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The Tri-diagonal Toda Lattice

The classical finite open Toda lattice is a Hamiltonian system
with

H(p,q) =
1
2

n∑
k=1

p2
k +

n−1∑
k=1

e−(qk+1−qk )

{
dqk
dt = ∂H

∂pk
dpk
dt = − ∂H

∂qk

⇒

{
dqk
dt = pk

dpk
dt = −e−(qk+1−qk ) + e−(qk−qk−1)

(1)

where k = 1, . . . ,n and e−(q1−q0) = 0 = e−(qn+1−qn) with
q0 = −∞,qn+1 =∞.
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Flaschka’s change of variable for Kostant-Toda lattice

Making the change of variables{
ak = −pk k = 1, . . . ,n
bk = e−(qk+1−qk ) k = 1, . . . ,n − 1.

we obtain the Kostant-Toda (KT) lattice from (1)

d
dt

L(t) = [(L)≥0,L] = [L, (L)<0], (2)

where

L =


a1 1
b1 a2 1

. . . . . . . . .
bn−2 an−1 1

bn−1 an

 , (L)≥0 =


a1 1
0 a2 1

. . . . . . . . .
0 an−1 1

0 an

 .
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Kostant-Toda lattice on simple Lie algebras

Some notations:
Lie algebra: g, h, n±, b±,Π = (α1, . . . , αl),∆±, ωi , {Hαi ,Xα,Yα}
Lie groups: G,H,N±,B±,W
Let

J = {L =
l∑

j=1

Xαj + ajHαj + bjYαj |aj ,bj ∈ C}

be the Jacobi variety. Then the KT lattice is defined as:

d
dt

L = [Πb+L,L]⇔


d
dt aj = bj

d
dt bj = −bj

l∑
k=1

Cjkak

where (Cij) is the Cartan matrix. It is Hamiltonian with
H = 1

2 trL2.
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Integrability and Kostant’s solution

The solution of Kostant-Toda lattice can be written down by the
factorization method:

exp(tL0) = n−(t)b+(t), where n−(t) ∈ N− and b+(t) ∈ B+,

where L0 = L(0), then

L(t) = Ad(n−(t)−1)(L0) = Ad(b+(t))(L0). (3)

Let (ρωj ,Vωj ),1 ≤ j ≤ l be the fundamental modules with
highest weight vector vωj , and we define the j-th τ -function as

τj(t) = 〈vωj , exp(tL0) · vωj 〉 (4)

Then the solution is given by

aj(t) = d
dt ln τj(t)

bj(t) = b◦j
l∏

k=1
τk (t)−Cjk = d2

dt2 ln τj(t).
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Toda lattice as coadjoint action of B

According to (3), Toda lattice should be viewed as the coadjoint
action of a Borel subgroup B+ ⊂ G on b∗+. For example, the
classical QR and LU decompositions of SLn identify b∗+ with the
linear space of symmetric matrices and the affine space of
lower Hessenberg matrices which correspond to the symmetric
and the Kostant-Toda lattice, respectively. Now to study the
generic coadjoint orbits we consider the so-called full
Kostant-Toda (f-KT) lattice with Lax matrix
Lg =

∑l
i=1 Xi +

∑l
i=1 ai(t)Hi +

∑
α∈∆+

bα(t)Yα, e.g. in type A

L =


a1 1 0 · · · 0

b2,1 a2 − a1 1 · · · 0
...

...
. . . . . .

...
bl,1 bl,2 · · · · · · 1

bl+1,1 bl+1,2 · · · · · · −al

 .
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The full Kostant-Toda (f-KT) lattice

The f-KT lattice can be defined as

d
dt

L(t) = [Πb+L,L] = [L,Πn−L], (5)

The factorization method still works, that is, let

exp(tL0) = n−(t)b+(t), n−(t) ∈ N−, b+(t) ∈ B+, (6)

then
L(t) = Ad(n−(t)−1)(L0) = Ad(b+(t))(L0).

Note that the Chevalley invariants are still constants of motion,
but they do not provide enough first integrals for the integrability
of f-KT lattice. The Toda flows stay on the iso-spectral variety
defined as

FΛ := {L ∈ H|L has Chevalley invariants Λ = (I1, . . . , Il)}.
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Integrability: The chopping method

As it turns out the Toda flows on generic coadjoint orbits in
simple Lie algebras are still completely integrable. The
additional constants of motion can be obtained from the
chopping method.

Theorem (DLNT, EFS, GS)

For k = 0, . . . , [(n − 1)/2], where n = l + 1 in type A, denote by
(L− λId)k the result of removing the first k rows and the last k
columns from (L− λId) (we call this the k-chop of L), and let
λrk , r = 1, . . . ,n − 2k, denote the roots of

Q̃k (L, λ) := det(L− λId)k = E0k (λn−2k + I1kλ
n−2k−1 + · · ·+ In−2k ,k ).

Then λrk ’s (equivalently Irk ’s) are constants of motion.
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τ -functions and their geometric structure

The τ -functions can be similarly defined as

τj(t) = 〈vωj , exp(tL0) · vωj 〉,
then
Proposition

For t small enough, we have

ai(t) =
d
dt

ln τi(t), 1 ≤ i ≤ l . (7)

Let e =
∑l

i=1 Xi ∈ g. According to a theorem of Kostant, there
exists an l-dimensional linear subspace s ⊂ b− such that
elements in the affine subspace e + s are regular. The map

N− × (e + s) → e + b−
(n,X ) 7→ AdnX ,

is an isomorphism of affine varieties.
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Companion embedding and the flag varieties

Fix a choice of s, then for any L ∈ FΛ we have L = u−1CΛu,
CΛ ∈ e + s and we use this s to embed FΛ into the flag variety
G/B+:

cΛ : FΛ → G/B+

L 7→ uB+.

Proposition

Let L0 = u−1
0 CΛu0, then f-KT flow is linearized on the flag

variety

L0 u0B+

L(t)


u0u(t)B+

= u0 exp(tL0)B+

= exp(tCΛ)u0B+

cΛ

Adu(t)−1

cΛ
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Painlevé divisor and singular solutions

When there exists t∗ ∈ C such that the LU factorization (6)
could not be performed, we have

exp(t∗L0) = u∗ẇ∗b∗,

where w∗ ∈ W. This means that the f-KT flow hits the boundary
of a Bruhat cell which happens when there exists 1 ≤ k ≤ l
such that τk (t∗) = 0 and the solution becomes singular at
t = t∗. The set of t∗ where some of the τk vanish is called the
Painlevé divisor. Setting t → t + t∗, then

τk (t ; w∗) = 〈vωk ,u−1
0 etCΛu0u∗ẇ∗b∗vωk 〉.

Note that
b∗vωk = dkvωk ,

where dk ∈ C is a constant, we obtain

τk (t ; w∗) = dk 〈vωk ,etCΛuẇ∗vωk 〉 1 ≤ k ≤ l , (8)

where u = u0u∗ ∈ N−.
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The main problem and the strategy

Note that N−B+ from Kostant’s theorem only represents the big
cell in the Bruhat decomposition of G, and we would like to
know what kinds of singularities the f-KT flow may develop
which is equivalent to the

Problem
For which u ∈ N− and w∗ ∈ W, with τ -functions defined by (8),
the diagonal elements given by (7) satisfy f-KT lattice?

Our strategy is to perform a complete local analysis which is
known as the Kowalevski-Painlevé analysis to obtain the
singular information of all possible Laurent series solutions for
f-KT lattice. Kowalevski-Painlevé analysis is a nonlinear version
of the classical Frobenius method solving linear ordinary
differential equations.
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The Kowalevski-Painlevé analysis

Assume solutions of (5) have the following form

ai(t) =
∞∑

k=0

aik tδi +k 1 ≤ i ≤ `, bα(t) =
∞∑

k=0

bαk tγα+k α ∈ ∆+.

Kowalevski-Painlevé analysis takes the following three steps:
(1) Identify the leading singularities and leading coefficients,

i.e. δi , γα and ai0,bα0.

(2) Find the resonances. Substituting Laurent series in step
(1) into (5) and find the coefficients recursively, the
resonances are the the places where the iteration
procedure to uniquely solve the higher order coefficients
fail and new free parameters to be introduced.

(3) Check the compatibility and convergence of the Laurent
series. Check the compatibility conditions at the resonance
levels and show that the resulting formal Laurent series
have a positive convergent radius.
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Local analysis example: so5(C)

Consider the Lax equation dL
dt = [B,L] with

L = X2 +X1 +a2H2 +a1H1 +b2Y2 +b1Y1 +c1Yα1+α2 +d1Y2α1+α2

L =


a2 1 0 0 0
b2 2a1 − a2 1 0 0
2c1 2b1 0 1 0
4d1 0 2b1 a2 − 2a1 1
0 4d1 −2c1 b2 −a2

 and B = (L)≥0.

Explicitly, the differential equations read as:

d
dt

a2 = b2
d
dt

a1 = b1

d
dt

b2 = (2a1 − 2a2)b2 + 2c1
d
dt

b1 = (a2 − 2a1)b1 − c1 (9)

d
dt

c1 = −a2c1 + 2d1
d
dt

d1 = −2a1d1.
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so5(C): the indicial equations

The Laurent series solutions have the following form (can
be proved by balancing the leading singularity):

ai(t) =
∞∑

k=0

aik tk−1, bi(t) =
∞∑

k=0

bik tk−2,

c1(t) =
∞∑

k=0

c1k tk−3, d1(t) =
∞∑

k=0

d1k tk−4.

Plugging them into (9), and comparing the powers of t , we
get the following indicial equations (k = 0):

− a20 = b20, −a10 = b10,

− 2b20 = (2a10 − 2a20)b20 + 2c10, (10)
− 2b10 = (a20 − 2a10)b10 − c10,

− 3c10 = −a20c10 + 2d10, −4d10 = −2a10d10.
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so5(C): the indicial equations

Eliminating bi0, c10,d10 from equation (10), we obtain the
following two equations for ai0:

a2
20 − 2a20a10 + 2a2

10 − 2a10 − a20 = 0 (11)
a20(a20 − 3)(a10 − 2)(1 + a10 − a20) = 0

Remarkably, solutions of (11) can be read through Weyl
group action on coroots (tridiagonal:Flaschka-Haine,
Casian-Kodama noticed some special cases and
connections): Let

∑
α̌∈Φ+

w

α̌ =
n∑

j=1

q̌j α̌j ,

then aj0 = q̌j gives a solution to (11).
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so5(C): solutions to indicial equations

More explicitly, in the current case (so5(C)), all the solutions are
given by ∑

α̌∈Φ+
e

α̌ = 0;
∑
α̌∈Φ+

sB
1

α̌ = α̌1;

∑
α̌∈Φ+

sB
2

α̌ = α̌2;
∑

α̌∈Φ+
w21

α̌ = α̌2 + 2α̌1;

∑
α̌∈Φ+

w12

α̌ = 3α̌2 + α̌1;
∑

α̌∈Φ+
w121

α̌ = 3α̌2 + 3α̌1;

∑
α̌∈Φ+

w212

α̌ = 4α̌2 + 2α̌1;
∑
α̌∈Φ+

w0

α̌ = 4α̌2 + 3α̌1.



Outline Background: The Finite Open Toda Lattice f-KT Lattice and its singular solutions The Kowalevski-Painlevé analysis

so5(C): the higher order terms

For k ≥ 1, aik ,bαk can be obtained from the following iterative
procedure:
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so5(C): Kowalevski matrix

This system can be put in the form

(k Id−K)


a1k

...
alk

bα1k
...

 = ~R(a1i , · · · ,ali ,bα1,i , · · · ) with i < k .

det(k Id−K) =(k − 2)(k − 4)(k − 1 + 2a20 − 2a10)

(k − 1− a20 + 2a10)(k − 2 + a20)(k − 3 + 2a10),

Note that 2,4: degree of Chevalley invariants;
Eα2 = 1− 2a20 + 2a10, Eα1 = 1 + a20 − 2a10, Eα3 = 2− a20,
Eα4 = 3− 2a10: type “X" eigenvalues (here α3 = α1 + α2 and
α4 = 2α1 + α2).
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so5(C): type X eigenvalues

Level.case Eα2 Eα1 Eα3 Eα4 W `(w) # of parameters
0.1 1 1 2 3 e 0 6
1.1 3 −1 2 1 s1 1 5
1.2 −1 2 1 3 s2 1 5
2.1 3 −2 1 −1 s2s1 2 4
2.2 −3 2 −1 1 s1s2 2 4
3.1 1 −2 −1 −3 s1s2s1 3 3
3.2 −3 1 −2 −1 s2s1s2 3 3
4.1 −1 −1 −2 −3 s2s1s2s1 4 2

The number of free parameters are exactly l + `(w0)− `(w),
where `(w0)− `(w) is the dimension of the Schubert cell.
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Local analysis for f-KT equation: general setting

The above formula for solutions of indicial equations of Toda
lattice are true in all Lie algebras.

The indicial equations (k = 0) have |W| many solutions,
and they can be obtained from (R.J. Marsh and K. Rietsch)

∑
α̌∈Φ+

w

α̌ =
n∑

j=1

q̌j α̌j , q̌j ∈ N0, or aw
i0 =

∑
α̌∈Φ−

w

〈ωi ,w−1α̌〉
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Kowalevski-Painlevé analysis: eigenvalues of K

The higher order terms are recursively determined by

(k Id−Kw )


a1k

...
alk

bα1k
...

 = ~R(a1i , · · · ,ali ,bα1,i , · · · ) with i < k .

The eigenvalues of Kw : l of them are degrees of Chevalley
invariants, the others are given by

Ew
α = L(wα) (12)

where L(α) is the height of root α ∈ ∆+.
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Kowalevski-Painlevé analysis: moduli

All the compatibility conditions for Laurent series solutions
of f-KT lattice at the resonant levels are automatically
satisfied and the Laurent series solutions are convergent
(majorant method).

The number of non-trivial free parameters in Laurent series
solution corresponding to w ∈ W equals the dimension of
the corresponding Bruhat cell.

Theorem

For any Λ ∈ Cl , the compactification of cΛ(FΛ) is G/B+. All the
Laurent series solutions of f-KT lattice are parameterized by
G/B+ × Cl , where G/B+ is the flag variety and Cl parametrizes
the data for spectral parameters.
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Thank you!
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