Liouville correspondences between the integrable systems and their dual integrable systems

Changzheng Qu (Ningbo University)

(joint work with Jing Kang, Xiaochuan Liu and Peter J. Olver)

Lagrangian Multiform Theory and Pluri-Lagrangian Systems, Oct. 22-27, Hangzhou, 2023

Contents

(1) Introduction
(2) The Liouville correspondence between the mCH and mKdV hierarchies
(3) The generalizedd Miura transformation for mCH equation and CH equation
(1) The Liouville correspondence between Novikov and Sawada-Kotera hierarchies

- The Liouville correspondence between DP and Kaup-Kupershmidt hierarchies
(0) The generalized Miura transformation for DP and Novikov equations
(3 The dDWW hierarchies and $1+n$ - CH hierarchies

Introduction

The modified KdV (mKdV) hierarchy

- The KdV equation

$$
Q_{\tau}+Q_{y y y}+6 Q Q_{y}=0
$$

The Camassa-Holm (CH) hierarchy

- The CH equation

$$
m_{t}+2 u_{x} m+u m_{x}=0, \quad m=u-u_{x x}
$$

(Fokas, Fuchssteiner, 1981; Camassa-Holm, 1993)

Introduction

The modified KdV (mKdV) hierarchy

- The (focusing) mKdV equation

$$
Q_{\tau}+Q_{y y y}-6 Q^{2} Q_{y}=0
$$

The modified Camassa-Holm (mCH) hierarchy

- The mCH equation

$$
m_{t}+\left(\left(u^{2}-u_{x}^{2}\right) m\right)_{x}=0, \quad m=u-u_{x x}
$$

(Fokas, 1995; Olver, Rosenau, 1996; Fuchssteiner, 1996)

Introduction

The Novikov hierarchy

- The Novikov equation

$$
m_{t}=3 u u_{x} m+u^{2} m_{x}, \quad m=u-u_{x x}
$$

(Novikov, 1999)

The Sawada-Kotera (SK) hierarchy

- The SK equation

$$
Q_{\tau}+Q_{y y y y y}+5\left(Q Q_{y y}\right)_{y}+5 Q^{2} Q_{y}=0
$$

(Sawada, Kotera, 1974)

Introduction

The Kaup-Kupershmidt (KK) hierarchy

- The KK equation

$$
P_{\tau}+P_{y y y y y}+20 P P_{y y y}+50 P_{y} P_{y y}+80 P^{2} P_{y}=0
$$

The Degasperis-Procesi (DP) hierarchy

- The DP equation

$$
n_{t}=3 v_{x} n+v n_{x}, \quad n=v-v_{x x}
$$

Introduction

The 2CH hierarchy

- The 2CH system

$$
\begin{align*}
& m_{t}+2 u_{x} m+u m_{x}+\rho \rho_{x}=0, \quad m=u-u_{x x}, \\
& \rho_{t}+(\rho u)_{x}=0, \tag{1}
\end{align*}
$$

(Olver, Rosenau, 1996)

The two-component integrable hierarchy

- The A 2 CH system

$$
\begin{align*}
& P_{\tau}(\tau, y)=\rho_{y}, \quad Q_{\tau}(\tau, y)=\frac{1}{2} \rho P_{y}(\tau, y)+\rho_{y} P(\tau, y) \tag{2}\\
& \rho_{y y y}+2 \rho_{y} Q(\tau, y)+2(\rho Q(\tau, y))_{y}=0 .
\end{align*}
$$

Introduction

The Geng-Xue hierarchy

- The Geng-Xue system

$$
\begin{align*}
& m_{t}+3 v u_{x} m+u v m_{x}=0, \quad m=u-u_{x x}, \\
& n_{t}+3 u v_{x} n+u v n_{x}=0, \quad n=v-v_{x x} . \tag{3}
\end{align*}
$$

(Geng, Xue, 2009)

The dDWW hierarchy

- The dDWW system

$$
\begin{align*}
& \rho_{t}=((\rho+v) u)_{x}, \quad \rho=v-v_{x}, \tag{4}\\
& \gamma_{t}=(\gamma u+2 v)_{x}, \quad \gamma=u+u_{x},
\end{align*}
$$

(Kang, Liu, Olver, Qu, 2020)

The hierarchy of $1+n-K d V$ system

- The $1+n$-KdV system

$$
\begin{align*}
& w_{t}=w_{x x x}+\frac{3}{2}\left(w^{2}+\langle\mathbf{u}, \mathbf{u}\rangle\right)_{x} \tag{5}\\
& \mathbf{u}_{t}=\mathbf{u}_{x x x}+3(w \mathbf{u})_{x}
\end{align*}
$$

The hierarchy of $(1+n)$-component $\mathbf{C H}$ system

- The $(1+n)$-component CH system

$$
\begin{align*}
& \rho_{t}+2 w_{x} \rho+w \rho_{x}+\langle\mathbf{u}, \mathbf{m}\rangle_{x}+\left\langle\mathbf{u}_{x}, \mathbf{m}\right\rangle=0 \\
& \mathbf{m}_{t}+2 w_{x} \mathbf{m}+w \mathbf{m}_{x}+2 \rho \mathbf{u}_{x}+\rho_{x} \mathbf{u}+\Pi\left(\mathbf{u}, \mathbf{u}_{x}\right) \mathbf{m}=0, \tag{6}\\
& \rho=w-w_{x x}, \quad \mathbf{m}=\mathbf{u}-\mathbf{u}_{x x} .
\end{align*}
$$

(Kang, Liu, Qu, 2022)

Introduction

The Camassa-Holm (CH) type equations ($\mathrm{CH}, \mathrm{mCH}$, etc. ...)

- Support nonlinear dispersion
- Describe wave breaking phenomena for appropriate initial data

Introduction

The Camassa-Holm (CH) type equations ($\mathrm{CH}, \mathrm{mCH}$, etc. ...)

- Support nonlinear dispersion
- Describe wave-breaking phenomena for appropriate initial data - Possess a notable variety of non-smooth soliton-like solutions

Introduction

The Camassa-Holm (CH) type equations ($\mathrm{CH}, \mathrm{mCH}$, etc. ...)

- Support nonlinear dispersion
- Describe wave-breaking phenomena for appropriate initial data
- Possess a notable variety of non-smooth soliton-like solutions
- peakon, multi-peakon, compacton solutions,

The mCH equation

- Physical background
- Geometrio dectivation

Introduction

The Camassa-Holm (CH) type equations ($\mathrm{CH}, \mathrm{mCH}$, etc. ...)

- Support nonlinear dispersion
- Describe wave-breaking phenomena for appropriate initial data
- Possess a notable variety of non-smooth soliton-like solutions
- peakon, multi-peakon, compacton solutions,

The mCH equation

- Physical background
- Genmetric derivation
- Cubic nonlinearity

Introduction

The Camassa-Holm (CH) type equations ($\mathrm{CH}, \mathrm{mCH}$, etc. ...)

- Support nonlinear dispersion
- Describe wave-breaking phenomena for appropriate initial data
- Possess a notable variety of non-smooth soliton-like solutions
- peakon, multi-peakon, compacton solutions,

The mCH equation

- Physical background
- Geometric derivation
- Cubic nonlinearity
- New features: wave breaking and multi-peakon dynamics

Introduction

The Camassa-Holm (CH) type equations ($\mathrm{CH}, \mathrm{mCH}$, etc. ...)

- Support nonlinear dispersion
- Describe wave-breaking phenomena for appropriate initial data
- Possess a notable variety of non-smooth soliton-like solutions
- peakon, multi-peakon, compacton solutions,

The mCH equation

- Physical background
- Geometric derivation
- Cubic nonlinearity
- New features: wave breaking and multi-peakon dynamics

Introduction

The Camassa-Holm (CH) type equations ($\mathrm{CH}, \mathrm{mCH}$, etc. ...)

- Support nonlinear dispersion
- Describe wave-breaking phenomena for appropriate initial data
- Possess a notable variety of non-smooth soliton-like solutions
- peakon, multi-peakon, compacton solutions,

The mCH equation

- Physical background
- Geometric derivation
- Cubic nonlinearity
- New features: wave breaking and multi-peakon dynamics

Introduction

Some results on the mCH equation

- Derivation of mCH (Fokas 1995; Fuchsseteiner, 1996; Olver, Rosenau, 1996)
- Intearability of mCH (Olver Rosenaı 1996. Schiff 1996. Dian 2006. Hone Wang, 2008; Maruno, 2013; Chang, Szmigielski, 2016; Xia, Zhou, Qiao, 2016; Wang, Liu, Mao, 2020)

Introduction

Some results on the mCH equation

- Derivation of mCH (Fokas 1995; Fuchsseteiner, 1996; Olver, Rosenau, 1996)
- Integrability of mCH (Olver, Rosenau, 1996; Schiff, 1996; Qiao, 2006; Hone, Wang, 2008; Maruno, 2013; Chang, Szmigielski, 2016; Xia, Zhou, Qiao, 2016 ; Wang, Liu, Mao, 2020)

Well-posedness of solutions to Cauchy problem (Gui, Liu, Olver, Qu, 2013)

Introduction

Some results on the mCH equation

- Derivation of mCH (Fokas 1995; Fuchsseteiner, 1996; Olver, Rosenau, 1996)
- Integrability of mCH (Olver, Rosenau, 1996; Schiff, 1996; Qiao, 2006; Hone, Wang, 2008; Maruno, 2013; Chang, Szmigielski, 2016; Xia, Zhou, Qiao, 2016; Wang, Liu, Mao, 2020)
- Well-posedness of solutions to Cauchy problem (Gui, Liu, Olver, Qu, 2013)
- Wave breaking phenomena (Gui, Liu, Olver, Qu, 2013; Chen, Liu, Qu, Zhang 2015-2017)

Introduction

Some results on the mCH equation

- Derivation of mCH (Fokas 1995; Fuchsseteiner, 1996; Olver, Rosenau, 1996)
- Integrability of mCH (Olver, Rosenau, 1996; Schiff, 1996; Qiao, 2006; Hone, Wang, 2008; Maruno, 2013; Chang, Szmigielski, 2016; Xia, Zhou, Qiao, 2016; Wang, Liu, Mao, 2020)
- Well-posedness of solutions to Cauchy problem (Gui, Liu, Olver, Qu, 2013)
- Wave breaking phenomena (Gui, Liu, Olver, Qu, 2013; Chen, Liu, Qu, Zhang, 2015-2017)
- Stahility of single peakons and periodic peakons (Qu, Liu, Liu, 2013, 2014)
- Inverse scattering method and RH problem (Anne Bouted de Monvel et al, 2020;

Introduction

Some results on the mCH equation

- Derivation of mCH (Fokas 1995; Fuchsseteiner, 1996; Olver, Rosenau, 1996)
- Integrability of mCH (Olver, Rosenau, 1996; Schiff, 1996; Qiao, 2006; Hone, Wang, 2008; Maruno, 2013; Chang, Szmigielski, 2016; Xia, Zhou, Qiao, 2016; Wang, Liu, Mao, 2020)
- Well-posedness of solutions to Cauchy problem (Gui, Liu, Olver, Qu, 2013)
- Wave breaking phenomena (Gui, Liu, Olver, Qu, 2013; Chen, Liu, Qu, Zhang, 2015-2017)
- Stability of single peakons and periodic peakons (Qu, Liu, Liu, 2013, 2014)
- Inverse scattering method and RH problem (Anne Bouted de Monvel et al, 2020; Yang, Fan, 2022;)

Introduction

Some results on the mCH equation

- Derivation of mCH (Fokas 1995; Fuchsseteiner, 1996; Olver, Rosenau, 1996)
- Integrability of mCH (Olver, Rosenau, 1996; Schiff, 1996; Qiao, 2006; Hone, Wang, 2008; Maruno, 2013; Chang, Szmigielski, 2016; Xia, Zhou, Qiao, 2016; Wang, Liu, Mao, 2020)
- Well-posedness of solutions to Cauchy problem (Gui, Liu, Olver, Qu, 2013)
- Wave breaking phenomena (Gui, Liu, Olver, Qu, 2013; Chen, Liu, Qu, Zhang, 2015-2017)
- Stability of single peakons and periodic peakons (Qu, Liu, Liu, 2013, 2014)
- Inverse scattering method and RH problem (Anne Bouted de Monvel et al, 2020; Yang, Fan, 2022;)

Introduction

Geometric formulation of the mCH equations

Consider the Euclidean-invariant plane curve flow for $C \subseteq \mathbb{R}^{2}$

$\frac{\partial C}{\partial t}=f \mathbf{n}+g \mathbf{t}$,
 (7)
 where t and n are the Euclidean tangent and normal vectors, while the normal and tangent velocities, f and g, are arbitrary Euclidean differential invariants, meaning that they depend on the curvature and its derivatives with respect to the arc-length s of the curve C. If the flow is intrinsic, meaning that it preserves arc length, if and only if

$g_{s}-\kappa f=0$.
The curvature invariant satisfies

is the recursion operator of the $m K d V$ equation

Introduction

Geometric formulation of the mCH equations

Consider the Euclidean-invariant plane curve flow for $C \subseteq \mathbb{R}^{2}$

$$
\begin{equation*}
\frac{\partial C}{\partial t}=f \mathbf{n}+g \mathbf{t} \tag{7}
\end{equation*}
$$

where \mathbf{t} and \mathbf{n} are the Euclidean tangent and normal vectors, while the normal and tangent velocities, f and g, are arbitrary Euclidean differential invariants, meaning that they depend on the curvature and its derivatives with respect to the arc-length s of the curve C. If the flow is intrinsic, meaning that it preserves arc length, if and only if

$$
g_{s}-\kappa f=0 .
$$

The curvature invariant satisfies

$$
\kappa_{t}=\mathfrak{R}[f], \quad \text { where } \quad \Re=\partial_{s}^{2}+\kappa^{2}+\kappa_{s} \partial_{s}^{-1} \kappa
$$

is the recursion operator of the mKdV equation

$$
\kappa_{t}=\kappa_{s s s}+\frac{3}{2} \kappa^{2} \kappa_{s},
$$

which is equivalent to the mKdV flow with $f=\kappa_{s}, g=\frac{1}{2} \kappa^{2}$ (Goldstein, Petrich, 1992).

Introduction

In particular, if we set $f=-2 u_{s}, \kappa=m \equiv u-u_{s s}$, then

$$
g=-\left(u^{2}-u_{s}^{2}\right)+b
$$

where b is a constant. Therefore, $u(t, s)$ satisfies the equation

$$
m_{t}+\left(\left(u^{2}-u_{s}^{2}\right) m\right)_{s}+(b+2) u_{s s s}-b u_{s}=0 .
$$

Setting $x=s+(b+2) t$, it becomes

$$
m_{t}+\left(\left(u^{2}-u_{x}^{2}\right) m\right)_{x}+2 u_{x}=0, \quad m=u-u_{x x}
$$

which is equivalent, up to rescaling, to the mCH equation. The preceding derivation implies that the mCH equation can be regarded as a Euclidean-invariant version of the CH equation, just as the mKdV equation is a Euclidean-invariant counterpart to the KdV equation from the viewpoint of curve flows in Klein geometries. (Gui, Liu, Olver, Qu, 2013)

Introduction

Tri-Hamiltonian duality method

- Olver, Rosenau (1996); Fuchssteiner (1996)
- KEY Issue:

The most bi-Hamiltonian integrable soliton equations actually support a compatible trio of Hamiltonian structures through a particular scaling argument.

- Several CH -type equations were obtained from the classical integrable equationns (Olver, Rosenau, 1996)

Introduction

Tri-Hamiltonian duality method

- Olver, Rosenau (1996); Fuchssteiner (1996)
- KEY Issue:

The most bi-Hamiltonian integrable soliton equations actually support a compatible trio of Hamiltonian structures through a particular scaling argument.

- Several CH -type equations were obtained from the classical integrable equationns (Olver, Rosenau, 1996) 0 the Kdy equation \longleftarrow the CH equation

Introduction

Tri-Hamiltonian duality method

- Olver, Rosenau (1996); Fuchssteiner (1996)
- KEY Issue:

The most bi-Hamiltonian integrable soliton equations actually support a compatible trio of Hamiltonian structures through a particular scaling argument.

- Several CH -type equations were obtained from the classical integrable equationns (Olver, Rosenau, 1996)
- the KdV equation
- the mK dV equation
the $\mathbf{C H}$ equation
the mCH equation

Introduction

Tri-Hamiltonian duality method

- Olver, Rosenau (1996); Fuchssteiner (1996)
- KEY Issue:

The most bi-Hamiltonian integrable soliton equations actually support a compatible trio of Hamiltonian structures through a particular scaling argument.

- Several CH -type equations were obtained from the classical integrable equationns (Olver, Rosenau, 1996)
- the $\mathbf{K d V}$ equation \longleftrightarrow the $\mathbf{C H}$ equation
- the mKdV equationthe mCH equation
- the Ito equation \qquad the two-component $\mathbf{C H}$ equation

Introduction

Tri-Hamiltonian duality method

- Olver, Rosenau (1996); Fuchssteiner (1996)
- KEY Issue:

The most bi-Hamiltonian integrable soliton equations actually support a compatible trio of Hamiltonian structures through a particular scaling argument.

- Several CH -type equations were obtained from the classical integrable equationns (Olver, Rosenau, 1996)
- the KdV equation \longleftrightarrow the $\mathbf{C H}$ equation
- the $\mathbf{m K d V}$ equation \longleftrightarrow the $\mathbf{m C H}$ equation
- the Ito equation \qquad the two-component CH equation
- the Schrödinger equation
$\longleftrightarrow \quad$ the Fokas-Lenells equation

Introduction

Tri-Hamiltonian duality method

- Olver, Rosenau (1996); Fuchssteiner (1996)
- KEY Issue:

The most bi-Hamiltonian integrable soliton equations actually support a compatible trio of Hamiltonian structures through a particular scaling argument.

- Several CH -type equations were obtained from the classical integrable equationns (Olver, Rosenau, 1996)
- the KdV equation \longleftrightarrow the $\mathbf{C H}$ equation
- the $\mathbf{m K d V}$ equation \longleftrightarrow the $\mathbf{m C H}$ equation
- the Ito equation \longleftrightarrow the two-component $\mathbf{C H}$ equation
- the Schrödinger equation
$\longleftrightarrow \quad$ the Fokas-Lenells equation

Introduction

Tri-Hamiltonian duality method

- Olver, Rosenau (1996); Fuchssteiner (1996)
- KEY Issue:

The most bi-Hamiltonian integrable soliton equations actually support a compatible trio of Hamiltonian structures through a particular scaling argument.

- Several CH -type equations were obtained from the classical integrable equationns (Olver, Rosenau, 1996)
- the $\mathbf{K d V}$ equation \longleftrightarrow the $\mathbf{C H}$ equation
- the $\mathbf{m K d V}$ equation \longleftrightarrow the $\mathbf{m C H}$ equation
- the Ito equation \longleftrightarrow the two-component $\mathbf{C H}$ equation
- the Schrödinger equation \longleftrightarrow the Fokas-Lenells equation

Introduction

Motivation

It is anticipated that the original soliton equations should be related to their dual counterparts in a certain manner.

- (Fokas, Fuchssteiner, 1981; Fuchssteiner, 1996) The CII equation \longleftrightarrow The first negative flow of the KdV hierarchy The link between the shallow water integrable systems and the negative flows of the classical soliton hierarchies by the Reciprocal-type transformations Two-component Camassa-Holm system The Degasperis-Procesi equation
a negative flow in the Kaup-Kupershmidt hierarchy

Introduction

Motivation

It is anticipated that the original soliton equations should be related to their dual counterparts in a certain manner.

- (Fokas, Fuchssteiner, 1981; Fuchssteiner, 1996):
- The CH equation \longleftrightarrow The first negative flow of the KdV hierarchy
- The link between the shallow water integrable systems and the negative flows of the classical soliton hierarchies by the Reciprocal-type transformations
- Two-component Camassa Holm system \longleftrightarrow The first negative flow of the AKNS hierarchy
- The Degasperis-Procesi equation \longleftrightarrow a negative flow in the Kaup-Kupershmidt hierarchy
- The Novikov equation (Hone, Wang, 2008)
a negative flow in the Sawada-Kotera hierarchy

Motivation

It is anticipated that the original soliton equations should be related to their dual counterparts in a certain manner.

- (Fokas, Fuchssteiner, 1981; Fuchssteiner, 1996):
- The CH equation \longleftrightarrow The first negative flow of the KdV hierarchy
- The link between the shallow water integrable systems and the negative flows of the classical soliton hierarchies by the Reciprocal-type transformations
- Two-component Camassa-Holm system
\longleftrightarrow The first negative flow of the AKNS hierarchy
- The Degasperis-Procesi equation
\longleftrightarrow a negative flow in the Kaup-Kupershmidt hierarchy
- The Novikov equation (Hone, Wang, 2008)
\longleftrightarrow a negative flow in the Sawada-Kotera hierarchy

Motivation

It is anticipated that the original soliton equations should be related to their dual counterparts in a certain manner.

- (Fokas, Fuchssteiner, 1981; Fuchssteiner, 1996):
- The CH equation \longleftrightarrow The first negative flow of the KdV hierarchy
- The link between the shallow water integrable systems and the negative flows of the classical soliton hierarchies by the Reciprocal-type transformations
- Two-component Camassa-Holm system
\longleftrightarrow The first negative flow of the AKNS hierarchy
- The Degasperis-Procesi equation
\longleftrightarrow a negative flow in the Kaup-Kupershmidt hierarchy
- The Novikov equation (Hone, Wang, 2008)
\longleftrightarrow a negative flow in the Sawada-Kotera hierarchy

Introduction

Questions

- Is it possible to establish the correspondence between their respective hierarchies?
- Is it possible to relate the conservation laws between their respective hierarchies?
- Is there aeneral zed Miura transformation relating CH and mCH equations and their hierarchies?

Introduction

Questions

- Is it possible to establish the correspondence between their respective hierarchies?
- Is it possible to relate the conservation laws between their respective hierarchies?
- Is there generalized Miura transformation relating CH and mCH equations and their hierarchies?
- Is there generalized Miura transformation relating DP and Novikov equations and their hierarchies?

Introduction

Questions

- Is it possible to establish the correspondence between their respective hierarchies?
- Is it possible to relate the conservation laws between their respective hierarchies?
- Is there generalized Miura transformation relating CH and mCH equations and their hierarchies?
- Is there generalized Miura transformation relating DP and Novikov equations and their hierarchies?
- How about the multi-component integrable systems?

Introduction

Questions

- Is it possible to establish the correspondence between their respective hierarchies?
- Is it possible to relate the conservation laws between their respective hierarchies?
- Is there generalized Miura transformation relating CH and mCH equations and their hierarchies?
- Is there generalized Miura transformation relating DP and Novikov equations and their hierarchies?
- How about the multi-component integrable systems?

Introduction

Questions

- Is it possible to establish the correspondence between their respective hierarchies?
- Is it possible to relate the conservation laws between their respective hierarchies?
- Is there generalized Miura transformation relating CH and mCH equations and their hierarchies?
- Is there generalized Miura transformation relating DP and Novikov equations and their hierarchies?
- How about the multi-component integrable systems?

Introduction

Questions

- Is it possible to establish the correspondence between their respective hierarchies?
- Is it possible to relate the conservation laws between their respective hierarchies?
- Is there generalized Miura transformation relating CH and mCH equations and their hierarchies?
- Is there generalized Miura transformation relating DP and Novikov equations and their hierarchies?
- How about the multi-component integrable systems?

Introduction

The Liouville correspondence between the CH hierarchy and the KdV hierarchy

- (McKean, 2003; Lenells, 2004):
- The CH hierarchy \longleftrightarrow The KdV hierarchy
- The correspondence between the Hamiltonian conservation laws of
the CH hierarchy and the KdV hierarchy
- Key ingradients:
- The tri-Hamiltonian dual structure of the constituent Hamiltonian
operators
- The relationship between the corresponding Hamiltonian operators under
the Liouville transformations

Introduction

The Liouville correspondence between the CH hierarchy and the KdV hierarchy

- (McKean, 2003; Lenells, 2004):
- The CH hierarchy \longleftrightarrow The KdV hierarchy
- The correspondence between the Hamiltonian conservation laws of the CH hierarchy and the KdV hierarchy
- Key ingredients:
- The tri-Hamiltonian dual structure of the constituent Hamiltonian operators
- The relationship between the corresponding Hamiltonian operators under the Liouville transformations

Introduction

The Liouville correspondence between the CH hierarchy and the KdV hierarchy

- (McKean, 2003; Lenells, 2004):
- The CH hierarchy \longleftrightarrow The KdV hierarchy
- The correspondence between the Hamiltonian conservation laws of the CH hierarchy and the KdV hierarchy
- Key ingredients:
- The tri-Hamiltonian dual structure of the constituent Hamiltonian operators
- The relationship between the corresponding Hamiltonian operators under the Liouville transformations

Introduction

The Liouville correspondence between the CH hierarchy and the KdV hierarchy

- (McKean, 2003; Lenells, 2004):
- The CH hierarchy \longleftrightarrow The KdV hierarchy
- The correspondence between the Hamiltonian conservation laws of the CH hierarchy and the KdV hierarchy
- Key ingredients:
- The tri-Hamiltonian dual structure of the constituent Hamiltonian operators
- The relationship between the corresponding Hamiltonian operators under the Liouville transformations

The correspondence between the mCH and the mKdV hierarchies

A Liouville transformation between the isospectral problems of the mCH and the mKdV equations

- The mCH equation

The correspondence between the mCH and the mKdV hierarchies

A Liouville transformation between the isospectral problems of the mCH and the $m K d V$ equations

- The mCH equation

$$
\begin{equation*}
m_{t}+\left(\left(u^{2}-u_{x}^{2}\right) m\right)_{x}=0, \quad m=u-u_{x x} \tag{8}
\end{equation*}
$$

- The isospectral problems (Schiff, 1996; Qiao, 2006):

$$
\begin{gather*}
\boldsymbol{\Psi}_{x}=\left(\begin{array}{cc}
-\frac{1}{2} & \frac{1}{2} \lambda m \\
-\frac{1}{2} \lambda m & \frac{1}{2}
\end{array}\right) \boldsymbol{\Psi}, \quad \boldsymbol{\Psi}=\binom{\psi_{1}}{\psi_{2}} \tag{9}\\
\boldsymbol{\Psi}_{t}=\left(\begin{array}{cc}
\lambda^{-2}+\frac{1}{2}\left(u^{2}-u_{x}^{2}\right) & -\lambda^{-1}\left(u-u_{x}\right)-\frac{1}{2} \lambda m\left(u^{2}-u_{x}^{2}\right) \\
\lambda^{-1}\left(u+u_{x}\right)+\frac{1}{2} \lambda m\left(u^{2}-u_{x}^{2}\right) & -\lambda^{-2}-\frac{1}{2}\left(u^{2}-u_{x}^{2}\right)
\end{array}\right) \boldsymbol{\Psi} \\
\text { - } \partial_{t}\left(\boldsymbol{\Psi}_{x}\right)=\partial_{x}\left(\boldsymbol{\Psi}_{t}\right) \quad \Rightarrow \quad \text { the } m C H \text { equation (8) }
\end{gather*}
$$

The correspondence between the mCH and mKdV hierarchies

A Liouville transformation between the isospectral problems of the mCH and mKdV equations

- The mKdV equation

$$
\begin{equation*}
Q_{\tau}+Q_{y y y}-6 Q^{2} Q_{y}=0 \tag{10}
\end{equation*}
$$

- The isospectral problems:

$$
\begin{gather*}
\boldsymbol{\Phi}_{y}=\left(\begin{array}{cc}
-\mu & Q \\
-Q & \mu
\end{array}\right) \boldsymbol{\Phi}, \quad \boldsymbol{\Phi}=\binom{\phi_{1}}{\phi_{2}} \tag{11}\\
\boldsymbol{\Phi}_{\tau}=\left(\begin{array}{cc}
-4 \mu^{3}-2 \mu Q^{2} & 4 \mu^{2} Q+2 Q^{3}-2 \mu Q_{y}+Q_{y y} \\
-4 \mu^{2} Q-2 Q^{3}-2 \mu Q_{y}-Q_{y y} & 4 \mu^{3}+2 \mu Q^{2}
\end{array}\right) \boldsymbol{\Phi}
\end{gather*}
$$

- $\partial_{\tau}\left(\boldsymbol{\Phi}_{y}\right)=\partial_{y}\left(\boldsymbol{\Phi}_{\tau}\right) \quad \Rightarrow \quad$ the mKdV equation (10)

The correspondence between the mCH and mKdV hierarchies

A Liouville transformation between the isospectral problems of the mCH and mKdV equations

- The Liouville transformation (Kang, Liu, Olver, Qu, 2016)

$$
\boldsymbol{\Phi}=\left(\begin{array}{cc}
-1 & -1 \tag{12}\\
-1 & 1
\end{array}\right) \boldsymbol{\Psi}, \quad y=\int^{x} m(\xi) \mathrm{d} \xi
$$

will convert the isospectral problem (9) into the isospectral problem (11), with

$$
Q=\frac{1}{2 m} \quad \text { and } \quad \lambda=-2 \mu
$$

- The following coordinate transformations

The correspondence between the mCH and mKdV hierarchies

A Liouville transformation between the isospectral problems of the mCH and mKdV equations

- The Liouville transformation (Kang, Liu, Olver, Qu, 2016)

$$
\boldsymbol{\Phi}=\left(\begin{array}{cc}
-1 & -1 \tag{12}\\
-1 & 1
\end{array}\right) \boldsymbol{\Psi}, \quad y=\int^{x} m(\xi) \mathrm{d} \xi
$$

will convert the isospectral problem (9) into the isospectral problem (11), with

$$
Q=\frac{1}{2 m} \quad \text { and } \quad \lambda=-2 \mu
$$

- The following coordinate transformations

$$
\begin{equation*}
y=\int^{x} m(t, \xi) d \xi, \quad \tau=t, \quad Q(\tau, y)=\frac{1}{2 m(t, x)} \tag{13}
\end{equation*}
$$

The correspondence between the mCH and mKdV hierarchies

The mCH hierarchy

- The mCH equation written in the bi-Hamiltonian form (Olver, Rosenau, 1996)

$$
\begin{equation*}
m_{t}=\mathcal{K} \frac{\delta \mathcal{H}_{1}}{\delta m}=\mathcal{J} \frac{\delta \mathcal{H}_{2}}{\delta m}, \quad m=u-u_{x x} \tag{14}
\end{equation*}
$$

$\diamond \quad$ A pair of compatible Hamiltonian operators

$$
\mathcal{K}=-\partial_{x} m \partial_{x}^{-1} m \partial_{x} \quad \text { and } \quad \mathcal{J}=-\left(\partial_{x}-\partial_{x}^{3}\right)
$$

$\diamond \quad$ The corresponding Hamiltonian functionals

$$
\begin{equation*}
\mathcal{H}_{1}[m]=\int\left(u^{2}+u_{x}^{2}\right) \mathrm{d} x, \quad \mathcal{H}_{2}[m]=\frac{1}{4} \int\left(u^{4}+2 u^{2} u_{x}^{2}-\frac{1}{3} u_{x}^{4}\right) \mathrm{d} x \tag{15}
\end{equation*}
$$

- Recursion operator: $\quad \mathcal{R}=\mathcal{K} \mathcal{J}^{-1}$

The correspondence between the mCH and mKdV hierarchies

The mCH hierarchy

- The positive flows

$$
\begin{align*}
m_{t}=K_{n} & =\mathcal{K} \frac{\delta \mathcal{H}_{n-1}}{\delta m}=\mathcal{J} \frac{\delta \mathcal{H}_{n}}{\delta m} \tag{16}\\
& =\left(\mathcal{K J}^{-1}\right)^{n-1}\left(-2 m_{x}\right), \quad n=1,2, \ldots
\end{align*}
$$

\diamond The seed equation: $m_{t}=K_{1}[m]=-2 m_{x}, \quad$ with $\quad \mathcal{H}_{0}[m]=\int m \mathrm{~d} x$

The mCH equation: $m_{t}=K_{2}=-\left(\left(u^{2}-u_{x}^{2}\right) m\right)_{x}=\mathcal{R K}_{1}[m]$

- The negative flows

The correspondence between the mCH and mKdV hierarchies

The mCH hierarchy

- The positive flows

$$
\begin{align*}
m_{t}=K_{n} & =\mathcal{K} \frac{\delta \mathcal{H}_{n-1}}{\delta m}=\mathcal{J} \frac{\delta \mathcal{H}_{n}}{\delta m} \tag{16}\\
& =\left(\mathcal{K} \mathcal{J}^{-1}\right)^{n-1}\left(-2 m_{x}\right), \quad n=1,2, \ldots
\end{align*}
$$

\diamond The seed equation: $m_{t}=K_{1}[m]=-2 m_{x}, \quad$ with $\quad \mathcal{H}_{0}[m]=\int m \mathrm{~d} x$
\diamond The mCH equation: $\quad m_{t}=K_{2}=-\left(\left(u^{2}-u_{x}^{2}\right) m\right)_{x}=\mathcal{R} K_{1}[m]$

- The negative flows

The Casimir equation:

The correspondence between the mCH and mKdV hierarchies

The mCH hierarchy

- The positive flows

$$
\begin{align*}
m_{t}=K_{n} & =\mathcal{K} \frac{\delta \mathcal{H}_{n-1}}{\delta m}=\mathcal{J} \frac{\delta \mathcal{H}_{n}}{\delta m} \tag{16}\\
& =\left(\mathcal{K}^{-1}\right)^{n-1}\left(-2 m_{x}\right), \quad n=1,2, \ldots
\end{align*}
$$

\diamond The seed equation: $m_{t}=K_{1}[m]=-2 m_{x}, \quad$ with $\quad \mathcal{H}_{0}[m]=\int m \mathrm{~d} x$
\diamond The mCH equation: $m_{t}=K_{2}=-\left(\left(u^{2}-u_{x}^{2}\right) m\right)_{x}=\mathcal{R} K_{1}[m]$

- The negative flows

$$
\begin{align*}
m_{t}=K_{-n} & =\mathcal{K} \frac{\delta \mathcal{H}_{-(n+1)}}{\delta m}=\mathcal{J} \frac{\delta \mathcal{H}_{-n}}{\delta m} \tag{17}\\
& =-\left(\mathcal{J} \mathcal{K}^{-1}\right)^{n-1} \mathcal{J} \frac{1}{m^{2}}, \quad n=1,2, \ldots
\end{align*}
$$

\diamond The Casimir equation:

$$
\begin{equation*}
m_{t}=K_{-1}=\mathcal{J} \frac{\delta \mathcal{H}_{-1}}{\delta m}=\mathcal{J} \frac{\delta \mathcal{H}_{C}}{\delta m}=\left(\frac{1}{m^{2}}\right)_{x}-\left(\frac{1}{m^{2}}\right)_{x x x} \tag{18}
\end{equation*}
$$

The correspondence between the mCH and mKdV hierarchies

The mKdV hierarchy

- The positive flows

$$
\begin{align*}
Q_{\tau}=\bar{K}_{n} & =\overline{\mathcal{K}} \frac{\delta \overline{\mathcal{H}}_{n-1}}{\delta Q}=\overline{\mathcal{J}} \frac{\delta \overline{\mathcal{H}}_{n}}{\delta Q} \tag{19}\\
& =-\left(\overline{\mathcal{K}}_{\mathcal{J}} \overline{\mathcal{T}}^{n-1}\right)^{n-1}\left(4 Q_{y}\right), \quad n=1,2, \ldots .
\end{align*}
$$

\diamond A pair of compatible Hamiltonian operators:

$$
\overline{\mathcal{K}}=\frac{1}{4} \partial_{y}^{3}-\partial_{y} Q \partial_{y}^{-1} Q \partial_{y}, \quad \overline{\mathcal{J}}=\partial_{y}
$$

$\diamond \quad$ Recursion operator : $\quad \overline{\mathcal{R}}=\overline{\mathcal{K}} \overline{\mathcal{J}}^{-1}$

- The negative flows

The correspondence between the mCH and mKdV hierarchies

The mKdV hierarchy

- The positive flows

$$
\begin{align*}
Q_{\tau}=\bar{K}_{n} & =\overline{\mathcal{K}} \frac{\delta \overline{\mathcal{H}}_{n-1}}{\delta Q}=\overline{\mathcal{J}} \frac{\delta \overline{\mathcal{H}}_{n}}{\delta Q} \tag{19}\\
& =-\left(\overline{\mathcal{K}} \overline{\mathcal{J}}^{-1}\right)^{n-1}\left(4 Q_{y}\right), \quad n=1,2, \ldots .
\end{align*}
$$

\diamond A pair of compatible Hamiltonian operators:

$$
\overline{\mathcal{K}}=\frac{1}{4} \partial_{y}^{3}-\partial_{y} Q \partial_{y}^{-1} Q \partial_{y}, \quad \overline{\mathcal{J}}=\partial_{y}
$$

$\diamond \quad$ Recursion operator : $\quad \overline{\mathcal{R}}=\overline{\mathcal{K}} \overline{\mathcal{J}}^{-1}$

- The negative flows

$$
\begin{equation*}
Q_{\tau}=\bar{K}_{-n}=\overline{\mathcal{K}} \frac{\delta \overline{\mathcal{H}}_{-(n+1)}}{\delta Q}=\overline{\mathcal{J}} \frac{\delta \overline{\mathcal{H}}_{-n}}{\delta Q} \quad \Longleftrightarrow \quad \overline{\mathcal{R}}^{n} Q_{\tau}=0, \quad n=1,2, \ldots \tag{20}
\end{equation*}
$$

The correspondence between the mCH and mKdV hierarchies

REMARK on the negative flows of the mKdV hierarchy

$$
\begin{equation*}
\left(\overline{\mathcal{K}} \overline{\mathcal{J}}^{-1}\right)^{n} Q_{\tau}=0 \quad \Longrightarrow \quad\left(\frac{1}{4} \partial_{y}-Q \partial_{y}^{-1} Q\right)\left(\overline{\mathcal{K}} \overline{\mathcal{J}}^{-1}\right)^{n-1} Q_{\tau}=\bar{C}_{-n}, \quad n=1,2, \ldots \tag{21}
\end{equation*}
$$

Case 1. $\bar{C}_{-n}=0$,

The correspondence between the mCH and mKdV hierarchies

REMARK on the negative flows of the mKdV hierarchy

$$
\begin{equation*}
\left(\overline{\mathcal{K}} \overline{\mathcal{J}}^{-1}\right)^{n} Q_{\tau}=0 \quad \Longrightarrow \quad\left(\frac{1}{4} \partial_{y}-Q \partial_{y}^{-1} Q\right)\left(\overline{\mathcal{K}} \overline{\mathcal{J}}^{-1}\right)^{n-1} Q_{\tau}=\bar{C}_{-n}, \quad n=1,2, \ldots \tag{21}
\end{equation*}
$$

Case 1. $\bar{C}_{-n}=0, \quad n=1,2, \ldots$

The correspondence between the mCH and mKdV hierarchies

REMARK on the negative flows of the mKdV hierarchy

$$
\begin{equation*}
\left(\overline{\mathcal{K}} \overline{\mathcal{J}}^{-1}\right)^{n} Q_{\tau}=0 \Longrightarrow\left(\frac{1}{4} \partial_{y}-Q \partial_{y}^{-1} Q\right)\left(\overline{\mathcal{K}} \overline{\mathcal{J}}^{-1}\right)^{n-1} Q_{\tau}=\bar{C}_{-n}, \quad n=1,2, \ldots \tag{21}
\end{equation*}
$$

Case 1. $\bar{C}_{-n}=0, \quad n=1,2, \ldots$

- $n=1$

$$
\begin{equation*}
Q_{\tau}=\left(\frac{1}{4} \partial_{y}-Q \partial_{y}^{-1} Q\right)^{-1} 0=\sin \left(2 \partial_{y}^{-1} Q\right) \tag{22}
\end{equation*}
$$

The sine-Gordon equation: $\quad U_{y \tau}=\sin (2 U), \quad\left(U=\partial_{y}^{-1} Q\right)$
The corresnondina Casimir functional

The correspondence between the mCH and mKdV hierarchies

REMARK on the negative flows of the mKdV hierarchy

$$
\begin{equation*}
\left(\overline{\mathcal{K}} \overline{\mathcal{J}}^{-1}\right)^{n} Q_{\tau}=0 \Longrightarrow\left(\frac{1}{4} \partial_{y}-Q \partial_{y}^{-1} Q\right)\left(\overline{\mathcal{K}} \overline{\mathcal{J}}^{-1}\right)^{n-1} Q_{\tau}=\bar{C}_{-n}, \quad n=1,2, \ldots \tag{21}
\end{equation*}
$$

Case 1. $\bar{C}_{-n}=0, \quad n=1,2, \ldots$

- $n=1$

$$
\begin{equation*}
Q_{\tau}=\left(\frac{1}{4} \partial_{y}-Q \partial_{y}^{-1} Q\right)^{-1} 0=\sin \left(2 \partial_{y}^{-1} Q\right) \tag{22}
\end{equation*}
$$

$\diamond \quad$ The sine-Gordon equation: $\quad U_{y \tau}=\sin (2 U), \quad\left(U=\partial_{y}^{-1} Q\right)$
The corresponding Casimir functional

The correspondence between the mCH and mKdV hierarchies

REMARK on the negative flows of the mKdV hierarchy

$$
\begin{equation*}
\left(\overline{\mathcal{K}} \overline{\mathcal{J}}^{-1}\right)^{n} Q_{\tau}=0 \Longrightarrow\left(\frac{1}{4} \partial_{y}-Q \partial_{y}^{-1} Q\right)\left(\overline{\mathcal{K}} \overline{\mathcal{J}}^{-1}\right)^{n-1} Q_{\tau}=\bar{C}_{-n}, \quad n=1,2, \ldots \tag{21}
\end{equation*}
$$

Case 1. $\bar{C}_{-n}=0, \quad n=1,2, \ldots$

- $n=1$

$$
\begin{equation*}
Q_{\tau}=\left(\frac{1}{4} \partial_{y}-Q \partial_{y}^{-1} Q\right)^{-1} 0=\sin \left(2 \partial_{y}^{-1} Q\right) \tag{22}
\end{equation*}
$$

$\diamond \quad$ The sine-Gordon equation: $\quad U_{y \tau}=\sin (2 U), \quad\left(U=\partial_{y}^{-1} Q\right)$
\diamond The corresponding Casimir functional

$$
\begin{equation*}
\overline{\mathcal{H}}_{S}=-\frac{1}{2} \int \cos \left(2 \partial_{y}^{-1} Q\right) \mathrm{d} y, \quad \frac{\delta \overline{\mathcal{H}}_{S}}{\delta Q}=-\partial_{y}^{-1} \sin \left(2 \partial_{y}^{-1} Q\right) \tag{23}
\end{equation*}
$$

The correspondence between the mCH and mKdV hierarchies

REMARK for the negative flows of the mKdV hierarchy
Case 1. $\bar{C}_{-n}=0, \quad n=1,2, \ldots$

- $n \geq 1$

The correspondence between the mCH and mKdV hierarchies

REMARK for the negative flows of the mKdV hierarchy
Case 1. $\bar{C}_{-n}=0, \quad n=1,2, \ldots$

- $n \geq 1$

$$
\begin{equation*}
Q_{\tau}=\left(\overline{\mathcal{J}} \overline{\mathcal{K}}^{-1}\right)^{n-1} \sin \left(2 \partial_{y}^{-1} Q\right), \quad n=1,2, \ldots \tag{24}
\end{equation*}
$$

the positive flows in the potential mKdV hierarchy
the notential $\mathrm{mK} N \mathrm{~V}$ ectiation.

The correspondence between the mCH and mKdV hierarchies

REMARK for the negative flows of the mKdV hierarchy
Case 1. $\bar{C}_{-n}=0, \quad n=1,2, \ldots$

- $n \geq 1$

$$
\begin{equation*}
Q_{\tau}=\left(\overline{\mathcal{J}} \overline{\mathcal{K}}^{-1}\right)^{n-1} \sin \left(2 \partial_{y}^{-1} Q\right), \quad n=1,2, \ldots \tag{24}
\end{equation*}
$$

$$
\begin{aligned}
& \diamond \quad \widetilde{R}^{n-1} U_{\tau}=\sin (2 U), \quad\left(U=\partial_{y}^{-1} Q\right) \quad n=1,2, \ldots \\
& \diamond \quad \widetilde{R}=\frac{1}{4} \partial_{y}^{2}-U_{y}^{2}+U_{y} \partial_{y}^{-1} U_{y y}
\end{aligned}
$$

- - - the recursion operator of the sine-Gordon equation

the positive flows in the potential mKdV hierarchy - $n=2$, the potential $m K d V$ equation: $U_{\tau}+U_{y y y}+2 U_{V}^{3}=0$

The correspondence between the mCH and mKdV hierarchies

REMARK for the negative flows of the mKdV hierarchy
Case 1. $\bar{C}_{-n}=0, \quad n=1,2, \ldots$

- $n \geq 1$

$$
\begin{equation*}
Q_{\tau}=\left(\overline{\mathcal{J}} \overline{\mathcal{K}}^{-1}\right)^{n-1} \sin \left(2 \partial_{y}^{-1} Q\right), \quad n=1,2, \ldots \tag{24}
\end{equation*}
$$

$$
\begin{aligned}
& \diamond \quad \widetilde{R}^{n-1} U_{\tau}=\sin (2 U), \quad\left(U=\partial_{y}^{-1} Q\right) \quad n=1,2, \ldots \\
& \diamond \quad \widetilde{R}=\frac{1}{4} \partial_{y}^{2}-U_{y}^{2}+U_{y} \partial_{y}^{-1} U_{y y}
\end{aligned}
$$

- - - the recursion operator of the sine-Gordon equation

$$
\diamond \quad U_{\tau}+\widetilde{R}^{n-1}\left(4 U_{y}\right)=0, \quad \text { for } \quad n=1,2, \ldots
$$

- - - the positive flows in the potential mKdV hierarchy
- $n=2$, the potential $\mathbf{m K d V}$ equation: $U_{\tau}+U_{y y y}+2 U_{y}^{3}=0$

The correspondence between the mCH and mKdV hierarchies

REMARK for the negative flows of the mKdV hierarchy

Case 1. $\bar{C}_{-n}=0, \quad n=1,2, \ldots$

- $n \geq 1$

$$
\begin{equation*}
Q_{\tau}=\left(\overline{\mathcal{J}} \overline{\mathcal{K}}^{-1}\right)^{n-1} \sin \left(2 \partial_{y}^{-1} Q\right), \quad n=1,2, \ldots \tag{24}
\end{equation*}
$$

$$
\begin{aligned}
& \diamond \quad \widetilde{R}^{n-1} U_{\tau}=\sin (2 U), \quad\left(U=\partial_{y}^{-1} Q\right) \quad n=1,2, \ldots \\
& \diamond \quad \widetilde{R}=\frac{1}{4} \partial_{y}^{2}-U_{y}^{2}+U_{y} \partial_{y}^{-1} U_{y y}
\end{aligned}
$$

- - - the recursion operator of the sine-Gordon equation

$$
\diamond \quad U_{\tau}+\widetilde{R}^{n-1}\left(4 U_{y}\right)=0, \text { for } n=1,2, \ldots
$$

- - - the positive flows in the potential mKdV hierarchy
- $n=2$, the potential mKdV equation: $U_{\tau}+U_{y y y}+2 U_{y}^{3}=0$

Case 2. $\bar{C}_{-n} \neq 0, \quad n=1,2, \ldots$

$$
\begin{equation*}
\left(\frac{1}{4} \partial_{y}-Q \partial_{y}^{-1} Q\right)\left(\overline{\mathcal{K}}^{-1} \overline{\mathcal{T}}^{n-1} Q_{\tau}=\bar{C}_{-n}, \quad \bar{C}_{-n} \neq 0, \quad n=1,2, \ldots\right. \tag{25}
\end{equation*}
$$

The correspondence between the mCH and mKdV hierarchies

Theorem

Under the transformations

$$
\begin{equation*}
Q(\tau, y)=\frac{1}{2 m(t, x)}, \quad y=\int^{x} m(t, \xi) d \xi, \quad \tau=t \tag{26}
\end{equation*}
$$

for each $I \in \mathbb{Z}$, the $(m C H)_{I+1}$ equation is related to the ($\left.m K d V\right)_{-1}$ equation. More precisely, for each integer $n \geq 0$, (i). m solves the equation

$$
\begin{equation*}
m_{t}+\left(\mathcal{K J}^{-1}\right)^{n}\left(2 m_{x}\right)=0, \quad n=0,1, \ldots \tag{27}
\end{equation*}
$$

if and only if Q satisfies $Q_{\tau}=0$ for $n=0$ or

$$
\begin{equation*}
\left(\frac{1}{4} \partial_{y}-Q \partial_{y}^{-1} Q\right)\left(\overline{\mathcal{K}}^{-1}\right)^{n-1} Q_{\tau}=\bar{C}_{-n}, \quad \bar{C}_{-n}=1 /(-4)^{n}, \quad n=1,2, \ldots ; \tag{28}
\end{equation*}
$$

The correspondence between the mCH and mKdV hierarchies

Theorem

(Continued)
(ii). For $n \geq 1, m$ is a solution of the following rescaled version of (17),

$$
\begin{equation*}
m_{t}=K_{-n}=\frac{(-1)^{n+1}}{2^{2 n-1}}\left(\mathcal{J} \mathcal{K}^{-1}\right)^{n-1} \mathcal{J} \frac{1}{m^{2}}, \quad n=1,2, \ldots, \tag{29}
\end{equation*}
$$

if and only if Q satisfies the equation

$$
\begin{equation*}
Q_{\tau}+\left(\overline{\mathcal{K}} \overline{\mathcal{J}}^{-1}\right)^{n}\left(4 Q_{y}\right)=0, \quad n=0,1, \ldots \tag{30}
\end{equation*}
$$

In addition, for $n=0$, the corresponding equation $m_{t}=0$ is equivalent to $Q_{\tau}+4 Q_{y}=0$. (Kang, Liu, Olver, Qu, 2016)

- $(\mathrm{mCH})_{n},(\mathrm{mCH})_{-n},(\mathrm{mKdV})_{n},(\mathrm{mKdV})_{-n},---$ the n-th equation in the positive and negative directions of the mCH and mKdV hierarchies

The correspondence between the mCH and mKdV hierarchies

KET Issue for the proof of the theorem

- The relations between the respective recursion operators admitted by the two hierarchies

Lemma

Let \mathcal{K}, \mathcal{J} be the two compatible Hamiltonian operators (21) for the mCH equation (8), and $\overline{\mathcal{K}}, \overline{\mathcal{J}}$ the two of compatible Hamiltonian operators (23) for the $m K d V$ equation (10). Assume $m(t, x)$ and $Q(\tau, y)$ be related by the transformations (26).

THEN, for each integer $n \geq 0$, the following formulae hold:
(i). $\left(\mathcal{K J}^{-1}\right)^{n}\left(1-\partial_{x}^{2}\right)=\frac{1}{(-4)^{n}}\left(1+\frac{Q_{y}}{4 Q^{3}} \partial_{y}-\frac{1}{4 Q^{2}} \partial_{y}^{2}\right)\left(\overline{\mathcal{J}} \overline{\mathcal{K}}^{-1}\right)^{n}$;
(ii). $\partial_{x}\left(\mathcal{K}^{-1} \mathcal{J}\right)^{n} \partial_{x}^{-1}=(-4)^{n}\left(\overline{\mathcal{K}} \overline{\mathcal{J}}^{-1}\right)^{n}$;
(iii). $\quad\left(1-\partial_{x}^{2}\right)\left(\mathcal{K}^{-1} \mathcal{J}\right)^{n}=-(-4)^{n} \frac{1}{Q}\left(\frac{1}{4} \partial_{y}-Q \partial_{y}^{-1} Q\right)\left(\overline{\mathcal{K}} \overline{\mathcal{T}}^{-1}\right)^{n} \frac{1}{Q} \partial_{y}$.

- The reciprocal relation which adheres to the conservative structure of the mCH flows

The correspondence between the mCH and mKdV hierarchies

KET Issue for the proof of the theorem

- The relations between the respective recursion operators admitted by the two hierarchies

Lemma

Let \mathcal{K}, \mathcal{J} be the two compatible Hamiltonian operators (21) for the mCH equation (8), and $\overline{\mathcal{K}}, \overline{\mathcal{J}}$ the two of compatible Hamiltonian operators (23) for the $m K d V$ equation (10). Assume $m(t, x)$ and $Q(\tau, y)$ be related by the transformations (26).

THEN, for each integer $n \geq 0$, the following formulae hold:
(i). $\left(\mathcal{K J}^{-1}\right)^{n}\left(1-\partial_{x}^{2}\right)=\frac{1}{(-4)^{n}}\left(1+\frac{Q_{y}}{4 Q^{3}} \partial_{y}-\frac{1}{4 Q^{2}} \partial_{y}^{2}\right)\left(\overline{\mathcal{J}} \overline{\mathcal{K}}^{-1}\right)^{n}$;
(ii). $\partial_{x}\left(\mathcal{K}^{-1} \mathcal{J}\right)^{n} \partial_{x}^{-1}=(-4)^{n}\left(\overline{\mathcal{K}} \overline{\mathcal{J}}^{-1}\right)^{n}$;
(iii). $\quad\left(1-\partial_{x}^{2}\right)\left(\mathcal{K}^{-1} \mathcal{J}\right)^{n}=-(-4)^{n} \frac{1}{Q}\left(\frac{1}{4} \partial_{y}-Q \partial_{y}^{-1} Q\right)\left(\overline{\mathcal{K}} \overline{\mathcal{J}}^{-1}\right)^{n} \frac{1}{Q} \partial_{y}$.

- The reciprocal relation which adheres to the conservative structure of the mCH flows

The correspondence between the Hamiltonian conservation laws of the mCH and mKdV equations

An infinite hierarchy of Hamiltonian conservation laws of the bi-Hamiltonian system

The mCH equation

The correspondence between the Hamiltonian conservation laws of the mCH and mKdV equations

An infinite hierarchy of Hamiltonian conservation laws of the bi-Hamiltonian system

- The mCH equation

Liouville correspondences between the integrable systems a

The correspondence between the Hamiltonian conservation laws of the mCH and mKdV equations

An infinite hierarchy of Hamiltonian conservation laws of the bi-Hamiltonian system

- The mCH equation

$$
\begin{equation*}
\mathcal{K} \frac{\delta \mathcal{H}_{n-1}}{\delta m}=\mathcal{J} \frac{\delta \mathcal{H}_{n}}{\delta m}, \quad n \in \mathbb{Z} \tag{31}
\end{equation*}
$$

$$
\diamond \mathcal{K}=-\partial_{x} m \partial_{x}^{-1} m \partial_{x}, \quad \mathcal{J}=-\left(\partial_{x}-\partial_{x}^{3}\right)
$$

- The mKdV equation

$$
\begin{equation*}
\overline{\mathcal{K}} \frac{\delta \overline{\mathcal{H}}_{n-1}}{\delta Q}=\overline{\mathcal{J}} \frac{\delta \overline{\mathcal{H}}_{n}}{\delta Q}, \quad n \in \mathbb{Z} \tag{32}
\end{equation*}
$$

$\diamond \quad \overline{\mathcal{K}}=-\frac{1}{4} \partial_{y}^{3}+\partial_{y} Q \partial_{y}^{-1} Q \partial_{y}, \quad \overline{\mathcal{J}}=-\partial_{y}$

The correspondence between the Hamiltonian conservation laws of the mCH and mKdV equations

The relationship between the variational derivatives of $\delta \mathcal{H}_{n} / \delta m$ and $\delta \overline{\mathcal{H}}_{n} / \delta Q$

```
Lemma
Letint, and {\mp@subsup{\mathcal{H}}{n}{}} be the hierarchies of conserved functionals determined by the
recursive formulae (31) and (32), respectively. THEN their corresponding variational
derivatives satisfy the relation
```

The change of the variational derivative under the Liouville transformations

The correspondence between the Hamiltonian conservation laws of the mCH and mKdV equations

The relationship between the variational derivatives of $\delta \mathcal{H}_{n} / \delta m$ and $\delta \overline{\mathcal{H}}_{n} / \delta Q$

Lemma

Let $\left\{\mathcal{H}_{n}\right\}$ and $\left\{\overline{\mathcal{H}}_{n}\right\}$ be the hierarchies of conserved functionals determined by the recursive formulae (31) and (32), respectively. THEN their corresponding variational derivatives satisfy the relation

$$
\begin{equation*}
\frac{\delta \mathcal{H}_{-n}}{\delta m}=(-1)^{n-1} 2^{2 n-1} \overline{\mathcal{J}}^{-1} Q \overline{\mathcal{J}} \frac{\delta \overline{\mathcal{H}}_{n}}{\delta Q}, \quad 0 \neq n \in \mathbb{Z} \tag{33}
\end{equation*}
$$

The change of the variational derivative under the Liouville transformations
Lemma
Let $m(t, x)$ and $Q(\tau, y)$ be related by the transformations (26). If $\mathcal{H}(m)=\overline{\mathcal{H}}(Q)$, THEN

where $\overline{\mathcal{J}}$ and $\overline{\mathcal{K}}$ are the Hamiltonian operators admitted by the $m K d V$ equation.

The correspondence between the Hamiltonian conservation laws of the mCH and mKdV equations

The relationship between the variational derivatives of $\delta \mathcal{H}_{n} / \delta m$ and $\delta \overline{\mathcal{H}}_{n} / \delta Q$

Lemma

Let $\left\{\mathcal{H}_{n}\right\}$ and $\left\{\overline{\mathcal{H}}_{n}\right\}$ be the hierarchies of conserved functionals determined by the recursive formulae (31) and (32), respectively. THEN their corresponding variational derivatives satisfy the relation

$$
\begin{equation*}
\frac{\delta \mathcal{H}_{-n}}{\delta m}=(-1)^{n-1} 2^{2 n-1} \overline{\mathcal{J}}^{-1} Q \overline{\mathcal{J}} \frac{\delta \overline{\mathcal{H}}_{n}}{\delta Q}, \quad 0 \neq n \in \mathbb{Z} \tag{33}
\end{equation*}
$$

The change of the variational derivative under the Liouville transformations

Lemma

Let $m(t, x)$ and $Q(\tau, y)$ be related by the transformations (26). If $\mathcal{H}(m)=\overline{\mathcal{H}}(Q)$, THEN

$$
\frac{\delta \mathcal{H}}{\delta m}=-\frac{1}{Q}\left(\frac{1}{4} \overline{\mathcal{J}}^{2}-\overline{\mathcal{J}}^{-1} \overline{\mathcal{K}}\right) \frac{\delta \overline{\mathcal{H}}}{\delta Q},
$$

where $\overline{\mathcal{J}}$ and $\overline{\mathcal{K}}$ are the Hamiltonian operators admitted by the mKdV equation.

The correspondence between the Hamiltonian conservation laws of the mCH and mKdV equations

Theorem

For any non-zero integer n, each Hamiltonian conserved functional $\overline{\mathcal{H}}_{n}(Q)$ of the $m K d V$ equation in (32) yields the Hamiltonian conservation law $\mathcal{H}_{-n}(m)$ of the $m C H$ equation in (31), under the Liouville transformations (26), according to the following identity

$$
\begin{equation*}
\mathcal{H}_{-n}(m)=(-1)^{n} 2^{2 n-1} \overline{\mathcal{H}}_{n}(Q), \quad 0 \neq n \in \mathbb{Z} \tag{34}
\end{equation*}
$$

(Kang, Liu, Olver, Qu, 2016)

REMARK

- A direct application of relation (34) is to derive another Casimir functional, in addition to the Hamitonial functional \mathcal{H}_{S} of the sine-Gordon equation, for the Hamiltonian operator $\overline{\mathcal{K}}$.

The correspondence between the Hamiltonian conservation laws of the mCH and mKdV equations

Theorem

For any non-zero integer n, each Hamiltonian conserved functional $\overline{\mathcal{H}}_{n}(Q)$ of the $m K d V$ equation in (32) yields the Hamiltonian conservation law $\mathcal{H}_{-n}(m)$ of the $m C H$ equation in (31), under the Liouville transformations (26), according to the following identity

$$
\begin{equation*}
\mathcal{H}_{-n}(m)=(-1)^{n} 2^{2 n-1} \overline{\mathcal{H}}_{n}(Q), \quad 0 \neq n \in \mathbb{Z} \tag{34}
\end{equation*}
$$

(Kang, Liu, Olver, Qu, 2016)

REMARK

- A direct application of relation (34) is to derive another Casimir functional, in addition to the Hamitonial functional \mathcal{H}_{S} of the sine-Gordon equation, for the Hamiltonian operator $\overline{\mathcal{K}}$.

$\overline{\mathcal{H}}_{-1}(Q)=-8 \overline{\mathcal{H}}_{C}(Q)$,

The correspondence between the Hamiltonian conservation laws of the mCH and mKdV equations

Theorem

For any non-zero integer n, each Hamiltonian conserved functional $\overline{\mathcal{H}}_{n}(Q)$ of the $m K d V$ equation in (32) yields the Hamiltonian conservation law $\mathcal{H}_{-n}(m)$ of the $m C H$ equation in (31), under the Liouville transformations (26), according to the following identity

$$
\begin{equation*}
\mathcal{H}_{-n}(m)=(-1)^{n} 2^{2 n-1} \overline{\mathcal{H}}_{n}(Q), \quad 0 \neq n \in \mathbb{Z} \tag{34}
\end{equation*}
$$

(Kang, Liu, Olver, Qu, 2016)

REMARK

- A direct application of relation (34) is to derive another Casimir functional, in addition to the Hamitonial functional \mathcal{H}_{S} of the sine-Gordon equation, for the Hamiltonian operator $\overline{\mathcal{K}}$.

$$
\begin{aligned}
& \diamond \quad \mathcal{H}_{1}[m]=\int\left(u^{2}+u_{x}^{2}\right) \mathrm{d} x \quad \text { and } \\
& \Downarrow \\
& \overline{\mathcal{H}}_{-1}(Q)=-8 \overline{\mathcal{H}}_{C}(Q), \quad \text { where } \quad \overline{\mathcal{H}}_{C}(Q)=\int m\left(1-\partial_{x}^{2}\right)^{-1} m \mathrm{~d} x
\end{aligned}
$$

The transformation mapping the mCH equation into the CH equation

Motivation

Miura T

$\mathrm{KdV} \Leftarrow==============\Rightarrow \mathrm{mKdV}$

The transformation mapping the mCH equation into the CH equation

Motivation

> Miura T.
> $\mathrm{KdV} \Leftarrow================\mathbf{m K d V}$.

The transformation mapping the mCH equation into the CH equation

Motivation

$$
\begin{aligned}
& \text { Miura T. } \\
& \text { KdV } \Leftarrow=================\Rightarrow \mathbf{m K d V} \\
& \lfloor\text { dual }
\end{aligned}
$$

$$
\mathrm{CH} \Leftarrow===============\Rightarrow \mathrm{mCH}
$$

The transformation mapping the mCH equation into the CH equation

The mKdV hierarchy and the KdV hierarchy
$\begin{aligned} & \text { - } \mathrm{mKdV} \Leftarrow=================\Rightarrow \mathrm{KdV} \\ & \text { Miura } T .\end{aligned}$

- The KdV equation: $\quad P_{\tau}+P_{y y y}-6 P P_{y}=0$
- The mKdV equation: $\quad Q_{\tau}+Q_{y y y}-6 Q^{2} Q_{y}=0$
- The Miura transformation: $\mathcal{B}(P, Q) \equiv P-Q^{2}+Q_{y}=0$
- Fokas and Fuchssteiner (1981):

The transformation mapping the mCH equation into the CH equation

The mKdV hierarchy and the KdV hierarchy
$\begin{aligned} & \text { - } \mathrm{mKdV} \Leftarrow=================\Rightarrow \mathrm{KdV} \\ & \text { Miura } \mathrm{T} .\end{aligned}$

- The KdV equation: $\quad P_{\tau}+P_{y y y}-6 P P_{y}=0$
- The mKdV equation: $\quad Q_{\tau}+Q_{y y y}-6 Q^{2} Q_{y}=0$
- The Miura transformation: $\mathcal{B}(P, Q) \equiv P-Q^{2}+Q_{y}=0$
- Fokas and Fuchssteiner (1981):

$$
\begin{aligned}
(\mathrm{mKdV})_{n} \Leftarrow==== & ==============(\mathrm{KdV})_{n} \quad n \in \mathbb{Z}^{+} \\
& \text {Miura T. (31) }
\end{aligned}
$$

The transformation mapping the mCH equation into the CH equation

The mKdV hierarchy and the KdV hierarchy

- $\begin{aligned}(\mathrm{mKdV})_{-1}=== & ==============\Rightarrow(\mathrm{KdV})_{-1} \\ & \text { Miura T. (31) }\end{aligned}$

Proposition 3.1. Assume that Q satisfies the first negative flow of the mKdV hierarchy

$$
\left(\overline{\mathcal{K}} \overline{\mathcal{J}}^{-1}\right) Q_{\tau}=0 .
$$

THEN $P=Q^{2}-Q_{y}$ satisfies the first negative flow of the KdV hierarchy

$$
\left(\overline{\mathcal{L}} \overline{\mathcal{D}}^{-1}\right) P_{\tau}=0,
$$

where $\quad \overline{\mathcal{L}}=\frac{1}{4} \partial_{y}^{3}-\frac{1}{2}\left(P \partial_{y}+\partial_{y} P\right) \quad$ and $\quad \overline{\mathcal{D}}=\partial_{y} \quad$ are the compatible
bi-Hamiltonian operators admitted by the KdV hierarchy.

The transformation mapping the mCH equation into the CH equation

The map from the mCH equation to the CH equation

- The mCH equation: $\quad m_{t}+\left(\left(u^{2}-u_{x}^{2}\right) m\right)_{x}=0, \quad m=u-u_{x x}$
- The CH equation: $\rho_{t}+2 v_{x} \rho+v \rho_{x}=0, \quad \rho=v-v_{x x}$
- The Liouville transformation ($\mathbf{m C H} \leftrightarrow \mathbf{m K d V}$)
- The Liouville transformation ($\mathbf{C H} \leftrightarrow \mathbf{K d V}$)

$$
\begin{array}{cr}
(\mathrm{mKdV})_{-1}=====================\Rightarrow(\mathrm{KdV})_{-1} \\
\uparrow \text { Liouville T. } & \text { Liouville T. } \downarrow \\
\mathbf{~} \downarrow \mathrm{CH} & \mathbf{C H}
\end{array}
$$

The transformation mapping the mCH equation into the CH equation

The map from the mCH equation to the CH equation

- The mCH equation: $\quad m_{t}+\left(\left(u^{2}-u_{x}^{2}\right) m\right)_{x}=0, \quad m=u-u_{x x}$
- The CH equation: $\rho_{t}+2 v_{x} \rho+v \rho_{x}=0, \quad \rho=v-v_{x x}$
- The Liouville transformation ($\mathbf{m C H} \leftrightarrow \mathbf{m K d V}$)
- The Liouville transformation ($\mathbf{C H} \leftrightarrow \mathbf{K d V}$)

$$
\begin{aligned}
& \text { Miura T. } \\
& (\mathrm{mKdV})_{-1}==================\Rightarrow(\mathrm{KdV})_{-1} \\
& \uparrow \text { Liouville T. } \\
& \text { Liouville T. } \downarrow \\
& \mathrm{mCH} \\
& ========================\Rightarrow \\
& \text { L.T. }+ \text { M.T. }+ \text { L.T. }
\end{aligned}
$$

The transformation mapping the mCH equation into the CH equation

Theorem

Assume $m(t, x)$ is the solution of the $m C H$ equation (34). THEN, $\rho(t, x)$ satisfies the CH equation (35), where $\rho(t, x)$ is determined by the relation

$$
\begin{equation*}
P(\tau, y)=\frac{1}{\rho(t, x)}\left(\frac{1}{4}-\frac{\left(\rho(t, x)^{-1 / 4}\right)_{x x}}{\rho(t, x)^{-1 / 4}}\right), \quad y=\int^{x} \sqrt{\rho(t, \xi)} \mathrm{d} \xi, \quad \rho=v-v_{x x} \tag{36}
\end{equation*}
$$

with $P(\tau, y)=Q^{2}(\tau, y)-Q_{y}(\tau, y)$ and $Q(\tau, y)$ defined by

$$
\begin{equation*}
Q(\tau, y)=\frac{1}{2 m(t, x)}, \quad y=\int^{x} m(t, \xi) d \xi, \quad \tau=t \tag{37}
\end{equation*}
$$

(Kang, Liu, Olver, Qu, 2016)

The correspondence between the Novikov and SK hierarchies

A Liouville transformation between the isospectral problems of the Novikov and SK equations

- The Novikov equation
$m_{t}=u^{2} m_{x}+3 u u_{x} m, \quad m=u-u_{x x}$
- The isospectral problems (Novikov, 2009):

$$
\Psi_{x}=\left(\begin{array}{ccc}0 & \lambda m & 1 \\ 0 & 0 & \lambda m \\ 1 & 0 & 0\end{array}\right) \Psi, \quad \Psi=\left(\begin{array}{l}\psi_{1} \\ \psi_{2} \\ \psi_{3}\end{array}\right)
$$

Liouville correspondences between the integrable systems a

The correspondence between the Novikov and SK hierarchies

A Liouville transformation between the isospectral problems of the Novikov and SK equations

- The Novikov equation

$$
\begin{equation*}
m_{t}=u^{2} m_{x}+3 u u_{x} m, \quad m=u-u_{x x} \tag{38}
\end{equation*}
$$

- The isospectral problems (Novikov, 2009):

$$
\begin{gather*}
\Psi_{x}=\left(\begin{array}{ccc}
0 & \lambda m & 1 \\
0 & 0 & \lambda m \\
1 & 0 & 0
\end{array}\right) \Psi, \quad \Psi=\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3}
\end{array}\right) \tag{39}\\
\Psi_{t}=\left(\begin{array}{ccc}
\frac{1}{3 \lambda^{2}}-u u_{x} & \frac{u_{x}}{\lambda}-\lambda u^{2} m & u_{x}^{2} \\
\frac{u}{\lambda} & -\frac{2}{3 \lambda^{2}} & -\frac{u_{x}}{\lambda}-\lambda u^{2} m \\
-u^{2} & \frac{u}{\lambda} & \frac{1}{3 \lambda^{2}}+u u_{x}
\end{array}\right) \Psi
\end{gather*}
$$

- $\partial_{t}\left(\Psi_{x}\right)=\partial_{x}\left(\Psi_{t}\right) \quad \Rightarrow \quad$ Novikov equation (38)

Note that (38) is equivalent to the equation by setting $\Psi=\psi_{2}$

$$
\begin{equation*}
\Psi_{x x x}=2 m^{-1} m_{x} \Psi_{x x}+\left(m^{-1} m_{x x}-2 m^{-2} m_{x}^{2}+1\right) \Psi_{x}+\lambda^{2} m^{2} \Psi \tag{40}
\end{equation*}
$$

which can be converted into

$$
\begin{equation*}
\Phi_{y y y}+Q \Phi_{y}=\mu \Phi \tag{41}
\end{equation*}
$$

by the reciprocal transformation

$$
d y=m^{\frac{2}{3}} d x+m^{\frac{2}{3}} u^{2} d t, \quad d \tau=d t
$$

with

$$
\Phi=\Psi, \quad \mu=\lambda^{2}, \quad \text { and } \quad Q=-\frac{1}{3} m^{-\frac{7}{3}} m_{x x}+\frac{4}{9} m^{-\frac{10}{3}} m_{x}^{2}-m^{-\frac{4}{3}}
$$

The time part for the isospectral problem becomes

$$
\begin{equation*}
\Phi_{\tau}-\frac{1}{\mu}\left(V \Phi_{y y}-V_{y} \Phi_{y}\right)+\frac{2}{3 \mu} \Phi=0, \quad \text { with } \quad V=u m^{\frac{1}{3}} . \tag{42}
\end{equation*}
$$

It is easy to see (42) is equivalent to

$$
\begin{equation*}
\Phi_{\tau}+\frac{1}{3 \mu}\left(W \Phi_{y y}-W_{y} \Phi_{y}\right)=0 \tag{43}
\end{equation*}
$$

after gauging Φ by a factor, and setting $W=-3 V$. The compatibility condition $\Phi_{\text {yyyt }}=\Phi_{\text {tyyy }}$ gives the first equation in the negative SK heirarchy (Gordoa, Pickering, 2002)

$$
\begin{equation*}
Q_{\tau}=W_{y}, \quad W_{y y}+Q W=T, \quad T_{y}=0 . \tag{44}
\end{equation*}
$$

The correspondence between the Novikov and SK hierarchies

A Liouville transformation between the isospectral problems of the Novikov and SK equations

- The SK equation

The correspondence between the Novikov and SK hierarchies

A Liouville transformation between the isospectral problems of the Novikov and SK equations

- The SK equation

$$
\begin{equation*}
Q_{t}+Q_{y y y y}+5\left(Q Q_{y y}\right)_{y}+5 Q^{2} Q_{y}=0 \tag{45}
\end{equation*}
$$

- The isospectral problems (Kaup, 1980)

$$
\Phi_{y}=\left(\begin{array}{ccc}
0 & 1 & 0 \tag{46}\\
0 & 0 & 1 \\
\mu & -Q & 0
\end{array}\right) \Phi, \quad \Phi=\left(\begin{array}{l}
\Phi_{1} \\
\Phi_{2} \\
\Phi_{3}
\end{array}\right)
$$

$$
\Phi_{t}=\left(\begin{array}{ccc}
6 \mu Q & Q_{y y}-Q^{2} & 9 \mu-3 Q_{y} \\
3 \mu\left(Q_{y}+3 \mu\right) & Q_{y y y}+Q Q_{y}-3 \mu Q & -2 Q_{y y}-Q^{2} \\
\mu\left(Q_{y y}-Q^{2}\right) & Q_{y y y y}+3 Q Q_{y y}+Q_{y}^{2}+Q^{3}+9 \mu^{2} & -Q_{y y y}-Q Q_{y}-3 \mu Q
\end{array}\right) \Phi
$$

- $\partial_{t}\left(\Phi_{y}\right)=\partial_{y}\left(\Phi_{t}\right) \quad \Rightarrow \quad$ SK equation (45)

The correspondence between Novikov and SK hierarchies

A Liouville transformation between the isospectral problems of the Novikov and SK equations

- The coordinate transformation

$$
\begin{equation*}
\Phi=\Psi, \quad y=\int^{x} m^{\frac{2}{3}}(t, \xi) \mathrm{d} \xi \tag{47}
\end{equation*}
$$

will convert the isospectral problem (39) into the isospectral problem (46), with

$$
Q=-\frac{1}{3} m^{-\frac{7}{3}} m_{x x}+\frac{4}{9} m^{-\frac{10}{3}} m_{x}^{2}-m^{-\frac{4}{3}} \quad \text { and } \quad \lambda=-2 \mu
$$

- The Liouville transformation

The correspondence between Novikov and SK hierarchies

A Liouville transformation between the isospectral problems of the Novikov and SK equations

- The coordinate transformation

$$
\begin{equation*}
\Phi=\psi, \quad y=\int^{x} m^{\frac{2}{3}}(t, \xi) \mathrm{d} \xi \tag{47}
\end{equation*}
$$

will convert the isospectral problem (39) into the isospectral problem (46), with

$$
Q=-\frac{1}{3} m^{-\frac{7}{3}} m_{x x}+\frac{4}{9} m^{-\frac{10}{3}} m_{x}^{2}-m^{-\frac{4}{3}} \quad \text { and } \quad \lambda=-2 \mu
$$

- The Liouville transformation

$$
\begin{align*}
& y=\int^{x} m^{\frac{2}{3}}(t, \xi) \mathrm{d} \xi, \quad \tau=t \tag{48}\\
& Q(\tau, y)=-\frac{1}{3} m^{-\frac{7}{3}} m_{x x}+\frac{4}{9} m^{-\frac{10}{3}} m_{x}^{2}-m^{-\frac{4}{3}}=-m^{-1}\left(1-\partial_{x}^{2}\right) m^{-\frac{1}{3}}
\end{align*}
$$

The correspondence between the Novikov and SK hierarchies

The Novikov hierarchy

- The Novikov equation written in the bi-Hamiltonian form (Hone, Wang, 2008)

$$
\begin{equation*}
m_{t}=K_{1}=\mathcal{K} \frac{\delta \mathcal{H}_{0}}{\delta m}=\mathcal{J} \frac{\delta \mathcal{H}_{1}}{\delta m}, \quad m=u-u_{x x} \tag{49}
\end{equation*}
$$

$\diamond \quad$ A pair of compatible Hamiltonian operators

$$
\begin{equation*}
\mathcal{K}=\frac{1}{2} m^{\frac{1}{3}} \partial_{x} m^{\frac{2}{3}}\left(4 \partial_{x}-\partial_{x}^{3}\right)^{-1} m^{\frac{2}{3}} \partial_{x} m^{\frac{1}{3}} \text { and } \mathcal{J}=\left(1-\partial_{x}^{2}\right) \frac{1}{m} \partial_{x} \frac{1}{m}\left(1-\partial_{x}^{2}\right) \tag{50}
\end{equation*}
$$

$\diamond \quad$ The corresponding Hamiltonian functionals

$$
\begin{align*}
& \mathcal{H}_{0}[m]=9 \int m u \mathrm{~d} x=9 \int\left(u^{2}+u_{x}^{2}\right) \mathrm{d} x \tag{51}\\
& \mathcal{H}_{1}[m]=\frac{1}{6} \int\left(u m \partial_{x}^{-1} m\left(1-\partial_{x}^{2}\right)^{-1}\left(u^{2} m_{x}+3 u u_{x} m\right)\right) \mathrm{d} x
\end{align*}
$$

- Recursion operator: $\mathcal{R}=\mathcal{K} \mathcal{J}^{-1}$

The correspondence between the Novikov and SK hierarchies

The Novikov hierarchy

- The positive flows of the Novikov hierarchy

$$
m_{t}=K_{n}=\left(\mathcal{K} \mathcal{J}^{-1}\right)^{n-1} K_{1}, \quad n=1,2, \ldots
$$

- The negative flows of the Novikov hierarchy
$\diamond \quad$ The Hamiltonian operator \mathcal{K} admits the Casimir functional

$$
\begin{equation*}
\mathcal{H}_{C}=\frac{9}{2} \int m^{\frac{2}{3}} \mathrm{~d} x \quad \text { with } \quad \frac{\delta \mathcal{H}_{C}}{\delta m}=3 m^{-\frac{1}{3}} . \tag{52}
\end{equation*}
$$

$\diamond \quad$ The Casimir equation

$$
m_{t}=K_{-1}=\mathcal{J} \frac{\delta \mathcal{H}_{-1}}{\delta m}=3 \mathcal{J} m^{-\frac{1}{3}}
$$

$\diamond \quad$ The n-th negative flow of the Novikov hierarchy

$$
m_{t}=K_{-n}=\left(\mathcal{J ~ K}^{-1}\right)^{n-1} K_{-1}, \quad n=1,2, \ldots
$$

The correspondence between the Novikov and SK hierarchies

Hamiltonian functional \mathcal{H}_{1}

Note that the conserved Hamiltonian functional \mathcal{H}_{1} is nonlocal, indeed, one can show that it is equivalent to

$$
\begin{equation*}
\mathcal{H}_{1}[m]=\frac{1}{6} \int\left(u^{4} m^{2}-u_{t} m_{t}\right) \mathrm{d} x \tag{53}
\end{equation*}
$$

Proof.

In fact, using Novikov equation, we can denote $\mathcal{H}_{1}[m]$ in (51) as

$$
\begin{equation*}
\mathcal{H}_{1}[m]=\frac{1}{6} \int u m \partial_{x}^{-1}\left(m u_{t}\right) \mathrm{d} x . \tag{54}
\end{equation*}
$$

Since

$$
\begin{aligned}
\partial_{x}^{-1}\left(m u_{t}\right) & =\int_{-\infty}^{x}\left(u-u_{x x}\right) u_{t} d x=-\left(u_{x} u_{t}-u u_{x t}\right)(t, x)+\int_{-\infty}^{x} u\left(u_{t}-u_{x x t}\right) \mathrm{d} x \\
& =-\left(u_{x} u_{t}-u u_{x t}\right)(t, x)+\int_{-\infty}^{x} u\left(u^{2} m_{x}+3 u u_{x} m\right) d x \\
& =\left(u u_{x t}-u_{x} u_{t}+u^{3} m\right)(t, x) .
\end{aligned}
$$

The correspondence between Novikov and SK hierarchies

The Sawada-Kotera hierarchy

- The SK equation- the generalized bi-Hamiltonian system (Fuchssteiner, Oevel, 1982)

$$
Q_{\tau}=\bar{K}_{1}=\overline{\mathcal{K}} \frac{\delta \overline{\mathcal{H}}_{0}}{\delta Q} \quad \text { and } \quad \overline{\mathcal{J}} \bar{K}_{1}=\frac{\delta \overline{\mathcal{H}}_{1}}{\delta Q}
$$

\diamond

$$
\begin{align*}
\overline{\mathcal{K}} & =-\left(\partial_{y}^{3}+2\left(Q \partial_{y}+\partial_{y} Q\right)\right) \tag{55}\\
\overline{\mathcal{J}} & =2 \partial_{y}^{3}+2\left(\partial_{y}^{2} Q \partial_{y}^{-1}+\partial_{y}^{-1} Q \partial_{y}^{2}\right)+Q^{2} \partial_{y}^{-1}+\partial_{y}^{-1} Q^{2}
\end{align*}
$$

$\diamond \quad$ The Hamiltonian functionals

$$
\overline{\mathcal{H}}_{0}[Q]=\frac{1}{6} \int\left(Q^{3}-3 Q_{y}^{2}\right) d y
$$

- Recursion operator: $\quad \overline{\mathcal{R}}=\overline{\mathcal{K}} \overline{\mathcal{J}}$

The correspondence between Novikov and SK hierarchies

The SK hierarchy

$$
\begin{equation*}
Q_{\tau}=\bar{K}_{n}=\overline{\mathcal{K}} \frac{\delta \overline{\mathcal{H}}_{n-1}}{\delta Q} \quad \text { and } \quad \overline{\mathcal{J}} \bar{K}_{n}=\frac{\delta \overline{\mathcal{H}}_{n}}{\delta Q}, \quad n \in \mathbb{Z} \tag{56}
\end{equation*}
$$

- The positive flows of the SK hierarchy

$$
Q_{\tau}=\bar{K}_{n}=(\overline{\mathcal{K}} \overline{\mathcal{J}})^{n-1} \bar{K}_{1}, \quad n=1,2, \ldots
$$

- The negative flows of the SK hierarchy
$\diamond \quad \overline{\mathcal{J}} \cdot 0=\frac{\delta \overline{\mathcal{H}}_{0}}{\delta Q}=\frac{1}{2} Q^{2}+Q_{y y}$
$\diamond \quad$ The n-th negative flow

$$
\begin{equation*}
\overline{\mathcal{R}}^{n} Q_{\tau}=(\overline{\mathcal{K}} \overline{\mathcal{J}})^{n} Q_{\tau}=0, \quad n=1,2, \ldots \tag{57}
\end{equation*}
$$

The correspondence between Novikov and SK hierarchies

REMARK

Lemma

There holds (Chou, Qu, 2004, Physica D)

$$
\begin{equation*}
\overline{\mathcal{R}}=\overline{\mathcal{K}} \overline{\mathcal{T}}=-2\left(\partial_{y}^{4}+5 Q \partial_{y}^{2}+4 Q_{y} \partial_{y}+Q_{y y}+4 Q^{2}+2 Q_{y} \partial_{y}^{-1} Q\right)\left(\partial_{y}^{2}+Q+Q_{y} \partial_{y}^{-1}\right) . \tag{58}
\end{equation*}
$$

It implies that the equation

$$
\begin{equation*}
\left(\partial_{y}^{2}+Q+Q_{y} \partial_{y}^{-1}\right) Q_{\tau}=0 \tag{59}
\end{equation*}
$$

can be regarded as a reduction of the more general first negative flow $\mathcal{R} Q_{\tau}=0$. One can verify that equation (59) is equivalent to

$$
\begin{equation*}
\left(Q+\partial_{y}^{2}\right) \partial_{y}^{-1} Q_{\tau}=C \tag{60}
\end{equation*}
$$

with C being the integration constant. Obviously, if we set $T=C$ in (44), the corresponding equation is exactly the reduced first negative flow (60).

The correspondence between the Novikov and SK hierarchies

Theorem

Under the transformations (48), for each $n \in \mathbb{Z}$, the (Novikov) ${ }_{n}$ equation is mapped into the equation (SK) $-n$ equation, and conversely.

The proof of this theorem relies on the following two Lemmas.

Lemma

Let $m(t, x)$ and $Q(\tau, y)$ be related by the transformations (48), then the following operator identities hold:

$$
\begin{aligned}
& m^{-1}\left(1-\partial_{x}^{2}\right) m^{-\frac{1}{3}}=-\left(Q+\partial_{y}^{2}\right) \\
& m^{-1} \mathcal{J} m^{-\frac{1}{3}}=\frac{1}{2} \partial_{y} \overline{\mathcal{J}} \partial_{y} \\
& m^{-\frac{4}{3}}\left(4 \partial_{x}-\partial_{x}^{3}\right) m^{-\frac{2}{3}}=\overline{\mathcal{K}} .
\end{aligned}
$$

The correspondence between Novikov and SK hierarchies

KET Issue for the proof of the theorem

- The relations between the respective recursion operators admitted by the two hierarchies

Lemma

Let \mathcal{K}, \mathcal{J} be the two compatible Hamiltonian operators (50) for Novikov equation (38), $\overline{\mathcal{K}}$ and $\overline{\mathcal{J}}$ be the Hamiltonian operator and symplectic operator (55) of SK equation (45), respectively. Assume $m(t, x)$ and $Q(\tau, y)$ be related by the transformations (48).

THEN, the relation

$$
\begin{equation*}
m^{-1}\left(\mathcal{J} \mathcal{K}^{-1}\right)^{n} m=\partial_{y}(\overline{\mathcal{J}} \overline{\mathcal{K}})^{n} \partial_{y}^{-1} \tag{61}
\end{equation*}
$$

holds for each integer $n \geq 1$.

The correspondence between the Hamiltonian conservation laws of Novikov and SK equations

An infinite hierarchy of Hamiltonian conservation laws of the bi-Hamiltonian system

The Novikov hierarchy:

The SK hierarchy:

The correspondence between the Hamiltonian conservation laws of Novikov and SK equations

An infinite hierarchy of Hamiltonian conservation laws of the bi-Hamiltonian system

- The Novikov hierarchy:

$$
\mathcal{K} \frac{\delta \mathcal{H}_{n-1}}{\delta m}=\mathcal{J} \frac{\delta \mathcal{H}_{n}}{\delta m}
$$

- The SK hierarchy:

The correspondence between the Hamiltonian conservation laws of Novikov and SK equations

An infinite hierarchy of Hamiltonian conservation laws of the bi-Hamiltonian system

- The Novikov hierarchy:

$$
\begin{equation*}
\mathcal{K} \frac{\delta \mathcal{H}_{n-1}}{\delta m}=\mathcal{J} \frac{\delta \mathcal{H}_{n}}{\delta m}, \quad n \in \mathbb{Z} \tag{62}
\end{equation*}
$$

- The SK hierarchy:

$$
\begin{equation*}
\overline{\mathcal{J}} \overline{\mathcal{K}} \frac{\delta \overline{\mathcal{H}}_{n-1}}{\delta Q}=\frac{\delta \overline{\mathcal{H}}_{n}}{\delta Q}, \quad n \in \mathbb{Z} \tag{63}
\end{equation*}
$$

The correspondence between the Hamiltonian conservation laws of the Novikov and SK equations

The relationship between the variational derivatives of $\delta \mathcal{H}_{n} / \delta m$ and $\delta \overline{\mathcal{H}}_{n} / \delta Q$

```
Lemma
Let{nt'{ and {\mathcal{H}} be the hierarchies of Hamiltonian conserved functionals of the
Novikov equation and SK equation, respectively. THEN, for each }n\in\mathbb{Z}\mathrm{ , their
corresponding variational derivatives satisfy the relation
```

The change of the variational derivative under the Liouville transformations

The correspondence between the Hamiltonian conservation laws of the Novikov and SK equations

The relationship between the variational derivatives of $\delta \mathcal{H}_{n} / \delta m$ and $\delta \overline{\mathcal{H}}_{n} / \delta Q$

Lemma

Let $\left\{\mathcal{H}_{n}\right\}$ and $\left\{\overline{\mathcal{H}}_{n}\right\}$ be the hierarchies of Hamiltonian conserved functionals of the Novikov equation and SK equation, respectively. THEN, for each $n \in \mathbb{Z}$, their corresponding variational derivatives satisfy the relation

$$
\begin{equation*}
\frac{\delta \overline{\mathcal{H}}_{n}}{\delta Q}=\frac{1}{3} \partial_{x}^{-1} m^{-\frac{1}{3}} \mathcal{K} \frac{\delta \mathcal{H}_{-(n+2)}}{\delta m} \tag{64}
\end{equation*}
$$

The change of the variational derivative under the Liouville transformations
Lemma
Let $m(t, x)$ and $Q(\tau, y)$ be related by the transformations (48). If $\mathcal{H}(m)=\overline{\mathcal{H}}(Q)$, THEN

where $\overline{\mathcal{K}}$ is the Hamiltonian operator (55) of the SK equation.

The correspondence between the Hamiltonian conservation laws of the Novikov and SK equations

The relationship between the variational derivatives of $\delta \mathcal{H}_{n} / \delta m$ and $\delta \overline{\mathcal{H}}_{n} / \delta Q$

Lemma

Let $\left\{\mathcal{H}_{n}\right\}$ and $\left\{\overline{\mathcal{H}}_{n}\right\}$ be the hierarchies of Hamiltonian conserved functionals of the Novikov equation and SK equation, respectively. THEN, for each $n \in \mathbb{Z}$, their corresponding variational derivatives satisfy the relation

$$
\begin{equation*}
\frac{\delta \overline{\mathcal{H}}_{n}}{\delta Q}=\frac{1}{3} \partial_{x}^{-1} m^{-\frac{1}{3}} \mathcal{K} \frac{\delta \mathcal{H}_{-(n+2)}}{\delta m} \tag{64}
\end{equation*}
$$

The change of the variational derivative under the Liouville transformations

Lemma

Let $m(t, x)$ and $Q(\tau, y)$ be related by the transformations (48). If $\mathcal{H}(m)=\overline{\mathcal{H}}(Q)$, THEN

$$
\frac{\delta \mathcal{H}}{\delta m}=\frac{1}{3} m^{-\frac{1}{3}} \partial_{y}^{-1} \overline{\mathcal{K}} \frac{\delta \overline{\mathcal{H}}}{\delta Q},
$$

where $\overline{\mathcal{K}}$ is the Hamiltonian operator (55) of the SK equation.

The correspondence between the Hamiltonian conserved functionals of the Novikov and SK equations

Theorem

For any $n \in \mathbb{Z}$, each Hamiltonian conserved functional $\mathcal{H}_{n}(m)$ of Novikov equation in (62) is related to the Hamiltonian conservation law $\overline{\mathcal{H}}_{-n}(Q)$ of the SK equation in (63), under the Liouville transformations (48), according to the following identity

$$
\begin{equation*}
\mathcal{H}_{n}(m)=18 \overline{\mathcal{H}}_{-(n+2)}(Q), \quad n \in \mathbb{Z} \tag{65}
\end{equation*}
$$

(Kang, Liu, Olver, Qu, 2017)

The correspondence between the DP and KK hierarchies

A Liouville transformation between the isospectral problems of the DP and KK equations
 The DP equation

$$
n_{t}=v n_{x}+3 v_{x} n, \quad n=v-v_{x x}
$$

```
The Lax pair (Degasperis, Procesi, 1996)
```


$\Psi_{t}+\lambda^{-1} \Psi_{x x}+v \Psi_{x}-v_{x} \Psi=0$

The correspondence between the DP and KK hierarchies

A Liouville transformation between the isospectral problems of the DP and KK equations
The DP equation

$$
\begin{equation*}
n_{t}=v n_{x}+3 v_{x} n, \quad n=v-v_{x x} \tag{66}
\end{equation*}
$$

- The Lax pair (Degasperis, Procesi, 1996):

$$
\begin{gather*}
\Psi_{x}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-\lambda n & 1 & 0
\end{array}\right) \Psi, \quad \Psi=\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3}
\end{array}\right) \tag{67}\\
\Psi_{t}=\left(\begin{array}{ccc}
v_{x} & -v & -\lambda^{-1} \\
v & -\lambda^{-1} & -v \\
\lambda v n+v_{x} & 0 & -\lambda^{-1}-v_{x}
\end{array}\right) \Psi,
\end{gather*}
$$

- (67) is equivalent to

$$
\begin{gather*}
\Psi_{x x x}-\Psi_{x}+\lambda n \Psi=0 \tag{68}\\
\Psi_{t}+\lambda^{-1} \Psi_{x x}+v \Psi_{x}-v_{x} \Psi=0 .
\end{gather*}
$$

The correspondence between the DP and KK hierarchies

A Liouville transformation between the isospectral problems of the DP and KK equations

The KK equation

$$
\begin{equation*}
P_{\tau}+P_{y y y y y}+20 P P_{y y y}+50 P_{y} P_{y y}+80 P^{2} P_{y}=0 \tag{69}
\end{equation*}
$$

- The Lax pair for the first negative flow

$$
\Phi_{y y y}+4 P \Phi_{y}+2 P_{y} \Phi=\mu \Phi
$$

and

- The compatibility condition for (70) and (71), $\Phi_{y y y \tau}=\Phi_{\tau y y y}$

The correspondence between the DP and KK hierarchies

A Liouville transformation between the isospectral problems of the DP and KK equations

The KK equation

$$
\begin{equation*}
P_{\tau}+P_{y y y y y}+20 P P_{y y y}+50 P_{y} P_{y y}+80 P^{2} P_{y}=0 \tag{69}
\end{equation*}
$$

- The Lax pair for the first negative flow

$$
\begin{equation*}
\Phi_{y y y}+4 P \Phi_{y}+2 P_{y} \Phi=\mu \Phi \tag{70}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi_{\tau}+\mu^{-1}\left(U \Phi_{y y}-\frac{1}{2} U_{y} \Phi_{y}+\frac{1}{6}\left(U_{y y}+16 P U\right) \Phi\right)=0 . \tag{71}
\end{equation*}
$$

- The compatibility condition for (70) and (71), $\Phi_{y y y \tau}=\Phi_{\tau y y y}$

$$
\begin{gather*}
\Downarrow \\
P_{\tau}=\frac{3}{4} U_{y}, \quad \mathcal{A} U=0 \tag{72}\\
\text { where } \mathcal{A}=\partial_{y}^{5}+6\left(\partial_{y} P \partial_{y}^{2}+\partial_{y}^{2} P \partial_{y}\right)+4\left(\partial_{y}^{3} P+P \partial_{y}^{3}\right)+32\left(\partial_{y} P^{2}+P^{2} \partial_{y}\right)
\end{gather*}
$$

The correspondence between the DP and KK hierarchies

A Liouville transformation between the isospectral problems of the DP and KK equations

- The coordinate transformation

$$
\begin{equation*}
\mathrm{d} y=n^{\frac{1}{3}} \mathrm{~d} x+n^{\frac{1}{3}} v^{2} \mathrm{~d} t, \quad \mathrm{~d} \tau=\mathrm{d} t \tag{73}
\end{equation*}
$$

together with $\psi=n^{-\frac{1}{3}} \Phi, \lambda=-\mu$ and

$$
\begin{equation*}
P=\frac{1}{4}\left(\frac{7}{9} n^{-\frac{8}{3}} n_{x}^{2}-\frac{2}{3} n^{-\frac{5}{3}} n_{x x}-n^{-\frac{2}{3}}\right) \tag{74}
\end{equation*}
$$

convert the isospectral problem (68) into (70).

- The Liouville transformation between DP and KK hierarchy

The correspondence between the DP and KK hierarchies

A Liouville transformation between the isospectral problems of the DP and KK equations

- The coordinate transformation

$$
\begin{equation*}
\mathrm{d} y=n^{\frac{1}{3}} \mathrm{~d} x+n^{\frac{1}{3}} v^{2} \mathrm{~d} t, \quad \mathrm{~d} \tau=\mathrm{d} t \tag{73}
\end{equation*}
$$

together with $\psi=n^{-\frac{1}{3}} \Phi, \lambda=-\mu$ and

$$
\begin{equation*}
P=\frac{1}{4}\left(\frac{7}{9} n^{-\frac{8}{3}} n_{x}^{2}-\frac{2}{3} n^{-\frac{5}{3}} n_{x x}-n^{-\frac{2}{3}}\right) \tag{74}
\end{equation*}
$$

convert the isospectral problem (68) into (70).

- The Liouville transformation between DP and KK hierarchy

$$
\begin{align*}
y & =\int^{x} n^{\frac{1}{3}}(t, \xi) \mathrm{d} \xi, \quad \tau=t \tag{75}\\
P & =\frac{1}{4}\left(\frac{7}{9} n^{-\frac{8}{3}} n_{x}^{2}-\frac{2}{3} n^{-\frac{5}{3}} n_{x x}-n^{-\frac{2}{3}}\right)=\frac{1}{4} n^{-\frac{1}{2}}\left(4 \partial_{x}^{2}-1\right) n^{-\frac{1}{6}}
\end{align*}
$$

The correspondence between the DP and KK hierarchies

The DP hierarchy

- The DP equation (66) written in bi-Hamiltonian form (Degasperis, Procesi, 1996)

$$
\begin{equation*}
n_{t}=G_{1}=\mathcal{L} \frac{\delta \mathcal{E}_{0}}{\delta n}=\mathcal{D} \frac{\delta \mathcal{E}_{1}}{\delta n}, \quad n=v-v_{x x} \tag{76}
\end{equation*}
$$

$\diamond \quad$ A pair of compatible Hamiltonian operators

$$
\begin{equation*}
\mathcal{L}=n^{\frac{2}{3}} \partial_{x} n^{\frac{1}{3}}\left(\partial_{x}-\partial_{x}^{3}\right)^{-1} n^{\frac{1}{3}} \partial_{x} n^{\frac{2}{3}} \text { and } \mathcal{D}=\partial_{x}\left(1-\partial_{x}^{2}\right)\left(4-\partial_{x}^{2}\right) \tag{77}
\end{equation*}
$$

(KAM for DP equation, R. Feola, F. Giuliani, M. Procesi, 2019, 2020)
$\diamond \quad$ The corresponding Hamiltonian functionals

$$
\mathcal{E}_{0}=\frac{9}{2} \int n \mathrm{~d} x \quad \text { and } \quad \mathcal{E}_{1}=\frac{1}{6} \int u^{3} \mathrm{~d} x
$$

- The recursion operator $\tilde{\mathcal{R}}=\mathcal{L D} \mathcal{D}^{-1}$

The correspondence between the DP and KK hierarchies

The DP hierarchy

- The positive flows of the DP hierarchy

$$
n_{t}=G_{l}=\left(\mathcal{L} \mathcal{D}^{-1}\right)^{l-1} G_{1}, \quad I=1,2, \ldots
$$

- The negative flows of the DP hierarchy
$\diamond \quad$ The Hamiltonian operator \mathcal{L} admits the Casimir functional

$$
\begin{equation*}
\mathcal{E}_{C}=18 \int n^{\frac{1}{3}} \mathrm{~d} x \quad \text { with variational derivative } \quad \frac{\delta \mathcal{E}_{C}}{\delta n}=6 n^{-\frac{2}{3}} \tag{78}
\end{equation*}
$$

$\diamond \quad$ The Casimir equation

$$
\begin{equation*}
n_{t}=G_{-1}=\mathcal{D} \frac{\delta \mathcal{E}_{C}}{\delta n}=6 \mathcal{D} n^{-\frac{2}{3}} \tag{79}
\end{equation*}
$$

$\diamond \quad$ The l-th negative flow of the DP hierarchy

$$
\begin{equation*}
n_{t}=G_{-I}=6\left(\mathcal{D} \mathcal{L}^{-1}\right)^{l-1} \mathcal{D} n^{-\frac{2}{3}}, \quad I=1,2, \ldots \tag{80}
\end{equation*}
$$

The correspondence between DP and KK hierarchies

The KK hierarchy

- The KK equation - the generalized bi-Hamiltonian system (Fuchssteiner, Oevel, 1982)

$$
\begin{align*}
& \qquad P_{\tau}=\bar{G}_{1}=\overline{\mathcal{L}} \frac{\delta \overline{\mathcal{E}}_{0}}{\delta P} \text { and } \overline{\mathcal{D}} \bar{G}_{1}=\frac{\delta \overline{\mathcal{E}}_{1}}{\delta P}, \\
& \overline{\mathcal{L}}=-\left(\partial_{y}^{3}+2\left(P \partial_{y}+\partial_{y} P\right)\right), \tag{81}\\
& \overline{\mathcal{D}}=\partial_{y}^{3}+6\left(P \partial_{y}+\partial_{y} P\right)+4\left(\partial_{y}^{2} P \partial_{y}^{-1}+\partial_{y}^{-1} P \partial_{y}^{2}\right)+32\left(P^{2} \partial_{y}^{-1}+\partial_{y}^{-1} P^{2}\right)
\end{align*}
$$

- Recursion operators: $\hat{\mathcal{R}}=\overline{\mathcal{L}} \overline{\mathcal{D}}$
- The positive flows

$$
\begin{equation*}
P_{\tau}=\bar{G}_{n}=(\overline{\mathcal{L}} \overline{\mathcal{D}})^{l-1} \bar{G}_{1}, \quad I=1,2, \ldots \tag{82}
\end{equation*}
$$

- The negative flows

$$
\begin{equation*}
(\overline{\mathcal{L}} \overline{\mathcal{D}})^{\prime} Q_{\tau}=0, \quad I=1,2, \ldots \tag{83}
\end{equation*}
$$

The correspondence between the Novikov and SK hierarchies

Theorem

Under the transformations (75), for each $I \in \mathbb{Z}$, the (DP), equation is mapped into the equation (KK)_ı equation, and conversely.

The proof of this theorem relies on the following two Lemmas.

Lemma

Let $n(t, x)$ and $P(\tau, y)$ be related by the transformations (75), then the following identities hold:

$$
\begin{aligned}
& n^{-\frac{1}{2}}\left(\frac{1}{4}-\partial_{x}^{2}\right) n^{-\frac{1}{6}}=-\left(P+\partial_{y}^{2}\right) \\
& n^{-\frac{2}{3}}\left(\partial_{x}-\partial_{x}^{3}\right) n^{-\frac{1}{3}}=\overline{\mathcal{L}} \\
& n^{-1} \mathcal{D} n^{-\frac{2}{3}}=\partial_{y} \overline{\mathcal{D}} \partial_{y}
\end{aligned}
$$

The correspondence between DP and KK hierarchies

KET Issue for the proof of the theorem

- The relations between the respective recursion operators admitted by the two hierarchies

Lemma

Let \mathcal{L}, \mathcal{D} be the two compatible Hamiltonian operators (77) for DP equation (66), and $\overline{\mathcal{L}}, \overline{\mathcal{D}}$ the two of compatible Hamiltonian operators (81) for KK equation (69). Assume $n(t, x)$ and $P(\tau, y)$ be related by the transformations (75).

THEN, under the transformations (75), the relation

$$
\begin{equation*}
n^{-1}\left(\mathcal{D} \mathcal{L}^{-1}\right)^{\prime} n=\partial_{y}(\overline{\mathcal{D}} \overline{\mathcal{L}})^{\prime} \partial_{y}^{-1} \tag{84}
\end{equation*}
$$

holds for each integer $I \geq 1$.

The correspondence between the Hamiltonian conservation laws of DP and KK equations

An infinite hierarchy of Hamiltonian conservation laws of the bi-Hamiltonian system

The DP hierarchy:

The KK hierarchy:

The correspondence between the Hamiltonian conservation laws of DP and KK equations

An infinite hierarchy of Hamiltonian conservation laws of the bi-Hamiltonian system

- The DP hierarchy:

$$
\overline{\mathcal{D}} \overline{\mathcal{L}} \frac{\delta \overline{\mathcal{E}}_{l-1}}{\delta P}=\frac{\delta \overline{\mathcal{E}}_{l}}{\delta P}, \quad l \in \mathbb{Z}
$$

- The KK hierarchy:

The correspondence between the Hamiltonian conservation laws of DP and KK equations

An infinite hierarchy of Hamiltonian conservation laws of the bi-Hamiltonian system

- The DP hierarchy:

$$
\begin{equation*}
\mathcal{L} \frac{\delta \mathcal{E}_{l-1}}{\delta n}=\mathcal{D} \frac{\delta \mathcal{E}_{l}}{\delta n}, \quad l \in \mathbb{Z} \tag{85}
\end{equation*}
$$

- The KK hierarchy:

$$
\begin{equation*}
\overline{\mathcal{D}} \overline{\mathcal{L}} \frac{\delta \overline{\mathcal{E}}_{l-1}}{\delta P}=\frac{\delta \overline{\mathcal{E}}_{l}}{\delta P}, \quad l \in \mathbb{Z} \tag{86}
\end{equation*}
$$

The correspondence between the Hamiltonian conservation laws of the DP and KK equations

The relationship between the variational derivatives of $\delta \mathcal{E}_{l} / \delta n$ and $\delta \overline{\mathcal{E}}_{l} / \delta P$

```
Lemma
Let'(0,} and {\delta|} be the hierarchies of Hamiltonian conserved functionals of the DP and
KK equations, respectively. THEN, for each I G\mathbb{Z}\mathrm{ , their corresponding variational}
derivatives are related according to the following identity
```

The change of the variational derivative under the Liouville transformations

The correspondence between the Hamiltonian conservation laws of the DP and KK equations

The relationship between the variational derivatives of $\delta \mathcal{E}_{l} / \delta n$ and $\delta \bar{\delta}_{l} / \delta P$

Lemma

Let $\left\{\mathcal{E}_{l}\right\}$ and $\left\{\overline{\mathcal{E}}_{l}\right\}$ be the hierarchies of Hamiltonian conserved functionals of the DP and $K K$ equations, respectively. THEN, for each $I \in \mathbb{Z}$, their corresponding variational derivatives are related according to the following identity

$$
\begin{equation*}
\frac{\delta \mathcal{E}_{l}}{\delta n}=6 \mathcal{L}^{-1} n \partial_{y} \frac{\delta \overline{\mathcal{E}}_{-(l+2)}}{\delta P} \tag{87}
\end{equation*}
$$

The change of the variational derivative under the Liouville transformations

Lemma

Let $n(t, x)$ and $P(\tau, y)$ be related by the transformations (75). If $\varepsilon(n)=\bar{\delta}(P)$. THEN

The correspondence between the Hamiltonian conservation laws of the DP and KK equations

The relationship between the variational derivatives of $\delta \mathcal{E}_{l} / \delta n$ and $\delta \bar{\delta}_{l} / \delta P$

Lemma

Let $\left\{\mathcal{E}_{l}\right\}$ and $\left\{\overline{\mathcal{E}}_{l}\right\}$ be the hierarchies of Hamiltonian conserved functionals of the DP and $K K$ equations, respectively. THEN, for each $I \in \mathbb{Z}$, their corresponding variational derivatives are related according to the following identity

$$
\begin{equation*}
\frac{\delta \mathcal{E}_{l}}{\delta n}=6 \mathcal{L}^{-1} n \partial_{y} \frac{\delta \overline{\mathcal{E}}_{-(l+2)}}{\delta P} \tag{87}
\end{equation*}
$$

The change of the variational derivative under the Liouville transformations

Lemma

Let $n(t, x)$ and $P(\tau, y)$ be related by the transformations (75). If $\mathcal{E}(n)=\overline{\mathcal{E}}(P)$. THEN

$$
\begin{equation*}
\frac{\delta \mathcal{E}}{\delta n}=\frac{1}{6} n^{-\frac{2}{3}} \partial_{y}^{-1} \overline{\mathcal{L}} \frac{\delta \overline{\mathcal{E}}}{\delta P}, \tag{88}
\end{equation*}
$$

where $\overline{\mathcal{L}}$ is the Hamiltonian operator (81) admitted by the KK equation (69).

The correspondence between the Hamiltonian conservation laws of the DP and KK equations

Theorem

Under the Liouville transformations (75), for each $I \in \mathbb{Z}$, the Hamiltonian conserved functional $\overline{\mathcal{E}}_{l}(P)$ of the KK equation is related to the Hamiltonian conserved functional $\mathcal{E}_{l}(n)$ of the DP equation, according to the following identity

$$
\begin{equation*}
\mathcal{E}_{l}(n)=36 \overline{\mathcal{E}}_{-(l+2)}(P), \quad I \in \mathbb{Z} . \tag{89}
\end{equation*}
$$

The relationship between the Novikov equation and the DP equation

Motivation

Fordy, Gibbon, 1979 T.

$\mathrm{SK} \Leftarrow===================\Rightarrow \mathrm{KK}$

Novikov $\Leftarrow==================\Rightarrow$ DP

The relationship between the Novikov equation and the DP equation

Motivation

Novikov $\Leftarrow==================\Rightarrow$ DP

The relationship between the Novikov equation and the DP equation

Motivation

$$
\begin{aligned}
& \text { Fordy, Gibbon, } 1979 \mathrm{~T} . \\
& \text { SK } \Leftarrow=====================\Rightarrow \text { KK } \\
& \downarrow \text { "dual" "dual" } \downarrow \\
& \text { Novikov } \Leftarrow====================\Rightarrow \mathbf{D P}
\end{aligned}
$$

The relationship between the Novikov equation and the DP equation

The Novikov hierarchy and the DP hierarchy

- $\mathrm{SK} \Leftarrow======================\Rightarrow$ KK
Forday, Gibbon, MiuraT.
- The KK equation: $P_{\tau}+P_{y y y y y}+5\left(P P_{y y}\right)_{y}+5 P^{2} P_{y}=0$
- The SK equation: $Q_{\tau}+Q_{y y y y y}+20 Q Q_{y y y}+25 Q_{y} Q_{y y}+80 Q^{2} Q_{y}=0$
- The Miura transformations (Forday, Gibbon, 1979):

$$
\begin{align*}
& \mathcal{B}_{1}(P, Q) \equiv Q-\left(W_{y}-W^{2}\right)=0 \\
& \mathcal{B}_{2}(P, Q) \equiv P+\left(2 W_{y}+W^{2}\right)=0 \tag{90}
\end{align*}
$$

where W satisfies

$$
W_{t}=W_{y y y y y}-5\left(W_{y} W_{y y y}+W_{y y}^{2}+W_{y}^{3}+4 W W_{y} W_{y y}+W^{2} W_{y y y}-W^{4} W_{y}\right)
$$

- As in (Fokas and Fuchssteiner, 1981):
(SK) $)_{n} \leftarrow-=-=-=-=-=-=-==(\text { KK })_{n}$

The relationship between the Novikov equation and the DP equation

The Novikov hierarchy and the DP hierarchy

- $\mathrm{SK} \Leftarrow======================\Rightarrow \mathbf{K K}$
Forday, Gibbon,MiuraT.
- The KK equation: $P_{\tau}+P_{y y y y y}+5\left(P P_{y y}\right)_{y}+5 P^{2} P_{y}=0$
- The SK equation: $Q_{\tau}+Q_{y y y y y}+20 Q Q_{y y y}+25 Q_{y} Q_{y y}+80 Q^{2} Q_{y}=0$
- The Miura transformations (Forday, Gibbon, 1979):

$$
\begin{align*}
& \mathcal{B}_{1}(P, Q) \equiv Q-\left(W_{y}-W^{2}\right)=0 \\
& \mathcal{B}_{2}(P, Q) \equiv P+\left(2 W_{y}+W^{2}\right)=0 \tag{90}
\end{align*}
$$

where W satisfies

$$
W_{t}=W_{y y y y y}-5\left(W_{y} W_{y y y}+W_{y y}^{2}+W_{y}^{3}+4 W W_{y} W_{y y}+W^{2} W_{y y y}-W^{4} W_{y}\right)
$$

- As in (Fokas and Fuchssteiner, 1981):

$$
\begin{aligned}
(\mathrm{SK})_{n} \Leftarrow===== & ============(\mathrm{KK})_{n} \quad n \in \mathbb{Z}^{+} \\
& \text {Miura T. (90) }
\end{aligned}
$$

The relationship between the Novikov equation and the DP equation

The SK hierarchy and the KK hierarchy

- (SK) $)_{-1}=================\Rightarrow(\mathrm{KK})_{-1}$

Lemma

Assume that Q satisfies the first negative flow of the SK hierarchy

$$
\begin{equation*}
(\overline{\mathcal{K}} \overline{\mathcal{J}}) Q_{\tau}=0 \tag{91}
\end{equation*}
$$

and P satisfies the first negative flow of the KK hierarchy

$$
\begin{equation*}
(\overline{\mathcal{L}} \overline{\mathcal{D}}) P_{\tau}=0, \tag{92}
\end{equation*}
$$

THEN The Miura transformation (90) relates the first negative flow of the KK hierarchy and the first negative flow of the SK hierarchy.

The relationship between the Novikov equation and the DP equation

- The Novikov equation: $m_{t}=u^{2} m_{x}+3 u u_{x} m, \quad m=u-u_{x x}$
- The DP equation: $n_{t}=v n_{x}+3 v_{x} n, \quad n=v-v_{x x}$
- The Liouville transformation (Novikov $\leftrightarrow(\mathrm{SK})_{-1}$)
- The Liouville transformation (DP $\leftrightarrow \quad(\mathrm{KK})_{-1}$)

$$
\begin{aligned}
& \text { (SK) })_{-1} \Leftarrow====================(\mathrm{KK})_{-1} \\
& \uparrow \text { Liouville T. } \\
& \text { Novikov }
\end{aligned}
$$

The relationship between the Novikov equation and the DP equation

- The Novikov equation: $m_{t}=u^{2} m_{x}+3 u u_{x} m, \quad m=u-u_{x x}$
- The DP equation: $n_{t}=v n_{x}+3 v_{x} n, \quad n=v-v_{x x}$
- The Liouville transformation (Novikov $\leftrightarrow(\mathbf{S K})_{-1}$)
- The Liouville transformation (DP $\leftrightarrow \quad(\mathrm{KK})_{-1}$)

Miura T. (90)
$(\mathrm{SK})_{-1} \Leftarrow=================\Rightarrow(\mathrm{KK})_{-1}$
\uparrow Liouville T. Liouville T. \uparrow
Novikov DP
$\Leftarrow=================1$
L.T. + M.T. + L.T.

The transformation mapping the Novikov equation and the DP equation

Theorem

Assume $m(t, x)$ is the solution of the Novikov equation. THEN, $n(t, x)$ satisfies the DP equation, where $n(t, x)$ is determined implicitly by the relation

$$
\begin{equation*}
P(\tau, y)=\frac{1}{4} n^{-\frac{1}{2}}\left(4 \partial_{x}^{2}-1\right) n^{-\frac{1}{6}}, \quad y=\int^{x} n^{\frac{1}{3}}(t, \xi) d \xi, \quad n=v-v_{x x}, \tag{93}
\end{equation*}
$$

with $P(\tau, y)$ determined by $Q(\tau, y)$ via (90), and $Q(\tau, y)$ satisfies

$$
\begin{equation*}
Q(\tau, y)=-m^{-1}\left(1-\partial_{x}^{2}\right) m^{-\frac{1}{3}}, \quad y=\int^{x} m^{\frac{2}{3}}(t, \xi) \mathrm{d} \xi, \quad \tau=t . \tag{94}
\end{equation*}
$$

The correspondence between the 2CH and 2AKNS hierarchies

- The 2CH hierarchy

First, the hierarchy of 2 CH system (1) is given by

$$
\begin{equation*}
\binom{m}{\rho}_{t}=\mathcal{K} \delta \mathcal{H}_{n-1}(m, \rho)=\mathcal{J} \delta \mathcal{H}_{n}(m, \rho), \quad \delta \mathcal{H}_{n}(m, \rho)=\left(\frac{\delta \mathcal{H}_{n}}{\delta m}, \frac{\delta \mathcal{H}_{n}}{\delta \rho}\right)^{T}, \quad n=1,2, \tag{95}
\end{equation*}
$$

with compatible Hamiltonian operators

$$
\mathcal{K}=\left(\begin{array}{cc}
m \partial_{x}+\partial_{x} m & \rho \partial_{x} \tag{96}\\
\partial_{x} \rho & 0
\end{array}\right), \quad \mathcal{J}=\left(\begin{array}{cc}
\partial_{x}-\partial_{x}^{3} & 0 \\
0 & \partial_{x}
\end{array}\right) .
$$

- The A2CH hierarchy

First, the hierarchy of A2CH system (2) is given by

$$
\begin{equation*}
\binom{Q}{P}_{\tau}=\overline{\mathbf{K}}_{n}=\overline{\mathcal{R}}^{n-1} \overline{\mathbf{K}}_{1}, \quad n=1,2, \ldots \tag{97}
\end{equation*}
$$

with

$$
\overline{\mathcal{R}}=\frac{1}{2}\left(\begin{array}{cc}
0 & \partial_{y}^{2}+4 Q+2 Q_{y} \partial_{y}^{-1} \tag{98}\\
-4 & 4 P+2 P_{y} \partial_{y}^{-1}
\end{array}\right), \quad \overline{\mathbf{K}}_{1}=\left(-Q_{y},-P_{y}\right)^{\top} .
$$

The correspondence between the $2-\mathrm{CH}$ and A 2 CH hierarchies

A Liouville transformation between the isospectral problems of the 2-CH and A2CH equations

- The Liouville transformation (Kang, Liu, Olver, Qu, 2020)

$$
\begin{gather*}
\Phi=\sqrt{\rho} \Psi, \tau=t, \quad y=\int^{x} \rho(t, \xi) \mathrm{d} \xi, \quad P(\tau, y)=-m(t, x) \rho(t, x)^{-2}, \tag{99}\\
Q(\tau, y)=-\frac{1}{4} \rho(t, x)^{-2}+\frac{3}{4} \rho(t, x)^{-4} \rho_{x}^{2}(t, x)-\frac{1}{2} \rho(t, x)^{-3} \rho_{x x}(t, x) .
\end{gather*}
$$

will convert the isospectral problem

$$
\begin{equation*}
\Psi_{x x}+\left(-\frac{1}{4}-\lambda m+\lambda^{2} \rho^{2}\right) \Psi=0, \quad \Psi_{t}=\left(\frac{1}{2 \lambda}-u\right) \Psi_{x}+\frac{u_{x}}{2} \Psi \tag{100}
\end{equation*}
$$

into the isospectral problem

$$
\begin{equation*}
\Phi_{y y}+\left(Q+\lambda P+\lambda^{2}\right) \Phi=0, \quad \Phi_{\tau}-\frac{1}{2 \lambda} \rho \Phi_{y}+\frac{1}{4 \lambda} \rho_{y} \Phi=0 \tag{101}
\end{equation*}
$$

The correspondence between the 2CH and 2AKNS hierarchies

Theorem

Under the Liouville transformation (99), for each integer n, the hierarchy (95) is mapped into the hierarchy (97).

Theorem

(Kang, Liu, Olver, Qu, 2020) Under the Liouville transformation (99), for each nonzero integer n, the Hamiltonian functionals $\mathcal{H}_{n}(m, \rho)$ of the 2 CH hierarchy (95) are related to the Hamiltonian functionals $\overline{\mathcal{H}}_{n}(Q, P)$ of the A2CH hierarchy (97), according to

$$
\mathcal{H}_{n}(m, \rho)=\overline{\mathcal{H}}_{-n}(Q, P), \quad 0 \neq n \in \mathbb{Z}
$$

Remark

Similar results hold for the dDWW hierarchy.

The correspondence between the $1+n-\mathrm{KdV}$ and $1+n$-CH hierarchies

- The $1+n$-CH hierarchy

First, the hierarchy of $1+n$-CH system (1) is given by

$$
\begin{equation*}
\binom{\rho}{\mathbf{m}}_{t}=\overline{\mathbf{G}}_{i}(\rho, \mathbf{m})=\overline{\mathcal{K}}(\rho, \mathbf{m}) \delta \overline{\mathcal{H}}_{i-1}(\rho, \mathbf{m})=\overline{\mathcal{J}}(\rho, \mathbf{m}) \delta \overline{\mathcal{H}}_{i}(\rho, \mathbf{m}), \quad i \in \mathbb{Z}^{+}, \tag{102}
\end{equation*}
$$

with compatible Hamiltonian operators

$$
\overline{\mathcal{K}}(\rho, \mathbf{m})=\mathcal{K}_{1}(\rho, \mathbf{m})=\left(\begin{array}{cc}
\rho \partial_{x}+\partial_{x} \rho & \partial_{x} \mathbf{m}^{\mathrm{T}}+\mathbf{m}^{\mathrm{T}} \partial_{x} \\
\partial_{x} \mathbf{m}+\mathbf{m} \partial_{x} & \left(\rho \partial_{x}+\partial_{x} \rho\right) \mathbf{l}_{n}+\sum_{i<j} \mathbf{J}_{i, j} \mathbf{m} \partial_{x}^{-1}\left(\mathbf{J}_{i, j} \mathbf{m}\right)^{\mathrm{T}}
\end{array}\right)
$$

and

$$
\overline{\mathcal{J}}(\rho, \mathbf{m})=\mathcal{J}-\mathcal{K}_{2}=\left(\begin{array}{cc}
\partial_{x}-\partial_{x}^{3} & \mathbf{0}_{n}^{\mathrm{T}} \\
\mathbf{0}_{n} & \left(\partial_{x}-\partial_{x}^{3}\right) \mathbf{I}_{n}
\end{array}\right)
$$

where the associated Hamiltonian functionals H_{1} and H_{2} are

$$
\overline{\mathcal{H}}_{1}=\frac{1}{2} \int\left(w^{2}+w_{x}^{2}+\langle\mathbf{u}, \mathbf{u}\rangle+\left\langle\mathbf{u}_{x}, \mathbf{u}_{x}\right\rangle\right) \mathrm{d} x
$$

and

$$
\overline{\mathcal{H}}_{2}=\frac{1}{2} \int\left[w\left(w^{2}+w_{x}^{2}+\langle\mathbf{u}, \mathbf{u}\rangle+2\langle\mathbf{m}, \mathbf{u}\rangle-\left\langle\mathbf{u}_{x}, \mathbf{u}_{x}\right\rangle\right)+\left\langle\mathbf{u}, \partial_{x}^{-1} \Pi\left(\mathbf{u}, \mathbf{u}_{\mathbf{x}}\right) \mathbf{m}\right\rangle\right] \mathrm{d} x
$$

The correspondence between the $1+n-\mathrm{KdV}$ and $1+n$-CH hierarchies

- The $1+n$-KdV hierarchy

Next, the hierarchy of $1+n$-KdV system (5) is given by

$$
\begin{equation*}
\binom{w}{\mathbf{u}}_{t}=\mathcal{K}(w, \mathbf{u}) \delta \mathcal{H}_{1}(w, \mathbf{u})=\mathcal{J}(w, \mathbf{u}) \delta \mathcal{H}_{2}(w, \mathbf{u}) \tag{103}
\end{equation*}
$$

where $\delta \mathcal{H}_{i}=\left(\delta \mathcal{H}_{i} / \delta w, \delta \mathcal{H}_{i} / \delta u_{1}, \ldots, \delta \mathcal{H}_{i} / \delta u_{n}\right)^{\mathrm{T}}(i=1,2)$ and

$$
\begin{align*}
& \mathcal{K}=\left(\begin{array}{cc}
\partial_{x}^{3}+w \partial_{x}+\partial_{x} w & \partial_{x} \mathbf{u}^{\mathrm{T}}+\mathbf{u}^{\mathrm{T}} \partial_{x} \\
\partial_{x} \mathbf{u}+\mathbf{u} \partial_{x} & \left(\partial_{x}^{3}+w \partial_{x}+\partial_{x} w\right) \mathbf{I}_{n}+\sum_{i<j} \mathbf{J}_{i, j} \mathbf{u} \partial_{x}^{-1}\left(\mathbf{J}_{i, j} \mathbf{u}\right)^{\mathrm{T}}
\end{array}\right), \\
& \mathcal{J}=\left(\begin{array}{cc}
\partial_{x} & \mathbf{0}_{n}^{\mathrm{T}} \\
\mathbf{0}_{n} & \partial_{x} \mathbf{I}_{n}
\end{array}\right) \tag{104}
\end{align*}
$$

$\mathbf{J}_{i, j}$ are anti-symmetric matrices with nonzero entry of (i, j) being one if $i<j$, i.e. $\left(\mathbf{J}_{i, j}\right)_{k l}=\delta_{k}^{i} \delta_{j}^{I}-\delta_{l}^{i} \delta_{k}^{j}$,
where the Hamiltonian functionals \mathcal{H}_{1} and \mathcal{H}_{2} are

$$
\begin{aligned}
& \mathcal{H}_{1}=\frac{1}{2} \int\left(w^{2}+\langle\mathbf{u}, \mathbf{u}\rangle\right) \mathrm{d} x \\
& \mathcal{H}_{2}=\frac{1}{2} \int\left(w^{3}+3 w\langle\mathbf{u}, \mathbf{u}\rangle-w_{x}^{2}-\left\langle\mathbf{u}_{x}, \mathbf{u}_{x}\right\rangle\right) \mathrm{d} x .
\end{aligned}
$$

Theorem

The hierarchy (102) can be mapped into the hierarchy (103) for $n=2$ by a Liouville transformation.
(Kang, Liu, Qu, 2022)

Conclusions and Discussions

- Applications of Liouville transformations in orbital stability of solitons?
- Liouville transformations for discrete systems and their dual systems?
- Geometric formulations of Miura transformations (Qu, Wu, 2023)
- Geometric formulations of Liouville transformations?

Thank You!

