation mapping the mCH equation into
the CH equation

The mKdV hierarchy and the KdV hierarchy

mKdV⇐=================⇒ KdV
Miura T.

• The KdV equation: Pτ + Pyyy − 6 PPy = 0

• The mKdV equation: Qτ + Qyyy − 6 Q2Qy = 0

• The Miura transformation: B(P,Q) ≡ P −Q2 + Qy = 0

Fokas and Fuchssteiner (1981):

(mKdV)n ⇐=================⇒ (KdV) n n ∈ Z+

Miura T. (31)
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The transformation mapping the mCH equation into
the CH equation

The mKdV hierarchy and the KdV hierarchy

(mKdV)−1 =================⇒ (KdV) −1
Miura T. (31)

Proposition 3.1. Assume that Q satisfies the first negative flow of the mKdV hierarchy(
K̄J̄

−1
)

Qτ = 0.

THEN P = Q2
−Qy satisfies the first negative flow of the KdV hierarchy(

L̄D̄
−1

)
Pτ = 0,

where L̄ = 1
4∂

3
y −

1
2

(
P∂y + ∂yP

)
and D̄ = ∂y are the compatible

bi-Hamiltonian operators admitted by the KdV hierarchy.
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The transformation mapping the mCH equation into
the CH equation

The map from the mCH equation to the CH equation

The mCH equation: mt +
(
(u2
− u2

x ) m
)
x

= 0, m = u − uxx

The CH equation: ρt + 2vxρ+ vρx = 0, ρ = v − vxx

The Liouville transformation ( mCH ↔ mKdV )

The Liouville transformation ( CH ↔ KdV )

Miura T.
(mKdV)−1 ==================⇒ (KdV)−1xy Liouville T. Liouville T.

xy
mCH CH

======================⇒

L.T.+ M.T.+ L.T.
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The transformation mapping the mCH equation into
the CH equation

Theorem

Assume m(t , x) is the solution of the mCH equation (34). THEN, ρ(t , x) satisfies the
CH equation (35), where ρ(t , x) is determined by the relation

P(τ, y) =
1

ρ(t , x)

1
4
−

(
ρ(t , x)−1/4

)
xx

ρ(t , x)−1/4

 , y =

∫ x √
ρ(t , ξ) dξ, ρ = v −vxx , (36)

with P(τ, y) = Q2(τ, y) − Qy (τ, y) and Q(τ, y) defined by

Q(τ, y) =
1

2m(t , x)
, y =

∫ x
m(t , ξ) dξ, τ = t . (37)

(Kang, Liu, Olver, Qu, 2016)
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The correspondence between the Novikov and SK
hierarchies

A Liouville transformation between the isospectral problems of the Novikov and
SK equations

The Novikov equation

mt = u2mx + 3uuxm, m = u − uxx (38)

• The isospectral problems (Novikov, 2009):

Ψx =

0 λm 1
0 0 λm
1 0 0

 Ψ, Ψ =

ψ1
ψ2
ψ3

 (39)

Ψt =


1

3λ2 − uux
ux
λ − λu2m u2

x
u
λ −

2
3λ2 −

ux
λ − λu2m

−u2 u
λ

1
3λ2 + uux

 Ψ

• ∂t (Ψx ) = ∂x (Ψt ) ⇒ Novikov equation (38)
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Note that (38) is equivalent to the equation by setting Ψ = ψ2

Ψxxx = 2m−1mx Ψxx + (m−1mxx − 2m−2m2
x + 1)Ψx + λ2m2Ψ, (40)

which can be converted into

Φyyy + QΦy = µΦ, (41)

by the reciprocal transformation

dy = m
2
3 dx + m

2
3 u2dt , dτ = dt ,

with

Φ = Ψ, µ = λ2, and Q = −
1
3

m−
7
3 mxx +

4
9

m−
10
3 m2

x −m−
4
3 .

The time part for the isospectral problem becomes

Φτ −
1
µ

(VΦyy − Vy Φy ) +
2

3µ
Φ = 0, with V = um

1
3 . (42)
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It is easy to see (42) is equivalent to

Φτ +
1

3µ
(WΦyy −Wy Φy ) = 0 (43)

after gauging Φ by a factor, and setting W = −3V . The compatibility condition
Φyyyt = Φtyyy gives the first equation in the negative SK heirarchy (Gordoa, Pickering,
2002)

Qτ = Wy , Wyy + QW = T , Ty = 0. (44)
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The correspondence between the Novikov and SK
hierarchies

A Liouville transformation between the isospectral problems of the Novikov and
SK equations

The SK equation

Qt + Qyyyyy + 5(QQyy )y + 5Q2Qy = 0 (45)

• The isospectral problems (Kaup, 1980)

Φy =

0 1 0
0 0 1
µ −Q 0

 Φ, Φ =

Φ1
Φ2
Φ3

 (46)

Φt =


6µQ Qyy −Q2 9µ − 3Qy

3µ(Qy + 3µ) Qyyy + QQy − 3µQ −2Qyy −Q2

µ(Qyy −Q2) Qyyyy + 3QQyy + Q2
y + Q3 + 9µ2

−Qyyy −QQy − 3µQ

 Φ

• ∂t (Φy ) = ∂y (Φt ) ⇒ SK equation (45)
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The correspondence between Novikov and SK
hierarchies

A Liouville transformation between the isospectral problems of the Novikov and
SK equations

The coordinate transformation

Φ = Ψ, y =

∫ x
m

2
3 (t , ξ) dξ (47)

will convert the isospectral problem (39) into the isospectral problem (46), with

Q = −
1
3

m−
7
3 mxx +

4
9

m−
10
3 m2

x −m−
4
3 and λ = −2µ.

The Liouville transformation

y =

∫ x
m

2
3 (t , ξ) dξ, τ = t ,

Q(τ, y) = −
1
3

m−
7
3 mxx +

4
9

m−
10
3 m2

x −m−
4
3 = −m−1(1 − ∂2

x )m−
1
3

(48)
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The correspondence between the Novikov and SK
hierarchies

The Novikov hierarchy

The Novikov equation written in the bi-Hamiltonian form (Hone, Wang, 2008)

mt = K1 = K
δH0

δm
= J

δH1

δm
, m = u − uxx (49)

� A pair of compatible Hamiltonian operators

K =
1
2

m
1
3 ∂xm

2
3 (4∂x − ∂

3
x )−1m

2
3 ∂xm

1
3 and J =

(
1 − ∂2

x

) 1
m
∂x

1
m

(
1 − ∂2

x

)
(50)

� The corresponding Hamiltonian functionals

H0[m] = 9
∫

m u dx = 9
∫ (

u2 + u2
x

)
dx ,

H1[m] =
1
6

∫ (
um∂−1

x m
(
1 − ∂2

x

)−1
(u2mx + 3uuxm)

)
dx

(51)

Recursion operator: R = K J−1
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The correspondence between the Novikov and SK
hierarchies

The Novikov hierarchy

The positive flows of the Novikov hierarchy

mt = Kn =
(
K J

−1
)n−1

K1, n = 1, 2, . . .

The negative flows of the Novikov hierarchy
� The Hamiltonian operator K admits the Casimir functional

HC =
9
2

∫
m

2
3 dx with

δHC

δm
= 3m−

1
3 . (52)

� The Casimir equation

mt = K−1 = J
δH−1

δm
= 3J m−

1
3 .

� The n-th negative flow of the Novikov hierarchy

mt = K−n =
(
J K

−1
)n−1

K−1, n = 1, 2, . . .
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The correspondence between the Novikov and SK
hierarchies

Hamiltonian functional H1
Note that the conserved Hamiltonian functional H1 is nonlocal, indeed, one can show
that it is equivalent to

H1[m] =
1
6

∫ (
u4m2

− ut mt
)

dx . (53)

Proof.

In fact, using Novikov equation, we can denote H1[m] in (51) as

H1[m] =
1
6

∫
um∂−1

x (mut )dx . (54)

Since

∂−1
x (mut ) =

∫ x

−∞

(u − uxx )ut dx = −(uxut − uuxt )(t , x) +

∫ x

−∞

u(ut − uxxt )dx

= − (uxut − uuxt )(t , x) +

∫ x

−∞

u(u2mx + 3uuxm)dx

= (uuxt − uxut + u3m)(t , x).

�
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The correspondence between Novikov and SK
hierarchies

The Sawada-Kotera hierarchy

The SK equation—– the generalized bi-Hamiltonian system (Fuchssteiner,
Oevel, 1982)

Qτ = K̄1 = K̄
δH̄0

δQ
and J̄ K̄1 =

δH̄1

δQ
�

K̄ = −
(
∂3

y + 2(Q∂y + ∂yQ)
)
,

J̄ = 2∂3
y + 2(∂2

y Q ∂−1
y + ∂−1

y Q∂2
y ) + Q2 ∂−1

y + ∂−1
y Q2.

(55)

� The Hamiltonian functionals

H̄0[Q] =
1
6

∫ (
Q3
− 3Q2

y

)
dy

Recursion operator: R̄ = K̄ J̄
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The correspondence between Novikov and SK
hierarchies

The SK hierarchy

Qτ = K̄n = K̄
δH̄n−1

δQ
and J̄ K̄n =

δH̄n

δQ
, n ∈ Z. (56)

The positive flows of the SK hierarchy

Qτ = K̄n =
(
K̄J̄

)n−1
K̄1, n = 1,2, . . . .

The negative flows of the SK hierarchy

� J̄ · 0 =
δH̄0
δQ = 1

2 Q2 + Qyy

� The n-th negative flow

R̄
nQτ =

(
K̄ J̄

)n
Qτ = 0, n = 1,2, . . . . (57)
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The correspondence between Novikov and SK
hierarchies

REMARK

Lemma

There holds (Chou, Qu, 2004, Physica D)

R̄ = K̄ J̄ = −2
(
∂4

y + 5Q∂2
y + 4Qy∂y + Qyy + 4Q2 + 2Qy∂

−1
y Q

) (
∂2

y + Q + Qy∂
−1
y

)
.

(58)

It implies that the equation (
∂2

y + Q + Qy∂
−1
y

)
Qτ = 0 (59)

can be regarded as a reduction of the more general first negative flow RQτ = 0. One
can verify that equation (59) is equivalent to(

Q + ∂2
y

)
∂−1

y Qτ = C , (60)

with C being the integration constant. Obviously, if we set T = C in (44), the

corresponding equation is exactly the reduced first negative flow (60).
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The correspondence between the Novikov and SK
hierarchies

Theorem

Under the transformations (48), for each n ∈ Z, the (Novikov)n equation is mapped
into the equation (SK)−n equation, and conversely.

The proof of this theorem relies on the following two Lemmas.

Lemma

Let m(t , x) and Q(τ, y) be related by the transformations (48), then the following
operator identities hold:

m−1 (1 − ∂2
x ) m−

1
3 = −(Q + ∂2

y );

m−1
J m−

1
3 =

1
2
∂y J̄ ∂y ;

m−
4
3 (4∂x − ∂

3
x ) m−

2
3 = K̄ .
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The correspondence between Novikov and SK
hierarchies

KET Issue for the proof of the theorem

The relations between the respective recursion operators admitted by the two
hierarchies

Lemma

Let K , J be the two compatible Hamiltonian operators (50) for Novikov equation (38),
K̄ and J̄ be the Hamiltonian operator and symplectic operator (55) of SK equation
(45), respectively. Assume m(t , x) and Q(τ, y) be related by the transformations (48).

THEN, the relation

m−1
(
JK

−1
)n

m = ∂y
(
J̄K̄

)n
∂−1

y (61)

holds for each integer n ≥ 1.
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The correspondence between the Hamiltonian
conservation laws of Novikov and SK equations

An infinite hierarchy of Hamiltonian conservation laws of the bi-Hamiltonian
system

The Novikov hierarchy:

K
δHn−1

δm
= J

δHn

δm
, n ∈ Z. (62)

The SK hierarchy:

J̄ K̄
δH̄n−1

δQ
=
δH̄n

δQ
, n ∈ Z (63)
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The correspondence between the Hamiltonian
conservation laws of the Novikov and SK equations

The relationship between the variational derivatives of δHn/δm and δH̄n/δQ

Lemma

Let {Hn} and {H̄n} be the hierarchies of Hamiltonian conserved functionals of the
Novikov equation and SK equation, respectively. THEN, for each n ∈ Z, their
corresponding variational derivatives satisfy the relation

δH̄n

δQ
=

1
3
∂−1

x m−
1
3K

δH−(n+2)

δm
. (64)

The change of the variational derivative under the Liouville transformations

Lemma

Let m(t , x) and Q(τ, y) be related by the transformations (48). IfH(m) = H̄(Q), THEN

δH
δm

=
1
3

m−
1
3 ∂−1

y K̄
δH̄
δQ

,

where K̄ is the Hamiltonian operator (55) of the SK equation.
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The correspondence between the Hamiltonian
conserved functionals of the Novikov and SK
equations

Theorem

For any n ∈ Z, each Hamiltonian conserved functional Hn(m) of Novikov equation in
(62) is related to the Hamiltonian conservation law H̄−n(Q) of the SK equation in (63),
under the Liouville transformations (48), according to the following identity

Hn(m) = 18 H̄−(n+2)(Q), n ∈ Z. (65)

(Kang, Liu, Olver, Qu, 2017)
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The correspondence between the DP and KK
hierarchies

A Liouville transformation between the isospectral problems of the DP and KK
equations
The DP equation

nt = vnx + 3vxn, n = v − vxx (66)

The Lax pair (Degasperis, Procesi, 1996):

Ψx =

 0 1 0
0 0 1
−λn 1 0

 Ψ, Ψ =

ψ1
ψ2
ψ3

 (67)

Ψt =


vx −v −λ−1

v −λ−1
−v

λvn + vx 0 −λ−1
− vx

 Ψ,

(67) is equivalent to

Ψxxx −Ψx + λnΨ = 0 (68)

Ψt + λ−1Ψxx + vΨx − vx Ψ = 0.
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The correspondence between the DP and KK
hierarchies

A Liouville transformation between the isospectral problems of the DP and KK
equations

The KK equation

Pτ + Pyyyyy + 20PPyyy + 50PyPyy + 80P2Py = 0 (69)

The Lax pair for the first negative flow

Φyyy + 4PΦy + 2Py Φ = µΦ (70)

and
Φτ + µ−1

(
UΦyy −

1
2

Uy Φy +
1
6

(Uyy + 16PU)Φ
)

= 0. (71)

The compatibility condition for (70) and (71), Φyyyτ = Φτyyy

⇓

Pτ =
3
4

Uy , AU = 0, (72)

where A = ∂5
y + 6(∂y P ∂2

y + ∂2
y P ∂y ) + 4(∂3

y P + P ∂3
y ) + 32(∂y P2 + P2 ∂y )
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The correspondence between the DP and KK
hierarchies

A Liouville transformation between the isospectral problems of the DP and KK
equations

The coordinate transformation

dy = n
1
3 dx + n

1
3 v2dt , dτ = dt , (73)

together with Ψ = n−
1
3 Φ, λ = −µ and

P =
1
4

(7
9

n−
8
3 n2

x −
2
3

n−
5
3 nxx − n−

2
3

)
(74)

convert the isospectral problem (68) into (70).

The Liouville transformation between DP and KK hierarchy

y =

∫ x
n

1
3 (t , ξ) dξ, τ = t ,

P =
1
4

(7
9

n−
8
3 n2

x −
2
3

n−
5
3 nxx − n−

2
3

)
=

1
4

n−
1
2
(
4∂2

x − 1
)
n−

1
6

(75)
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The correspondence between the DP and KK
hierarchies

The DP hierarchy

The DP equation (66) written in bi-Hamiltonian form (Degasperis, Procesi, 1996)

nt = G1 = L
δE0

δn
= D

δE1

δn
, n = v − vxx , (76)

� A pair of compatible Hamiltonian operators

L = n
2
3 ∂x n

1
3 (∂x − ∂

3
x )−1 n

1
3 ∂x n

2
3 and D = ∂x (1 − ∂2

x ) (4 − ∂2
x ) (77)

(KAM for DP equation, R. Feola, F. Giuliani, M. Procesi, 2019, 2020)
� The corresponding Hamiltonian functionals

E0 =
9
2

∫
n dx and E1 =

1
6

∫
u3 dx .

The recursion operator R̃ = LD−1
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The correspondence between the DP and KK
hierarchies

The DP hierarchy

The positive flows of the DP hierarchy

nt = Gl =
(
LD

−1
)l−1

G1, l = 1, 2, . . .

The negative flows of the DP hierarchy
� The Hamiltonian operator L admits the Casimir functional

EC = 18
∫

n
1
3 dx with variational derivative

δEC

δn
= 6n−

2
3 . (78)

� The Casimir equation

nt = G−1 = D
δEC

δn
= 6Dn−

2
3 . (79)

� The l-th negative flow of the DP hierarchy

nt = G−l = 6
(
DL

−1
)l−1
Dn−

2
3 , l = 1, 2, . . . . (80)
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The correspondence between DP and KK hierarchies

The KK hierarchy

The KK equation—– the generalized bi-Hamiltonian system (Fuchssteiner,
Oevel, 1982)

Pτ = Ḡ1 = L̄
δĒ0

δP
and D̄ Ḡ1 =

δĒ1

δP
,

L̄ = −
(
∂3

y + 2(P∂y + ∂y P)
)
,

D̄ = ∂3
y + 6(P ∂y + ∂y P) + 4(∂2

y P ∂−1
y + ∂−1

y P∂2
y ) + 32(P2 ∂−1

y + ∂−1
y P2)

(81)

Recursion operators: R̂ = L̄ D̄

The positive flows

Pτ = Ḡn =
(
L̄D̄

)l−1
Ḡ1, l = 1,2, . . . (82)

The negative flows
(L̄ D̄)lQτ = 0, l = 1,2, . . . (83)
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The correspondence between the Novikov and SK
hierarchies

Theorem

Under the transformations (75), for each l ∈ Z, the (DP)l equation is mapped into the
equation (KK)−l equation, and conversely.

The proof of this theorem relies on the following two Lemmas.

Lemma

Let n(t , x) and P(τ, y) be related by the transformations (75), then the following
identities hold:

n−
1
2 (

1
4
− ∂2

x ) n−
1
6 = −(P + ∂2

y );

n−
2
3 (∂x − ∂

3
x ) n−

1
3 = L̄;

n−1
Dn−

2
3 = ∂y D̄ ∂y .
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The correspondence between DP and KK hierarchies

KET Issue for the proof of the theorem

The relations between the respective recursion operators admitted by the two
hierarchies

Lemma

Let L, D be the two compatible Hamiltonian operators (77) for DP equation (66), and
L̄, D̄ the two of compatible Hamiltonian operators (81) for KK equation (69). Assume
n(t , x) and P(τ, y) be related by the transformations (75).

THEN, under the transformations (75), the relation

n−1
(
DL

−1
)l

n = ∂y
(
D̄L̄

)l
∂−1

y (84)

holds for each integer l ≥ 1.
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The correspondence between the Hamiltonian
conservation laws of DP and KK equations

An infinite hierarchy of Hamiltonian conservation laws of the bi-Hamiltonian
system

The DP hierarchy:

L
δEl−1

δn
= D

δEl

δn
, l ∈ Z (85)

The KK hierarchy:

D̄ L̄
δĒl−1

δP
=
δĒl

δP
, l ∈ Z (86)
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The correspondence between the Hamiltonian
conservation laws of the DP and KK equations

The relationship between the variational derivatives of δEl/δn and δĒl/δP

Lemma

Let {El } and {Ēl } be the hierarchies of Hamiltonian conserved functionals of the DP and
KK equations, respectively. THEN, for each l ∈ Z, their corresponding variational
derivatives are related according to the following identity

δEl

δn
= 6L−1 n ∂y

δĒ−(l+2)

δP
. (87)

The change of the variational derivative under the Liouville transformations

Lemma

Let n(t , x) and P(τ, y) be related by the transformations (75). If E(n) = Ē(P). THEN

δE
δn

=
1
6

n−
2
3 ∂−1

y L̄
δĒ
δP
, (88)

where L̄ is the Hamiltonian operator (81) admitted by the KK equation (69).

Liouville correspondences between the integrable systems and their dual integrable systems



The correspondence between the Hamiltonian
conservation laws of the DP and KK equations

The relationship between the variational derivatives of δEl/δn and δĒl/δP
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δĒ
δP
, (88)

where L̄ is the Hamiltonian operator (81) admitted by the KK equation (69).

Liouville correspondences between the integrable systems and their dual integrable systems



The correspondence between the Hamiltonian
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δĒ
δP
, (88)

where L̄ is the Hamiltonian operator (81) admitted by the KK equation (69).

Liouville correspondences between the integrable systems and their dual integrable systems



The correspondence between the Hamiltonian
conservation laws of the DP and KK equations

Theorem

Under the Liouville transformations (75), for each l ∈ Z, the Hamiltonian conserved
functional Ēl(P) of the KK equation is related to the Hamiltonian conserved functional
El(n) of the DP equation, according to the following identity

El(n) = 36 Ē−(l+2)(P), l ∈ Z. (89)
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The relationship between the Novikov equation and
the DP equation

Motivation

Fordy,Gibbon, 1979 T.
SK⇐=====================⇒ KKy “dual” “dual”

y
Novikov⇐==================⇒ DP
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The relationship between the Novikov equation and
the DP equation

The Novikov hierarchy and the DP hierarchy

SK⇐======================⇒ KK
Forday,Gibbon,MiuraT.

• The KK equation: Pτ + Pyyyyy + 5(PPyy )y + 5P2Py = 0

• The SK equation: Qτ + Qyyyyy + 20QQyyy + 25QyQyy + 80Q2Qy = 0

• The Miura transformations (Forday, Gibbon, 1979):

B1(P, Q) ≡ Q − (Wy −W2) = 0,

B2(P, Q) ≡ P + (2Wy + W2) = 0,
(90)

where W satisfies

Wt = Wyyyyy − 5(WyWyyy + W2
yy + W3

y + 4WWyWyy + W2Wyyy −W4Wy )

As in (Fokas and Fuchssteiner, 1981):

(SK)n ⇐=================⇒ (KK) n n ∈ Z+

Miura T. (90)
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The relationship between the Novikov equation and
the DP equation

The SK hierarchy and the KK hierarchy

(SK)−1 =================⇒ (KK) −1
Miura T. (90)

Lemma

Assume that Q satisfies the first negative flow of the SK hierarchy(
K̄J̄

)
Qτ = 0, (91)

and P satisfies the first negative flow of the KK hierarchy(
L̄D̄

)
Pτ = 0, (92)

THEN The Miura transformation (90) relates the first negative flow of the KK hierarchy
and the first negative flow of the SK hierarchy.
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The relationship between the Novikov equation and
the DP equation

The Novikov equation: mt = u2mx + 3uuxm, m = u − uxx

The DP equation: nt = vnx + 3vxn, n = v − vxx

The Liouville transformation ( Novikov ↔ (SK)−1 )

The Liouville transformation ( DP ↔ (KK)−1 )

Miura T. (90)
(SK)−1 ⇐==================⇒ (KK)−1xy Liouville T. Liouville T.

xy
Novikov DP

⇐===================⇒

L.T.+ M.T.+ L.T.
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The transformation mapping the Novikov equation and
the DP equation

Theorem

Assume m(t , x) is the solution of the Novikov equation. THEN, n(t , x) satisfies the DP
equation, where n(t , x) is determined implicitly by the relation

P(τ, y) =
1
4

n−
1
2 (4∂2

x − 1)n−
1
6 , y =

∫ x
n

1
3 (t , ξ) dξ, n = v − vxx , (93)

with P(τ, y) determined by Q(τ, y) via (90), and Q(τ, y) satisfies

Q(τ, y) = −m−1(1 − ∂2
x )m−

1
3 , y =

∫ x
m

2
3 (t , ξ) dξ, τ = t . (94)
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The correspondence between the 2CH and 2AKNS
hierarchies

The 2CH hierarchy
First, the hierarchy of 2CH system (1) is given by

(
m
ρ

)
t

= KδHn−1(m, ρ) = JδHn(m, ρ), δHn(m, ρ) =

(
δHn

δm
,
δHn

δρ

)T

, n = 1, 2, (95)

with compatible Hamiltonian operators

K =

(
m∂x + ∂xm ρ∂x

∂xρ 0

)
, J =

(
∂x − ∂3

x 0
0 ∂x

)
. (96)
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The A2CH hierarchy
First, the hierarchy of A2CH system (2) is given by(

Q
P

)
τ

= Kn = R
n−1

K1, n = 1, 2, . . . . (97)

with

R =
1
2

(
0 ∂2

y + 4Q + 2Qy∂−1
y

−4 4P + 2Py∂−1
y

)
, K1 =

(
−Qy , −Py

)T
. (98)
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The correspondence between the 2-CH and A2CH
hierarchies

A Liouville transformation between the isospectral problems of the 2-CH and
A2CH equations

The Liouville transformation (Kang, Liu, Olver, Qu, 2020)

Φ =
√
ρΨ, τ = t , y =

∫ x
ρ(t , ξ) dξ, P(τ, y) = −m(t , x)ρ(t , x)−2,

Q(τ, y) = −
1
4
ρ(t , x)−2 +

3
4
ρ(t , x)−4ρ2

x (t , x) −
1
2
ρ(t , x)−3ρxx (t , x).

(99)

will convert the isospectral problem

Ψxx +
(
−

1
4
− λm + λ2ρ2

)
Ψ = 0, Ψt =

( 1
2λ
− u

)
Ψx +

ux

2
Ψ, (100)

into the isospectral problem

Φyy + (Q + λP + λ2)Φ = 0, Φτ −
1

2λ
ρΦy +

1
4λ
ρy Φ = 0, (101)
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The correspondence between the 2CH and 2AKNS
hierarchies

Theorem

Under the Liouville transformation (99), for each integer n, the hierarchy (95) is
mapped into the hierarchy (97).

Theorem

(Kang, Liu, Olver, Qu, 2020) Under the Liouville transformation (99), for each nonzero
integer n, the Hamiltonian functionalsHn(m, ρ) of the 2CH hierarchy (95) are related to
the Hamiltonian functionals H̄n(Q ,P) of the A2CH hierarchy (97), according to

Hn(m, ρ) = H̄−n(Q ,P), 0 , n ∈ Z.

Remark

Similar results hold for the dDWW hierarchy.
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The correspondence between the 1 + n-KdV and
1 + n-CH hierarchies

The 1 + n-CH hierarchy
First, the hierarchy of 1 + n-CH system (1) is given by(

ρ
m

)
t

= Gi(ρ,m) = K(ρ,m)δH i−1(ρ,m) = J(ρ,m)δH i(ρ,m), i ∈ Z+, (102)

with compatible Hamiltonian operators

K(ρ,m) = K1(ρ,m) =

(
ρ∂x + ∂xρ ∂xmT + mT∂x
∂xm + m∂x (ρ∂x + ∂xρ)In +

∑
i<j Ji,jm∂−1

x (Ji,jm)T

)
and

J(ρ,m) = J −K2 =

(
∂x − ∂3

x 0T
n

0n (∂x − ∂3
x )In

)
,
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where the associated Hamiltonian functionals H1 and H2 are

H1 =
1
2

∫ (
w2 + w2

x + 〈u, u〉+ 〈ux , ux 〉
)

dx

and

H2 =
1
2

∫ [
w

(
w2 + w2

x + 〈u, u〉+ 2〈m, u〉 − 〈ux , ux 〉
)

+ 〈u, ∂−1
x Π(u, ux)m 〉

]
dx
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The correspondence between the 1 + n-KdV and
1 + n-CH hierarchies

The 1 + n-KdV hierarchy
Next, the hierarchy of 1 + n-KdV system (5) is given by(

w
u

)
t

= K(w,u)δH1(w,u) = J(w,u)δH2(w,u), (103)

where δHi = (δHi/δw, δHi/δu1, . . . , δHi/δun)T (i = 1, 2) and

K =

(
∂3

x + w∂x + ∂xw ∂xuT + uT∂x
∂xu + u∂x (∂3

x + w∂x + ∂xw)In +
∑

i<j Ji,ju∂−1
x (Ji,ju)T

)
,

J =

(
∂x 0T

n
0n ∂x In

) (104)

Ji,j are anti-symmetric matrices with nonzero entry of (i, j) being one if i < j, i.e.
(Ji,j)kl = δi

k δ
l
j − δ

i
lδ

j
k ,
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where the Hamiltonian functionals H1 and H2 are

H1 =
1
2

∫ (
w2 + 〈u, u〉

)
dx ,

H2 =
1
2

∫ (
w3 + 3w〈u, u〉 − w2

x − 〈ux , ux 〉
)

dx .

Theorem

The hierarchy (102) can be mapped into the hierarchy (103) for n = 2 by a Liouville
transformation.

(Kang, Liu, Qu, 2022)
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Conclusions and Discussions

Applications of Liouville transformations in orbital stability of solitons?

Liouville transformations for discrete systems and their dual systems?

Geometric formulations of Miura transformations (Qu, Wu, 2023)

Geometric formulations of Liouville transformations?
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Thank You!
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