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Plan

1. Variational criterion for integrability: Lagrangian multiforms

2. Review of some standard integrability frameworks

3. How to construct a Lagrangian multiform?

4. Conclusions and Perspectives

Important notational remark: L for “Lax stuff”, L for
“Lagrangian stuff”

NB: in this talk, everything is for continuous theories:
ODEs/PDEs or finite/infinite dimensional systems.
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1. Variational criterion for integrability: Lagrangian
multiforms

• Idea of Lagrangian multiforms originally proposed in
[Lobb, Nijhoff ’09] as a variational framework to encode
multidimensional consistency and integrability.

Then many contributions mainly by “Leeds and Berlin schools”
until this workshop where hopefully it will inspire more people
around the world.
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1. Variational criterion for integrability: Lagrangian
multiforms

Practical implementation

Step 1. Replace Lagrangian density L [q] and action

S[q] =

∫ b

a
L [q] dt

by a collection of Lagrangians Lk assembled into a 1-form
L [q] and an action:

S[q,Γ] =

∫
Γ

L [q] =

∫
Γ

L1[q] dt1 + · · ·+ LN [q] dtN

depending not only on q (and higher jets) but also on a curve
Γ in the multi-time space RN .
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1. Variational criterion for integrability: Lagrangian
multiforms

Step 2. Propose a generalised variational principle with two
ingredients:

(a) There exist (nontrivial) critical configurations q(t1, . . . , tN )
of S[q,Γ] which arise by imposing the action principle for
“arbitrary” curves Γ

(b) On solutions or on-shell, the value of S[q,Γ] is
stationary w.r.t. (local) variations of Γ.
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1. Variational criterion for integrability: Lagrangian
multiforms

• Consequences of (a): set of equations called multi-time or
multiform Euler-Lagrange (E-L) equations. Two essential
types of equations:

1. Standard E-L eqs for each Lagrangian Lk and its
associated time tk:

∂Lk

∂q
− d

dtk

∂Lk

∂qtk

= 0 ,

2. New E-L eqs:

∂Lk

∂qtj

= 0 , j ̸= k ,
∂Lk

∂qtk

=
∂Lj

∂qtj

, ∀j, k .

→ Constraints on allowed Lagrangians.
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1. Variational criterion for integrability: Lagrangian
multiforms

• Consequence of (b). The closure relation: on shell we
must have

d

(
N∑
k=1

Lk[q] dtk

)
= 0 .

In components,
∂Lk

∂tj
− ∂Lj

∂tk
= 0 .
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1. Variational criterion for integrability: Lagrangian
multiforms

Integrable classical field theories

• All above ideas and results generalise to field theories (in
1 + 1 and even 2 + 1 dimensions). Focus on 1 + 1 case.

Step 1. For 1 + 1 dimensional theories, replace action for a
volume form

S[u] =

∫∫
D

L [u]dx ∧ dt

with an action for a 2-form

S[u, σ] =
∫∫

σ

∑
i<j

Lij [u] dti ∧ dtj .

σ is a 2D surface in an (infinite) multi-time space M with
coordinates (t1, t2, t3, . . . ): countable numbers of “times”.
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1. Variational criterion for integrability: Lagrangian
multiforms

• Remark: we need a 2-form∑
i<j

Lij [u] dti ∧ dtj

and not just the naive extension

∞∑
j=1

Lj [q] dtj

of the 1-form L1[q] dt1 + · · ·+ LN [q] dtN used in the finite
dimensional case, as could be wrongly inferred from

Hj =

∫
Hj dx

→ Lij [u] suggests that the proper Hamiltonian counterpart
should be a covariant Hamiltonian Hij . This leads to the
notion of Hamiltonian multiform [Caudrelier, Stoppato ’20]
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1. Variational criterion for integrability: Lagrangian
multiforms

Step 2. Same generalised variational principle as before with
same two consequences:

(a) multi-time Euler-Lagrange equations for each Lij .
Remark: using the variational bicomplex, these can be written
generally as

δdL = 0

(b) Closure relation: dL = 0 on-shell.

In components,

∂tkLij + ∂tjLki + ∂tiLjk = 0
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1. Variational criterion for integrability: Lagrangian
multiforms

Two main problems

• Why is it a good criterion for integrability? Meaning
that we could (should?) substitute it to other more well-known
criteria.
→ Matter of taste or real “added value” (cf Suris’s talk).

• How to construct all the Lagrangian coefficients Lj or
Lij?
→ Amounts to a classification problem of integrable hierarchies.
Lagrangian multiforms philosophy: the equations for the
Lagrangians themselves can serve this purpose in principle.

• Several (partial) results by brute force, use of variational
symmetries or discrete to continuum limits.
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1. Variational criterion for integrability: Lagrangian
multiforms

• Our more modest approach: shed some light on these two
questions simultaneously by trying to understand how
Lagrangian multiform theory relates to two well established
integrability criteria:

- Lax pairs;

- Hamiltonian structures and Liouville integrability.

• First, review how these two aspects are related and inject this
understanding into Lagrangian multiforms theory.
→ Double reward: sheds new light on relation between
integrability criteria and gives means to construct new
integrable hierarchies (in field theories), e.g by coupling
separate ones together relatively easily.
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2. Review of some standard integrability frameworks

Lax pairs

• The first and most famous description of integrable systems is
via a so-called Lax pair (L,M) where L contains the
variables of the system and M =M(L) is a function of these
variables.

• Dynamics given by

dL

dt
= [M(L) , L] (Lax equation) .

• Immediate consequence: Tr(Lk), k ∈ N is conserved.

• Less obvious but far reaching fact: Lax equation is
Hamiltonian.
There exist a Poisson bracket { , } and a function H such that

dL

dt
= [M(L) , L] = {L , H} .
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2. Review of some standard integrability frameworks

Key notion: integrable hierarchies

• The Hamiltonians Hk = Tr(Lk) satisfy {Hj , Hk} = 0
→ can consider a hierarchy of commuting Hamitonian
flows

∂tkL = {L , Hk}
imposed simultaneously on L.

• Under suitable conditions, can be written back in Lax form to
get a hierarchy of Lax equations:

∂tkL = [Mk(L) , L] .

• Link between these two pictures of integrability: there is a
systematic way to construct a Poisson bracket { , }R on an
appropriate phase space for L such that

∂tkL = {L , Hk}R =
1

2
[R(∇Hk(L)) , L] .

→ Semenov-Tian-Shansky’s Lie dialgebra theory.
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2. Review of some standard integrability frameworks

Key ingredients: In finite dimensions first

• Fix g a (matrix) Lie algebra, g∗ its dual space. With
R : g → g a solution of the modified CYBE

[R(X), R(Y )]−R ([R(X), Y ] + [X,R(Y )]) = −[X,Y ] , ∀X,Y ∈ g

the bracket

[X,Y ]R =
1

2
([R(X), Y ] + [X,R(Y )])

is a second Lie bracket on g.

• Denote gR and GR the corresponding Lie algebra and Lie
group.

• Equip g∗ with the R Lie-Poisson bracket

{f, g}R(ξ) = (ξ, [∇f(ξ) , ∇g(ξ)]R) , f, g ∈ C∞(g∗) ,

• Identify g∗ with g using an ad-invariant bilinear form ⟨ , ⟩.
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2. Review of some standard integrability frameworks

Then Semenov-Tian-Shansky’s theorem implies that if we have
a collection of independent Ad-invariant functions Hk then
we have a hierarchy of commuting Hamiltonian flows which take
the Lax form

∂tkL = {L,Hk}R = [Mk, L] , Mk =
1

2
R∇Hk(L) , {Hj ;Hk}R = 0 .

and the natural choice of phase space for L is a coadjoint orbit
of the group GR in g∗:

→ L = AdR∗
φ · Λ, roughly think of “L = φΛφ−1”.

• Commutativity of flows ensured by zero curvature (ZC) eqs

∂tkMj − ∂tjMk + [Mk , Mj ] = 0

themselves ensured by modified CYBE.
NB: ZC eqs will always be in the background for us.
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3. How to construct a Lagrangian multiform?

Taking this on board [Caudrelier, Dell’Atti, Singh ’23]

• Parametrise L = AdR∗
φ · Λ, field φ ∈ GR contains the

dynamical degrees of freedom.

• Define

L [φ] =

N∑
k=1

Lk[φ] dtk (1)

with
Lk[φ] =

(
L , ∂tkφ ·R φ−1

)
−Hk(L) . (2)

Remark: Kinetic part looks a bit complicated at first but in
group coordinates, each Lk is of familiar form

p · ∂tkq−Hk
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3. How to construct a Lagrangian multiform?

Theorem

The standard Euler-Lagrange equations associated with the
Lagrangian coefficients Lk take the form of compatible Lax
equations

∂tkL =
1

2
[R∇Hk(L), L] , k = 1, . . . , N . (3)

The remaining multi-time Euler-Lagrange equations for the
Lagrangian 1-form (1) are trivially satisfied.
The closure relation holds: on solutions of (3) we have

∂tkLj − ∂tjLk = 0 , j, k = 1, . . . , N .
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3. How to construct a Lagrangian multiform?

Examples

• Open Toda chain, achieved in two different ways: different Lie
algebra decompositions and r-matrices
→ one is skew-symmetric, the other not!

• Comment: Our construction gives natural canonical variables
which are neither the usual q, p Toda variables nor the Flaschka
variables.

• (Rational) Gaudin model: detailed account of construction for
this example in Anup’s talk later today.
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3. How to construct a Lagrangian multiform?

Ok, so what?

• Thanks to the structure of our Lagrangian multiform, we get
further insight into the meaning of integrability in the
Lagrangian multiform theory.

Theorem

The following identity holds

∂Lk

∂tℓ
− ∂Lℓ

∂tk
+Υm

k PmnΥ
n
ℓ = {Hk, Hℓ}R .

Coefficient of dL , controlling closure relation

“Double zero” term and Poisson tensor of the R Lie-Poisson
bracket

R Lie-Poisson bracket of Hamiltonians, controlling involutivity
→ Corollary: equivalence of closure relation and
involutivity of Hamiltonians
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1. Review of some standard integrability frameworks

Infinite dimensional case: same ideas and structures apply!
• Hamiltonian/Lax pair relation for
Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy first observed
in FNR [Flaschka, Newell, Ratiu ’83], without knowledge of r-matrix.

• Presence of spectral parameter λ: work with loop algebras.

L(λ) =

∞∑
j=0

Ljλ
−j , Lj =

(
aj bj
cj −aj

)
∈ sl(2,C) , L0 = −iσ3 .

• Hierarchy of Hamiltonian flows/Lax equations reads

∂tkL(λ) = {L , Hk}R = [Mk(λ), L(λ)] , Mk(λ) = P+(λ
kL(λ))

Mk(λ) = λkL0 + · · ·+ Lk (Lax matrix for the tk flow)
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1. Review of some standard integrability frameworks

• t1, t2, t3 flows give NLS and mKdV systems for b1 = q,
c1 = r

NLS: i∂t2q +
1
2∂

2
t1q − q2r = 0, −i∂t2r − 1

2∂
2
t1r − qr2 = 0

mKdV: ∂t3q +
1
4∂

3
t1q −

3
2qr∂t1q = 0, ∂t3r +

1
4∂

3
t1r −

3
2qr∂t1r = 0
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3. How to construct a Lagrangian multiform?

• As before, our goal was to construct an entire Lagrangian
multiform for the AKNS hierarchy of Lax equations

∂tkL(λ) = [P+(λ
kL(λ)) , L(λ)] (4)

→ done in [Caudrelier, Stoppato ’21] thanks to some inspiration.

• Nijhoff’s idea of compounding a hierarchy using formal series

∂µ ≡
∞∑
k=0

1

µk+1
∂tk , ιµ

1

µ− λ
=

∞∑
k=00

λk

µk+1

allows us to write (4) compactly as a generating Lax
equation for integrable hierarchy

∂µL(λ) =

[
ιµ

1

µ− λ
L(µ), L(λ)

]
.
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3. How to construct a Lagrangian multiform?

• This leads to the idea of using a generating Lagrangian
multiform

L (λ, µ) =

∞∑
i,j=0

Lij

λi+1µj+1

• Then, inspired by [Zakharov, Mikhailov ’80] and precursor work
[Sleigh, Nijhoff, Caudrelier ’19], we proposed the following formula for
L (λ, µ):
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3. How to construct a Lagrangian multiform?

• L (λ, µ) = K(λ, µ)− V (λ, µ) with

K(λ, µ) = Tr
(
ϕ(µ)−1∂λϕ(µ)L0 − ϕ(λ)−1∂µϕ(λ)L0

)
,

V (λ, µ) = −1

2
Tr

(L(λ)− L(µ))2

λ− µ
.

• L0 = −iσ3

• ∂µ ≡
∞∑
k=0

1

µk+1
∂tk , ∂λ ≡

∞∑
k=0

1

λk+1
∂tk

• L(λ) = ϕ(λ)L0ϕ
−1(λ) formal dressing/coadjoint orbit

parametrisation
• ϕ(λ) = 1I +

∑∞
j=1

ϕj

λj : group element containing the
fields/phase space coordinates
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3. How to construct a Lagrangian multiform?

Theorem

L (λ, µ) is a Lagrangian multiform for the AKNS hierarchy
equations i.e.

δdL = 0 ⇔ ∂µL(λ) =

[
ιµ

1

µ− λ
L(µ), L(λ)

]
,

and dL = 0 on these equations (closure relation). In generating
form, the latter is equivalent to

∂νL (λ, µ) + ∂λL (µ, ν) + ∂µL (ν, λ) = 0.

• Componentwise

δLjk = 0 ⇔ ∂tjMk(λ)−∂tkMj(λ)+ [Mk(λ),Mj(λ)] = 0 j, k ≥ 0

where Lij easily obtained by taking residues

Lij = resλ resµ λ
iµjL (λ, µ)
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3. How to construct a Lagrangian multiform?

Example: Nonlinear Schrödinger and modified KdV in
Ablowitz-Kaup-Newell-Segur hierarchy for fields q, r. Times
t1(= x), t2, t3. Notations

∂ntiq ≡ qii...i , i = 1, 2, 3

NLS: q2 − i
2q11 + iq2r = 0 r2 +

i
2r11 − iqr2 = 0,

mKdV: q3 +
1
4q111 −

3
2qrq1 = 0 r3 +

1
4r111 −

3
2qrr1 = 0 .

Lagrangians

L12 =
1

2
(rq2 − qr2) +

i

2
q1r1 +

i

2
q2r2

L13 =
1

2
(rq3 − qr3)−

1

8
(r1q11 − q1r11)−

3

8
qr(rq1 − qr1)
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3. How to construct a Lagrangian multiform?

Key observations for a large generalisation:
→ Beyond a Lagrangian multiform for a single hierarchy.

1. The potential term in L (λ, µ) has a characteristic form

Tr12 (r12(λ, µ)L1(λ)L2(µ))

where r12(λ, µ) =
P12
µ−λ is the rational r-matrix.

→ How about replacing this particular r-matrix with another
(skew-symmetric) r-matrix?

Remark: this “avatar” of the r-matrix is related to linear map
R used before via

(RX)(λ) =

∮
dµ

2iπ
Tr2 (r12(λ, µ)X2(µ))

with X2(µ) = 1I⊗X(µ), r12(λ, µ) = rab(λ, µ)I
a ⊗ Ib.
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3. How to construct a Lagrangian multiform?

2. The choice of expanding all the objects as formal series in
1/λ and 1/µ is a sign that one is performing an expansion
around the point at infinity.

→ How about considering other points in CP 1?

3. The Pauli matrix in L0 = −iσ3 is a special choice of constant
element in the underlying loop algebra of sl(2,C) from which
the phase space is built as a (co)adjoint orbit.

→ How about considering other elements in the loop algebra to
construct different phase spaces and even considering other Lie
algebras than sl2?
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3. How to construct a Lagrangian multiform?

• Careful implementation of these observations involves using
the Lie algebra of g-valued adèles associated with a Lie
algebra g [Semenov-Tian-Shansky ’08].

• In a nutshell, with λa = λ− a for a ∈ C and λ∞ = 1
λ , we work

with tuples X(λ) = (Xa(λa))a∈CP 1 where all but finitely many
of the formal Laurent series Xa(λa) ∈ g⊗ C((λa)) are Taylor
series in λa.

• This framework allows for flexibility to work “locally” around
point in CP 1 while keeping the language of formal series with
coefficients in a Lie algebra g.
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3. How to construct a Lagrangian multiform?

Schematic implementation of the generalisation

sl(2,C) → g

∞ → S ⊂ CP 1

times tn → times tan , a ∈ S

∂λ =

∞∑
k=0

1

λk+1
∂tk → Dλa =

∑
n

λna∂tan

L(λ) → L(λ) = (La(λa))a∈CP 1

ϕ(λ) → ϕ(λ) = (ϕa(λa))a∈CP 1

L0 = −iσ3 → (ιλF (λ))− collection of principal parts
of g-valued rational function F (λ)

with poles in finite set S
P12
µ−λ → any skew-symmetric r-matrix r12(λ, µ)

L (λ, µ) → L (λ,µ) = collection of L a,b(λa, µb)
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L0 = −iσ3 → (ιλF (λ))− collection of principal parts
of g-valued rational function F (λ)

with poles in finite set S
P12
µ−λ → any skew-symmetric r-matrix r12(λ, µ)

L (λ, µ) → L (λ,µ) = collection of L a,b(λa, µb)
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3. How to construct a Lagrangian multiform?

Main results

Theorem

The generating Lax equation

DµL1(λ) =
[
Tr2

(
ιλιµr12(λ, µ)L2(µ)

)
,L1(λ)

]
. (5)

is variational: it derives from the multiform EL eqs for
L (λ,µ).
The flows (5) on the Lie algebra of g-valued adèles commute as
a consequence of the CYBE[
r12(λ, µ), r13(λ, ν)

]
+
[
r12(λ, µ), r23(µ, ν)

]
−
[
r13(λ, ν), r32(ν, µ)

]
= 0.
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3. How to construct a Lagrangian multiform?

Theorem

The closure relation in generating form

DνL (λ,µ) +DµL (ν,λ) +DλL (µ,ν) = 0

holds as a consequence of the CYBE equation.

→ CYBE cast in variational framework for the first
time
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3. How to construct a Lagrangian multiform?

If interested in models corresponding to specific times then:
• Extract elementary Lagrangians as

L a,b
m,n := resλa res

µ
b L a,b(λa, µb)λ

−m−1dλµ−n−1dµ

• Compute elementary Lax matrices V a
m(λ) similarly from

V (λ;µ) := Tr2
(
ιµr12(λ, µ)L2(µ)

)

• Then Euler-Lagrange eqs for L a,b
m,n equivalent to zero

curvature equation for times tam, tbn

∂tbnV
a
m(λ)− ∂tamV

b
n (λ) +

[
V a
m(λ), V b

n (λ)
]
= 0

→ Full integrable hierarchy in variational form.
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3. How to construct a Lagrangian multiform?

Procedure to get examples.

Choose:

(i) a skew-symmetric r-matrix (rational or trig for us),

(ii) an effective divisor D :=
∑

a∈S Naa, with support given by
a finite subset S ⊂ CP 1,

(ii) a Lie algebra g which for simplicity we take to be either
glN or slN ,

(iv) a g-valued rational function F (λ) ∈ Rλ(g) with poles
divisor (F )∞ = D, i.e. with a pole of order Na at each
point a ∈ S.
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3. How to construct a Lagrangian multiform?

Recovering the original AKNS example.

Fix the data as

S = {∞} , N∞ = 0 , g = sl2 , F (λ) = −iσ3 ,

and choose the rational r-matrix r12(λ, µ) =
P12
µ−λ .
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3. How to construct a Lagrangian multiform?

Sine-Gordon hierarchy

For the hierarchy of the sine-Gordon equation (in light-cone
coords)

uxy + sinu = 0 ,

we fix S = {0,∞}, N0 = 1 = N∞, g = sl(2,C),

F (λ) =
i

2

(
1

λ
σ+ + σ− − σ+ − λσ−

)
and we choose the trigonometric r-matrix

rtrig12 (λ, µ) =
1

2

(
P+
12 − P−

12 +
µ+ λ

µ− λ
P12

)
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3. How to construct a Lagrangian multiform?

We can derive all elementary Lagrangians. We find

LsG ≡ L 0,∞
00 = −1

4
uxuy −

1

2
cosu

LmKdV ≡ L ∞,∞
01 =

1

4
uxuz+

1

16
u4x−

1

4
u2xx−

i

4
∂x

(
1

6
u3x + iuxuxx

)

Lmixed ≡ L 0,∞
01 = −1

4
uyuz −

1

2
uxx(uxy + sinu) +

1

4
u2x cosu

− i

4
∂y

(
1

6
u3x + iuxuxx

)
Recover the results of [Suris ’16]. Can also derive all relevant Lax
matrices and zero curvature equations.
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3. How to construct a Lagrangian multiform?

Hierarchies of Zakharov-Mikhailov type
Correspond to Lax matrices of Zakharov-Shabat type: rational
Lax matrices with prescribed pole structures.

• In our setup, choose the following data

S = {a1, . . . , aP } ⊂ C , P > 0 , g = glN ,

F (λ) = −
P∑
i=1

ni∑
r=0

Air

(λ− ai)r+1
.

• Each Air ∈ glN is a non-dynamical constant matrix.

• r-matrix can be the rational (original Zakharov-Mikhailov
case) or trigonometric (new models). Even in rational case,
obtain full hierarchy, not just a single model/level.

Vincent Caudrelier Lagrangian multiforms



3. How to construct a Lagrangian multiform?

Most famous example: Faddeev-Reshetikhin version of
Principal chiral model

• 2 simple poles a, b = −a in S,

F (λ) = − A

(λ− a)
− B

(λ+ a)
.

• Lowest elementary Lax matrices for times ta−1 ≡ ξ, t−a
−1 ≡ η

V a
−1(λ) =

ϕAϕ−1

λ− a
≡ J0
λ− a

, V b
−1(λ) =

ψBψ−1

λ+ a
≡ J1
λ+ a

• Zero curvature equations

∂ηJ0 +
1

2a
[J0, J1] = 0 , ∂ξJ1 +

1

2a
[J0, J1] = 0 .

Vincent Caudrelier Lagrangian multiforms



3. How to construct a Lagrangian multiform?

Most famous example: Faddeev-Reshetikhin version of
Principal chiral model

• 2 simple poles a, b = −a in S,

F (λ) = − A

(λ− a)
− B

(λ+ a)
.

• Lowest elementary Lax matrices for times ta−1 ≡ ξ, t−a
−1 ≡ η

V a
−1(λ) =

ϕAϕ−1

λ− a
≡ J0
λ− a

, V b
−1(λ) =

ψBψ−1

λ+ a
≡ J1
λ+ a

• Zero curvature equations

∂ηJ0 +
1

2a
[J0, J1] = 0 , ∂ξJ1 +

1

2a
[J0, J1] = 0 .

Vincent Caudrelier Lagrangian multiforms



3. How to construct a Lagrangian multiform?

Most famous example: Faddeev-Reshetikhin version of
Principal chiral model

• 2 simple poles a, b = −a in S,

F (λ) = − A

(λ− a)
− B

(λ+ a)
.

• Lowest elementary Lax matrices for times ta−1 ≡ ξ, t−a
−1 ≡ η

V a
−1(λ) =

ϕAϕ−1

λ− a
≡ J0
λ− a

, V b
−1(λ) =

ψBψ−1

λ+ a
≡ J1
λ+ a

• Zero curvature equations

∂ηJ0 +
1

2a
[J0, J1] = 0 , ∂ξJ1 +

1

2a
[J0, J1] = 0 .

Vincent Caudrelier Lagrangian multiforms



3. How to construct a Lagrangian multiform?

• We get the lowest elementary Lagrangian as

L ab
−1−1 = Tr

(
ϕ−1∂ηϕA− ψ−1∂ξψB − ϕAϕ−1 ψBψ−1

2a

)
.
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3. How to construct a Lagrangian multiform?

Coupling models/hierarchies

• Procedure produces new models/hierarchies that are
automatically integrable. NB: not the same as taking
combination of flows within a hierarchy.

• Example: couple nonlinear Schrödinger to
Faddeev-Reshetikhin model

S = {a,−a,∞} , a ∈ C× , Na = Nb = 1 , N∞ = 0 , g = sl2 ,

F (λ) = −iασ3 +
A

λ− a
+

B

λ+ a
≡ αFAKNS(λ) + FFR(λ) ,

where A,B are constant sl2 matrices.

• α couples the two theories: α = 0 gives a pure FR theory
while sending α to infinity produces a pure AKNS hierarchy.
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3. How to construct a Lagrangian multiform?

• Equations of motion at lowest level in the hierarchy:

α∂xL1 + iα2[σ3, L2] + iα[J0, σ3] = 0 ,

α∂tL1 − α∂xL2 + α2[L1, L2]−iaα[J0, σ3]−iα[σ3, J1]+α[J0, L1] = 0 .

∂tJ0 +
1

2a
[J0, J1] + α [J0, VNLS(a)] = 0 ,

∂xJ1 +
1

2a
[J0, J1]− α [UNLS(−a), J1] = 0 ,

Nonlinear Schrödinger part
Faddeev-Reshetikhin part
Coupling between them
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4. Conclusions and Perspectives

• Lagrangians are back at the foundations of integrable systems.

• By looking for an efficient method to construct multiforms,
we could dive further into the structure of the theory and its
connection with well established Hamiltonian features:

- established an important identity linking the closure relation
with the involutivity of Hamiltonians.

- Cast the classical Yang-Baxter equation into a variational
framework and showed its connection to the closure relation.

- provided a construction of a very large class of Lagrangian
multiforms for finite or infinite dimensional hierarchies, from a
small set of data. They include all examples amenable to the
Semenov-Tian-Shansky’s construction, with the exception of
non-ultralocal field theories.

- Found new integrable hierarchies (trigonometric ZM) and a
mechanism to couple hierarchies very easily.
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4. Conclusions and Perspectives

• Some open questions: from specific to general

- Systems such as Calogero-Moser or Ruijsenaars models do not
seem to fit in our construction but they are known to be
derivable from Hamiltonian reduction ideas. Could we use this
to derive Lagrangian multiforms for these systems? Compare
with known results.

• closure relation equivalence to {Hi, Hj} = 0 also established
in field theory [Vermeeren ’21].
→ Non covariant nature of Hamiltonians Hi in field theory
suggests that covariant Hamiltonians Hij should play a role.
For 1 + 1 field theories, closure relation equivalent to

∂tkHij + ∂tjHki + ∂tiHjk = 0

but open problem: covariant Poisson bracket formulation in
terms of Hij?
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4. Conclusions and Perspectives

- In a sense, our construction is “sufficient”. Could we imagine
a sort of converse under (mild) assumptions i.e. prove that if
the multi-time EL eqs and closure relation are imposed on a
given Lagrangian form, then necessarily the algebraic structures
we used appear naturally? Related to general classification
problem. Also, to my knowledge, one could pose the same
problem in Hamiltonian framework? It is obvious that a full
converse is impossible (i.e. classical r-matrix is not a necessary
structure) since there exists integrable systems with dynamical
r-matrices which are not captured by our construction.

- Another big challenge: develop the geometry of Lagrangian/
Hamiltonian multiforms to establish a Liouville theorem in
infinite dimensions?
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4. Conclusions and Perspectives

• Ulterior motive: quantisation of integrable (field) theories
via Feynman path integrals: develop a Lagrangian
counterpart of impressive developments of the Quantum Inverse
Scattering Method/Algebraic Bethe Ansatz.

→ Maybe not just a reformulation of known results but could
open the way to the quantization of non ultralocal theories
which conventional QISM framework cannot treat. Yet another
big challenge.

It would be very interesting to see what role Andrew Kels’s
results play in this programme.

Could the interplay with certain gauge theories (BF or
Chern-Simons) be useful? (cf. Benoit Vicedo’s talk yesterday)
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THANK YOU!
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