Discrete Lagrangian multiforms on the difference variational bicomplex

Linyu Peng

Department of Mechanical Engineering
 Keio University

＂Lagrangian Multiform Theory and Pluri－Lagrangian System＂ IASM，Hangzhou，22－27 October 2023

Based on joint works with Peter Hydon（Kent）and Frank Nijhoff（Leeds）

Discrete integrable systems: closure relation

A review of the differential variational bicomplex

Construction of the difference variational bicomplex

Discrete Lagrangian multiforms

Closure relation of discrete integrable systems: H1 eq.

- Let m, n be two discrete independent variables and let $u=u(m, n)$ be the dependent variable.
- Shifts of u will be denoted by $u_{i, j}=u(m+i, n+j)$, e.g., $u_{1,0}=u(m+1, n), u_{0,1}=u(m, n+1)$, etc.

Closure relation of discrete integrable systems: H1 eq.

- Let m, n be two discrete independent variables and let $u=u(m, n)$ be the dependent variable.
- Shifts of u will be denoted by $u_{i, j}=u(m+i, n+j)$, e.g., $u_{1,0}=u(m+1, n), u_{0,1}=u(m, n+1)$, etc.

Example. H1 (lattice potential KdV, 3-leg form) equation

$$
u_{1,0}-u_{0,1}-\frac{\alpha-\beta}{u-u_{1,1}}=0
$$

Closure relation of discrete integrable systems: H1 eq.

- (Discrete) Lagrangian [Capel-Nijhoff-Papageorgiou, 1991]:

$$
L\left(u, u_{1,0}, u_{0,1} ; \alpha, \beta\right)=\left(u_{1,0}-u_{0,1}\right) u-(\alpha-\beta) \ln \left(u_{1,0}-u_{0,1}\right)
$$

Closure relation of discrete integrable systems: H1 eq.

- (Discrete) Lagrangian [Capel-Nijhoff-Papageorgiou, 1991]:

$$
L\left(u, u_{1,0}, u_{0,1} ; \alpha, \beta\right)=\left(u_{1,0}-u_{0,1}\right) u-(\alpha-\beta) \ln \left(u_{1,0}-u_{0,1}\right)
$$

- Closure relation [Lobb-Nijhoff, 2009]:

$$
\left(\mathrm{S}_{3}-\mathrm{id}\right) L_{12}+\left(\mathrm{S}_{2}-\mathrm{id}\right) L_{31}+\left(\mathrm{S}_{1}-\mathrm{id}\right) L_{23}=0 \text { on solutions }
$$

where

$$
\begin{aligned}
L_{12} & =L\left(u, u_{1,0,0}, u_{0,1,0} ; \alpha, \beta\right) \\
L_{31} & =L\left(u, u_{0,0,1}, u_{1,0,0} ; \gamma, \alpha\right), L_{23}=L\left(u, u_{0,1,0}, u_{0,0,1} ; \beta, \gamma\right)
\end{aligned}
$$

A review of the differential variational bicomplex

[Vinogradov, 1977, 1978, 1984]; [Tulczyjev, 1980]; [Tsujishita, 1982]; [Olver, 1986]; [Anderson, 1989]; [Kogan-Olver, 2003]; ...

A review of the differential variational bicomplex

[Vinogradov, 1977, 1978, 1984]; [Tulczyjev, 1980]; [Tsujishita, 1982]; [Olver, 1986]; [Anderson, 1989]; [Kogan-Olver, 2003]; ...

- Consider a trivial bundle $\pi: X \times U \rightarrow X$ with $\pi(\mathbf{x}, \mathbf{u})=\mathbf{x}$:
- $\mathbf{x}=\left(x^{1}, \ldots, x^{p}\right) \in X \subset \mathbb{R}^{p}$ (independent variables)
- $\mathbf{u}=\left(u^{1}, \ldots, u^{q}\right) \in U \subset \mathbb{R}^{q}$ (dependent variables)
- Solution $\mathbf{u}=f(\mathbf{x})$ of a DE is interpreted as a local section $s(\mathbf{x})=(\mathbf{x}, f(\mathbf{x}))$.

A review of the differential variational bicomplex

[Vinogradov, 1977, 1978, 1984]; [Tulczyjev, 1980]; [Tsujishita, 1982]; [Olver, 1986]; [Anderson, 1989]; [Kogan-Olver, 2003]; ...

- Consider a trivial bundle $\pi: X \times U \rightarrow X$ with $\pi(\mathbf{x}, \mathbf{u})=\mathbf{x}:$
- $\mathbf{x}=\left(x^{1}, \ldots, x^{p}\right) \in X \subset \mathbb{R}^{p}$ (independent variables)
- $\mathbf{u}=\left(u^{1}, \ldots, u^{q}\right) \in U \subset \mathbb{R}^{q}$ (dependent variables)
- Solution $\mathbf{u}=f(\mathbf{x})$ of a DE is interpreted as a local section $s(\mathbf{x})=(\mathbf{x}, f(\mathbf{x}))$.
- A DE defines a submanifold of prolonged jet bundles; in particular, the infinite jet bundle $J^{\infty}(X \times U)$ is coordinated by

$$
\left(x^{i}, u^{\alpha}, u_{1_{i}}^{\alpha}, \ldots, u_{\mathbf{J}}^{\alpha}, \ldots\right)
$$

where a section $s(\mathbf{x})=(\mathbf{x}, f(\mathbf{x}))$ is prolonged to

$$
\left(u_{i}^{\alpha}=\right) u_{\mathbf{1}_{i}}^{\alpha}=\frac{\partial f^{\alpha}(x)}{\partial x^{i}}, \quad \ldots, \quad u_{\mathbf{J}}^{\alpha}=\frac{\partial^{|\mathbf{J}|} f^{\alpha}(x)}{\partial\left(x^{1}\right)^{j_{1}} \partial\left(x^{2}\right)^{j_{2}} \ldots \partial\left(x^{p}\right)^{j_{p}}}
$$

- Here $\mathbf{1}_{i}=(0, \ldots, 1, \ldots, 0), \mathbf{J}=\left(j_{1}, j_{2}, \ldots, j_{p}\right)$ and $|\mathbf{J}|=j_{1}+j_{2}+\cdots+j_{p}$.
- Let $[\mathbf{u}]$ denote \mathbf{u} and finitely many of their partial derivatives, e.g. $([\mathbf{u}])=\left(u^{\alpha}, u_{1_{i}}^{\alpha}, \ldots, u_{\mathbf{K}}^{\alpha}\right)$.
- The differential of a function $F(\mathbf{x},[\mathbf{u}])$ on $J^{\infty}(X \times U)$ is

$$
\begin{aligned}
\mathrm{d} F(\mathbf{x},[\mathbf{u}]) & =\frac{\partial F}{\partial x^{i}} \mathrm{~d} x^{i}+\frac{\partial F}{\partial u_{\mathbf{J}}^{\alpha}} \mathrm{d} u_{\mathbf{J}}^{\alpha} \\
& =\left(\mathrm{D}_{i} F\right) \mathrm{d} x^{i}+\frac{\partial F}{\partial u_{\mathbf{J}}^{\alpha}}\left(\mathrm{d} u_{\mathbf{J}}^{\alpha}-u_{\mathbf{J}+\mathbf{1}_{i}}^{\alpha} \mathrm{d} x^{i}\right),
\end{aligned}
$$

where the total derivative is

$$
\mathrm{D}_{i}=\frac{\partial}{\partial x^{i}}+u_{1_{i}}^{\alpha} \frac{\partial}{\partial u^{\alpha}}+\cdots+u_{\mathbf{J}+1_{i}}^{\alpha} \frac{\partial}{\partial u_{\mathbf{J}}^{\alpha}}+\cdots .
$$

- This allows a splitting of the exterior derivative $d=d_{h}+d_{v}$ with
- Horizontal operator: $\mathrm{d}_{\mathrm{h}}:=\mathrm{d} x^{i} \wedge \mathrm{D}_{i}$
- Vertical operator: $\mathrm{d}_{\mathrm{v}}:=\left(\mathrm{d} u_{\mathrm{J}}^{\alpha}-u_{\mathrm{J}+\mathbf{1}_{i}}^{\alpha} \mathrm{d} x^{i}\right) \wedge \frac{\partial}{\partial u_{\mathrm{J}}^{\alpha}}$
- A basis for one-forms on $J^{\infty}(X \times U)$ can then be chosen as

$$
\left\{\mathrm{d} x^{i}\right\}
$$

and the contact forms

$$
\left\{\mathrm{d}_{\mathrm{v}} u^{\alpha}=\mathrm{d} u^{\alpha}-u_{1_{i}}^{\alpha} \mathrm{d} x^{i}, \quad \ldots, \quad \mathrm{~d}_{\mathrm{v}} u_{\mathbf{J}}^{\alpha}=\mathrm{d} u_{\mathbf{J}}^{\alpha}-u_{\mathrm{J}+1_{i}}^{\alpha} \mathrm{d} x^{i}, \quad \ldots\right\} .
$$

This basis extends to a basis for the set of all differential forms on $J^{\infty}(X \times U)$, denoted by Ω, using the wedge product.

- A basis for one-forms on $J^{\infty}(X \times U)$ can then be chosen as

$$
\left\{\mathrm{d} x^{i}\right\}
$$

and the contact forms

$$
\left\{\mathrm{d}_{\mathrm{v}} u^{\alpha}=\mathrm{d} u^{\alpha}-u_{1_{i}}^{\alpha} \mathrm{d} x^{i}, \quad \ldots, \quad \mathrm{~d}_{\mathrm{v}} u_{\mathbf{J}}^{\alpha}=\mathrm{d} u_{\mathbf{J}}^{\alpha}-u_{\mathbf{J}+\mathbf{1}_{i}}^{\alpha} \mathrm{d} x^{i}, \quad \ldots\right\} .
$$

This basis extends to a basis for the set of all differential forms on $J^{\infty}(X \times U)$, denoted by Ω, using the wedge product.

- From $\mathrm{d}^{2}=0$, direct calculations lead to

$$
\mathrm{d}_{\mathrm{h}}^{2}=0, \quad \mathrm{~d}_{\mathrm{h}} \mathrm{~d}_{\mathrm{v}}=-\mathrm{d}_{\mathrm{v}} \mathrm{~d}_{\mathrm{h}}, \quad \mathrm{~d}_{\mathrm{v}}^{2}=0
$$

- A basis for one-forms on $J^{\infty}(X \times U)$ can then be chosen as

$$
\left\{\mathrm{d} x^{i}\right\}
$$

and the contact forms

$$
\left\{\mathrm{d}_{\mathrm{v}} u^{\alpha}=\mathrm{d} u^{\alpha}-u_{1_{i}}^{\alpha} \mathrm{d} x^{i}, \quad \ldots, \quad \mathrm{~d}_{\mathrm{v}} u_{\mathbf{J}}^{\alpha}=\mathrm{d} u_{\mathbf{J}}^{\alpha}-u_{\mathbf{J}+1_{i}}^{\alpha} \mathrm{d} x^{i}, \quad \ldots\right\} .
$$

This basis extends to a basis for the set of all differential forms on $J^{\infty}(X \times U)$, denoted by Ω, using the wedge product.

- From $\mathrm{d}^{2}=0$, direct calculations lead to

$$
\mathrm{d}_{\mathrm{h}}^{2}=0, \quad \mathrm{~d}_{\mathrm{h}} \mathrm{~d}_{\mathrm{v}}=-\mathrm{d}_{\mathrm{v}} \mathrm{~d}_{\mathrm{h}}, \quad \mathrm{~d}_{\mathrm{v}}^{2}=0
$$

- A $(k+l)$-form ω is said to be of type (k, l) if it can be written as

$$
\omega=f_{i_{1}, \ldots, i_{k} ; \alpha_{1}, \ldots, \alpha_{l}}^{\mathbf{J}_{1}, \ldots, \mathbf{J}_{l}}(\mathbf{x},[\mathbf{u}]) \mathrm{d}_{\mathrm{h}} x^{i_{1}} \wedge \cdots \wedge \mathrm{~d}_{\mathrm{h}} x^{i_{k}} \wedge \mathrm{~d}_{\mathrm{v}} u_{\mathbf{J}_{1}}^{\alpha_{1}} \wedge \cdots \mathrm{~d}_{\mathrm{h}} u_{\mathbf{J}_{l}}^{\alpha_{l}} .
$$

Denote all (k, l)-forms over $J^{\infty}(X \times U)$ as $\Omega^{k, l}$ and

$$
\mathrm{d}_{\mathrm{h}}: \Omega^{k, l} \rightarrow \Omega^{k+1, l}, \quad \mathrm{~d}_{\mathrm{v}}: \Omega^{k, l} \rightarrow \Omega^{k, l+1}
$$

yield a double complex.

The (differential) variational bicomplex

Cohomology of the variational bicomplex

Note: For a cochain complex

$$
\cdots \rightarrow A_{i-1} \xrightarrow{\mathrm{~d}_{i-1}} A_{i} \xrightarrow{\mathrm{~d}_{i}} A_{i+1} \rightarrow \cdots,
$$

its cohomology groups are

$$
H^{i}:=\frac{\operatorname{kerd}_{i}}{\operatorname{imd}_{i-1}}
$$

Cohomology of the variational bicomplex

Note: For a cochain complex

$$
\cdots \rightarrow A_{i-1} \xrightarrow{\mathrm{~d}_{i-1}} A_{i} \xrightarrow{\mathrm{~d}_{i}} A_{i+1} \rightarrow \cdots,
$$

its cohomology groups are

$$
H^{i}:=\frac{\operatorname{kerd}_{i}}{\operatorname{imd}_{i-1}}
$$

Theorems. [Vinogradov, 1984]

- Empty equation/free case: One-line theorem
\dagger Only horizontal cohomologies at the last column are nontrivial.
- ℓ-normal equations: Two-line theorem (e.g. Kovalevskaya type of equations)
\dagger Symmetries are in the kernel of the linearization operator, while conservation laws (co-symmetries) are in the kernel of its adjoint. \dagger Euler-Lagrange equations are self-adjoint \longrightarrow Noether's theorem
- Non ℓ-normal equations: Three-line theorem (e.g. Maxwell, Yang-Mills, Einstein equations)

The augmented variational bicomplex (empty equation)

- The interior Euler operator is

$$
\left.\mathcal{I}(\omega):=\frac{1}{l} \mathrm{~d}_{\mathbf{v}} u^{\alpha} \wedge(-\mathrm{D})_{\mathbf{J}}\left(\frac{\partial}{\partial u_{\mathbf{J}}^{\alpha}}\right\lrcorner \omega\right), \quad \forall \omega \in \Omega^{p, l}, \quad l \geq 1,
$$

where $(-\mathrm{D})_{\mathbf{J}}=(-1)^{|\mathbf{J}|} \mathrm{D}_{\mathbf{J}}$ is adjoint to $\mathrm{D}_{\mathbf{J}}=\mathrm{D}_{1}^{j_{1}} \mathrm{D}_{2}^{j_{2}} \cdots \mathrm{D}_{p}^{j_{p}}$ for $\mathbf{J}=\left(j_{1}, j_{2}, \ldots, j_{p}\right)$.

- The interior Euler operator is a projection, namely $\mathcal{I}^{2}=\mathcal{I}$, and $\mathscr{F}^{l}=\mathcal{I}\left(\Omega^{p, l}\right) \subset \Omega^{p, l}$.
- The Euler-Lagrange operator is given by $\mathcal{E}:=\mathcal{I} \mathrm{d}_{\mathrm{v}}$ and define $\delta:=\mathcal{I} \mathrm{d}_{\mathrm{v}}$.
- The interior Euler operator is a projection, namely $\mathcal{I}^{2}=\mathcal{I}$, and $\mathscr{F}^{l}=\mathcal{I}\left(\Omega^{p, l}\right) \subset \Omega^{p, l}$.
- The Euler-Lagrange operator is given by $\mathcal{E}:=\mathcal{I} \mathrm{d}_{\mathrm{v}}$ and define $\delta:=\mathcal{I} \mathrm{d}_{\mathrm{v}}$.

Theorem. The following properties hold that

$$
\mathcal{I} \mathrm{d}_{\mathrm{h}}=0, \quad \mathcal{E} \mathrm{~d}_{\mathrm{h}}=0, \quad \delta \mathcal{E}=0, \quad \delta^{2}=0
$$

The resulting augmented variational bicomplex is exact providing the base manifold is contractible (following the Poincaré Lemma).

- The interior Euler operator is a projection, namely $\mathcal{I}^{2}=\mathcal{I}$, and $\mathscr{F}^{l}=\mathcal{I}\left(\Omega^{p, l}\right) \subset \Omega^{p, l}$.
- The Euler-Lagrange operator is given by $\mathcal{E}:=\mathcal{I} \mathrm{d}_{\mathrm{v}}$ and define $\delta:=\mathcal{I} \mathrm{d}_{\mathrm{v}}$.

Theorem. The following properties hold that

$$
\mathcal{I} \mathrm{d}_{\mathrm{h}}=0, \quad \mathcal{E} \mathrm{~d}_{\mathrm{h}}=0, \quad \delta \mathcal{E}=0, \quad \delta^{2}=0
$$

The resulting augmented variational bicomplex is exact providing the base manifold is contractible (following the Poincaré Lemma).

Remark. The boundary complex is called the Euler-Lagrange complex or the variational complex. When $p=3$, it is

$$
0 \longrightarrow \mathbb{R} \longrightarrow \Omega^{0} \longrightarrow \Omega^{1} \longrightarrow \Omega^{2} \longrightarrow \Omega^{3} \longrightarrow \mathscr{F}^{1} \longrightarrow \mathscr{F}^{2} \longrightarrow \cdots
$$

Grad Curl Div Euler Helmholtz

The augmented variational bicomplex

- Lagrangian forms: $\Omega^{p, 0}$ \& Euler-Lagrange equations: \mathscr{F}^{1}
- Conservation Laws: $\Omega^{p-1,0} \longleftrightarrow$ Symmetries
- Helmholtz conditions: $\mathscr{F}^{2} \longleftrightarrow$ Inverse problems
- Lagrangian k-forms: $\Omega^{k, 0} \longleftarrow$ Integrability

The difference variational bicomplex

LP, From Differential to Difference: The Variational Bicomplex and Invariant Noether's Theorems, Ph.D. Thesis, University of Surrey, 2013.
LP-Hydon, The difference variational bicomplex and multisymplectic systems, arXiv:2307.13935, 2023.

The difference variational bicomplex

LP, From Differential to Difference: The Variational Bicomplex and Invariant Noether's Theorems, Ph.D. Thesis, University of Surrey, 2013.
LP-Hydon, The difference variational bicomplex and multisymplectic systems, arXiv:2307.13935, 2023.

Some challenges:

- Discrete counterpart of jet spaces (differentiable manifolds)
- Arrange differential and difference forms into horizontal and vertical forms \checkmark
- Cohomology
- One-line theorem: variational calculus, inverse problem, Noether's theorem \checkmark
- Two-line theorem: conservation laws (cosymmetries) of normal equations ([Mikhailov-Wang-Xenitidis, 2011] on cosymmetries)
- Three-line theorem

The total prolongation space (discrete counterpart of jets)
[Mansfield-Rojo-Echeburúa-Hydon-LP, 2019], [LP-Hydon, 2023]

The total prolongation space (discrete counterpart of jets)

[Mansfield-Rojo-Echeburúa-Hydon-LP, 2019], [LP-Hydon, 2023]

- Consider a $\mathrm{P} \Delta \mathrm{E}$ with p independent variables $\mathbf{n}=\left(n^{1}, \ldots, n^{p}\right) \in \mathbb{Z}^{p}$, and q dependent variables $\mathbf{u}=\left(u^{1}, \ldots, u^{q}\right) \in \mathbb{R}^{q}$. They form a total space $\mathbb{Z}^{p} \times \mathbb{R}^{q}$.

The total prolongation space (discrete counterpart of jets)

[Mansfield-Rojo-Echeburúa-Hydon-LP, 2019], [LP-Hydon, 2023]

- Consider a $\mathrm{P} \Delta \mathrm{E}$ with p independent variables $\mathbf{n}=\left(n^{1}, \ldots, n^{p}\right) \in \mathbb{Z}^{p}$, and q dependent variables $\mathbf{u}=\left(u^{1}, \ldots, u^{q}\right) \in \mathbb{R}^{q}$. They form a total space $\mathbb{Z}^{p} \times \mathbb{R}^{q}$.

- Fibres are mapped to one another by translations $\left(\mathbf{J} \in \mathbb{Z}^{p}\right)$

$$
\begin{aligned}
\mathrm{T}_{\mathbf{J}}: \mathbb{Z}^{p} \times \mathbb{R}^{q} & \rightarrow \mathbb{Z}^{p} \times \mathbb{R}^{q} \\
(\mathbf{n}, \mathbf{u}) & \mapsto(\mathbf{n}+\mathbf{J}, \mathbf{u}) .
\end{aligned}
$$

- As the total space is disconnected, it is necessary to construct a connected representative over each base point. We prolong each fibre to include values over all other fibres in a Cartesian product by pulling back each \mathbf{u} using $\mathrm{T}_{\mathbf{J}}$:

$$
u_{\mathbf{J}}^{\alpha}=\mathrm{T}_{\mathbf{J}}^{*}\left(\left.u^{\alpha}\right|_{\mathbf{n}+\mathbf{J}}\right)
$$

This gives the (connected) total prolongation space $P\left(\mathbb{R}^{q}\right)$ over an arbitrary base point with local coordinates $\left(\ldots, u_{\mathbf{J}}^{\alpha}, \ldots\right)$.

- Let f be a function on $\mathbb{Z}^{p} \times P\left(\mathbb{R}^{q}\right)$. Its restriction to each total prolongation space $P_{\mathbf{n}}\left(\mathbb{R}^{q}\right)$ is denoted by

$$
f_{\mathbf{n}}\left(\ldots, u_{\mathbf{J}}^{\alpha}, \ldots\right)=f\left(\mathbf{n}, \ldots, u_{\mathbf{J}}^{\alpha}, \ldots\right)
$$

The pullback of $f_{\mathbf{n + K}}\left(\ldots, u_{\mathbf{J}}^{\alpha}, \ldots\right)$ defined in $P_{\mathbf{n}+\mathbf{K}}\left(\mathbb{R}^{q}\right)$ with respect to $\mathrm{T}_{\mathbf{K}}$ is the function

$$
\mathrm{T}_{\mathbf{K}}^{*} f_{\mathbf{n}+\mathbf{K}}\left(\ldots, u_{\mathbf{J}}^{\alpha}, \ldots\right)=f\left(\mathbf{n}+\mathbf{K}, \ldots, u_{\mathbf{J}+\mathbf{K}}^{\alpha}, \ldots\right)
$$

on $P_{\mathbf{n}}\left(\mathbb{R}^{q}\right)$.

Shift operators

The shift operator $\mathrm{S}_{\mathbf{K}}$ is defined by $\mathrm{S}_{\mathbf{K}} f_{\mathbf{n}}=\mathrm{T}_{\mathbf{K}}^{*} f_{\mathbf{n}+\mathbf{K}}$:

$$
\mathrm{S}_{\mathbf{K}}: f\left(\mathbf{n}, \ldots, u_{\mathbf{J}}^{\alpha}, \ldots\right) \mapsto f\left(\mathbf{n}+\mathbf{K}, \ldots, u_{\mathbf{J}+\mathbf{K}}^{\alpha}, \ldots\right),
$$

where both $f_{\mathbf{n}}$ and $\mathrm{S}_{\mathrm{K}} f_{\mathrm{n}}$ are functions in $P_{\mathbf{n}}\left(\mathbb{R}^{q}\right)$.

Shift operators

The shift operator $\mathrm{S}_{\mathbf{K}}$ is defined by $\mathrm{S}_{\mathbf{K}} f_{\mathbf{n}}=\mathrm{T}_{\mathbf{K}}^{*} f_{\mathbf{n}+\mathbf{K}}$:

$$
\mathrm{S}_{\mathbf{K}}: f\left(\mathbf{n}, \ldots, u_{\mathbf{J}}^{\alpha}, \ldots\right) \mapsto f\left(\mathbf{n}+\mathbf{K}, \ldots, u_{\mathbf{J}+\mathbf{K}}^{\alpha}, \ldots\right),
$$

where both f_{n} and $\mathrm{S}_{\mathrm{K}} f_{\mathrm{n}}$ are functions in $P_{\mathbf{n}}\left(\mathbb{R}^{q}\right)$.

- For any $\mathbf{K}=\left(k_{1}, \ldots, k_{p}\right), \mathrm{S}_{\mathbf{K}}=\mathrm{S}_{1}^{k_{1}} \cdots \mathrm{~S}_{p}^{k_{p}}$ where $\mathrm{S}_{i}=\mathrm{S}_{\mathbf{1}_{i}}$
- The forward difference in the n^{i}-direction is represented on $P_{\mathbf{n}}\left(\mathbb{R}^{q}\right)$ by the operator

$$
\mathrm{D}_{n^{i}}=\mathrm{S}_{i}-\mathrm{id}
$$

- Adjoint operators:

$$
\mathrm{S}_{\mathbf{K}}^{\dagger}=\mathrm{S}_{-\mathbf{K}}, \quad \mathrm{D}_{n^{i}}^{\dagger}=-\mathrm{S}_{i}^{-1} \mathrm{D}_{n^{i}}
$$

Differential forms

- Let ω be a differential form on $\mathbb{Z}^{p} \times P\left(\mathbb{R}^{q}\right)$ whose restriction to $P_{\mathbf{n}}\left(\mathbb{R}^{q}\right)$ is $\omega_{\mathbf{n}}$. The action of $\mathrm{S}_{\mathbf{K}}$ on $\omega_{\mathbf{n}}$ is represented by

$$
\mathrm{S}_{\mathbf{K}} \omega_{\mathbf{n}}=\mathrm{T}_{\mathbf{K}}^{*} \omega_{\mathbf{n}+\mathbf{K}} .
$$

- S_{K} commutes with the wedge product and with the exterior derivative, denoted by d_{v} :

$$
\mathrm{S}_{\mathbf{K}}\left(\omega_{1} \wedge \omega_{2}\right)=\left(\mathrm{S}_{\mathbf{K}} \omega_{1}\right) \wedge\left(\mathrm{S}_{\mathbf{K}} \omega_{2}\right), \quad \mathrm{S}_{\mathbf{K}}\left(\mathrm{d}_{\mathbf{V}} \omega\right)=\mathrm{d}_{\mathrm{v}}\left(\mathrm{~S}_{\mathbf{K}} \omega\right) .
$$

Difference forms

Exterior algebra of p symbols, $\Delta^{1}, \ldots, \Delta^{p}$ ([Kupershmidt, 1985]; [Hydon-Mansfield, 2004]).

- Invariance with respect to shifts: $\left.\Delta^{i}\right|_{\mathbf{n}}=\mathrm{T}_{\mathbf{K}}^{*}\left(\left.\Delta^{i}\right|_{\mathbf{n}+\mathbf{K}}\right)=: \mathrm{S}_{\mathbf{K}}\left(\Delta^{i}{ }_{\mathbf{n}}\right)$
- Exterior difference operator is defined by

$$
\boldsymbol{\Delta} \omega=\Delta^{i} \wedge \mathrm{D}_{n^{i} \omega}
$$

for a difference k-form over $\mathbb{Z}^{p} \times P\left(\mathbb{R}^{q}\right)$

$$
\omega=f_{i_{1}, \ldots, i_{k}}\left(\mathbf{n}, \ldots, u_{\mathbf{J}}^{\alpha}, \ldots\right) \Delta^{i_{1}} \wedge \cdots \wedge \Delta^{i_{k}}
$$

Differential-difference forms

Using $[\mathbf{u}]$ to denote a finite subset of $\left(\ldots, u_{\mathbf{J}}^{\alpha}, \ldots\right)$, a (k, l)-form over $\mathbb{Z}^{p} \times P\left(\mathbb{R}^{q}\right)$ is a $(k+l)$-form, $\omega \in \Omega^{k, l}$, that can be written as

$$
\omega=f_{i_{1}, \ldots, i_{k} ; \alpha_{1}, \ldots, \alpha_{l}}^{\mathbf{J}_{1}, \ldots, \mathbf{J}_{\mathbf{l}}}(\mathbf{n},[\mathbf{u}]) \Delta^{i_{1}} \wedge \cdots \wedge \Delta^{i_{k}} \wedge \mathrm{~d}_{\mathbf{v}} u_{\mathbf{J}_{1}}^{\alpha_{1}} \wedge \cdots \wedge \mathrm{~d}_{\mathrm{v}} u_{\mathbf{J}_{l}}^{\alpha_{l}} .
$$

Differential-difference forms

Using $[\mathbf{u}]$ to denote a finite subset of $\left(\ldots, u_{\mathbf{J}}^{\alpha}, \ldots\right)$, a (k, l)-form over $\mathbb{Z}^{p} \times P\left(\mathbb{R}^{q}\right)$ is a $(k+l)$-form, $\omega \in \Omega^{k, l}$, that can be written as

$$
\omega=f_{i_{1}, \ldots, i_{k} ; \alpha_{1}, \ldots, \alpha_{l}}^{\mathbf{J}_{1}, \ldots \mathbf{J}_{l}}(\mathbf{n},[\mathbf{u}]) \Delta^{i_{1}} \wedge \cdots \wedge \Delta^{i_{k}} \wedge \mathrm{~d}_{\mathbf{v}} u_{\mathbf{J}_{1}}^{\alpha_{1}} \wedge \cdots \wedge \mathrm{~d}_{\mathbf{v}} u_{\mathbf{J}_{l}}^{\alpha_{l}} .
$$

- (Vertical) exterior derivative $\mathrm{d}_{\mathrm{v}}: \Omega^{k, l} \rightarrow \Omega^{k, l+1}$:

$$
\mathrm{d}_{\mathrm{v}} \omega=\frac{\partial f_{i_{1}, \ldots, k_{k} ; \alpha_{1}, \ldots, \alpha_{l}}^{\mathbf{J}_{1}, \ldots, \mathbf{J}^{\prime}}}{\partial u_{\mathbf{K}}^{\beta}} \mathrm{d}_{\mathrm{v}} u_{\mathbf{K}}^{\beta} \wedge \Delta^{i_{1}} \wedge \cdots \wedge \Delta^{i_{k}} \wedge \mathrm{~d}_{\mathrm{v}} u_{\mathbf{J}_{1}}^{\alpha_{1}} \wedge \cdots \wedge \mathrm{~d}_{\mathrm{v}} u_{\mathbf{J}_{l}}^{\alpha_{l}}
$$

- (Horizontal) exterior difference $\mathrm{d}_{\mathrm{h}}^{\Delta}: \Omega^{k, l} \rightarrow \Omega^{k+1, l}$:

$$
\mathrm{d}_{\mathrm{h}}^{\Delta} \omega=\Delta^{i} \wedge \mathrm{D}_{n^{i}} \omega
$$

where

$$
\mathrm{S}_{\mathbf{K}} \omega=\mathrm{S}_{\mathbf{K}}\left(f_{i_{1}, \ldots, i_{k} ; \alpha_{1}, \ldots, \alpha_{l}}^{\mathbf{J}_{1}, \ldots, \mathbf{J}_{l}}\right) \Delta^{i_{1}} \wedge \cdots \wedge \Delta^{i_{k}} \wedge \mathrm{~d}_{\mathbf{v}} u_{\mathbf{J}_{\mathbf{1}}+\mathbf{K}}^{\alpha_{1}} \wedge \cdots \wedge \mathrm{~d}_{\mathbf{v}} u_{\mathbf{J}_{l}+\mathbf{K}}^{\alpha_{l}} .
$$

Proposition. The exterior derivative and difference satisfy

$$
\left(\mathrm{d}_{\mathrm{h}}^{\Delta}\right)^{2}=0, \quad \mathrm{~d}_{\mathrm{h}}^{\Delta} \mathrm{d}_{\mathrm{v}}=-\mathrm{d}_{\mathrm{v}} \mathrm{~d}_{\mathrm{h}}^{\Delta}, \quad \mathrm{d}_{\mathrm{v}}^{2}=0
$$

Proposition. The exterior derivative and difference satisfy

$$
\left(\mathrm{d}_{\mathrm{h}}^{\Delta}\right)^{2}=0, \quad \mathrm{~d}_{\mathrm{h}}^{\Delta} \mathrm{d}_{\mathrm{v}}=-\mathrm{d}_{\mathrm{v}} \mathrm{~d}_{\mathrm{h}}^{\Delta}, \quad \mathrm{d}_{\mathrm{v}}^{2}=0 .
$$

Definition. Define $\mathrm{d}^{\Delta}=\mathrm{d}_{\mathrm{h}}^{\Delta}+\mathrm{d}_{\mathrm{v}}$. It satisfies $\left(\mathrm{d}^{\Delta}\right)^{2}=0$.

- For a function f defined over $\mathbb{Z}^{p} \times P\left(\mathbb{R}^{q}\right)$:

$$
\mathrm{d}^{\Delta} f(\mathbf{n},[\mathbf{u}]):=\left(\mathrm{D}_{n^{i}} f\right) \Delta^{i}+\frac{\partial f}{\partial u_{\mathbf{J}}^{\alpha}} \mathrm{d}_{\mathbf{v}} u_{\mathbf{J}}^{\alpha}
$$

Lie difference

Remark. The operator $\mathrm{D}_{n^{i}}$ is the Lie difference [Crampin-Pirani, 1987] with respect to the translation $\mathrm{T}_{1_{i}}$:

$$
\left.\left(\mathrm{D}_{n^{i}} \omega\right)\right|_{\mathbf{n}}=\mathrm{T}_{\mathbf{1}_{i}}^{*}\left(\omega_{\mathbf{n}+\mathbf{1}_{i}}\right)-\omega_{\mathbf{n}} .
$$

- It satisfies the Cartan formula

$$
\left.\left.\mathrm{D}_{n^{i}} \omega=\partial_{n^{i}}\right\lrcorner \mathrm{~d}^{\Delta} \omega+\mathrm{d}^{\Delta}\left(\partial_{n^{i}}\right\lrcorner \omega\right),
$$

where $\left\{\partial_{n^{1}}, \ldots, \partial_{n^{p}}\right\}$ are the duals to the 1 -forms $\left\{\Delta^{1}, \ldots, \Delta^{p}\right\}$:

$$
\left.\left.\left.\left.\partial_{n^{i}}\right\lrcorner \Delta^{j}=\delta_{i}^{j}, \quad \partial_{n^{i}}\right\lrcorner \mathrm{~d}_{\mathrm{v}} u_{\mathbf{J}}^{\alpha}=0, \quad \frac{\partial}{\partial u_{\mathbf{J}}^{\alpha}}\right\lrcorner \Delta^{j}=0, \quad \frac{\partial}{\partial u_{\mathbf{J}}^{\alpha}}\right\lrcorner \mathrm{d}_{\mathrm{v}} u_{\mathbf{K}}^{\beta}=\delta_{\alpha}^{\beta} \delta_{\mathbf{J}}^{\mathrm{K}}
$$

The augmented difference variational bicomplex

- The difference interior Euler operator is defined as

$$
\left.\mathcal{I}^{\Delta}(\omega):=\frac{1}{l} \mathrm{~d}_{\mathrm{v}} u^{\alpha} \wedge \mathrm{S}_{-\mathbf{J}}\left(\frac{\partial}{\partial u_{\mathbf{J}}^{\alpha}}\right\lrcorner \omega\right), \quad \forall \omega \in \Omega^{p, l}, \quad l \geq 1 .
$$

- Define $\delta^{\Delta}:=\mathcal{I}^{\Delta} \mathrm{d}_{\mathrm{v}}$ and the difference Euler-Lagrange operator is $\mathcal{E}^{\Delta}:=\mathcal{I}^{\Delta} \mathrm{d}_{\mathrm{v}}$.

Cohomology of the difference variational bicomplex

Proposition. Analogous to the differential case, we have

$$
\mathcal{I}^{\Delta} \mathrm{d}_{\mathrm{h}}^{\Delta}=0, \quad \mathcal{E}^{\Delta} \mathrm{d}_{\mathrm{h}}^{\Delta}=0, \quad \delta^{\Delta} \mathcal{E}^{\Delta}=0, \quad\left(\delta^{\Delta}\right)^{2}=0 .
$$

[One-line theorem.] The augmented difference variational bicomplex (empty equation) is exact:

$$
\omega=h\left(\mathrm{~d}^{\Delta} \omega\right)+\mathrm{d}^{\Delta}(h(\omega))
$$

with h the homotopy operators.
(Note. Exactness of the EL complex was proved in [Hydon-Mansfield, 2004]; the exactness around \mathcal{E}^{Δ} was proved in [Kupershmidt, 1985].)

Cohomology of the difference variational bicomplex

Proposition. Analogous to the differential case, we have

$$
\mathcal{I}^{\Delta} \mathrm{d}_{\mathrm{h}}^{\Delta}=0, \quad \mathcal{E}^{\Delta} \mathrm{d}_{\mathrm{h}}^{\Delta}=0, \quad \delta^{\Delta} \mathcal{E}^{\Delta}=0, \quad\left(\delta^{\Delta}\right)^{2}=0
$$

[One-line theorem.] The augmented difference variational bicomplex (empty equation) is exact:

$$
\omega=h\left(\mathrm{~d}^{\Delta} \omega\right)+\mathrm{d}^{\Delta}(h(\omega))
$$

with h the homotopy operators.
(Note. Exactness of the EL complex was proved in [Hydon-Mansfield, 2004]; the exactness around \mathcal{E}^{Δ} was proved in [Kupershmidt, 1985].)

- Lagrangian forms: $\Omega^{p, 0}$ \& Euler-Lagrange equations: \mathscr{F}^{1}
- Conservation Laws: $\Omega^{p-1,0} \longleftrightarrow$ Symmetries
- Helmholtz conditions: $\mathscr{F}^{2} \longleftrightarrow$ Inverse problems

Discrete variational problems

The H 1 equation.

$$
u_{1,0}-u_{0,1}-\frac{\alpha-\beta}{u-u_{1,1}}=0
$$

- Lagrangian form in $\Omega^{2,0}$:

$$
\mathscr{L}=L \Delta^{1} \wedge \Delta^{2}, \quad L=\left(u_{1,0}-u_{0,1}\right) u-(\alpha-\beta) \ln \left(u_{1,0}-u_{0,1}\right)
$$

- Discrete Euler-Lagrange equation (two copies of H1):

$$
\mathscr{F}^{1} \ni \mathcal{E}^{\Delta}(\mathscr{L})=0
$$

where

$$
\mathcal{E}^{\Delta}(\mathscr{L})=\mathbf{E}(L) \mathrm{d}_{\mathrm{v}} u \wedge \Delta^{1} \wedge \Delta^{2}
$$

Note. Euler operators:

$$
\mathbf{E}_{\alpha}:=\mathrm{S}_{-\mathbf{K}} \frac{\partial}{\partial u_{-\mathbf{K}}^{\alpha}}
$$

Discrete Noether's theorem

- Define the difference divergence as $\operatorname{Div} \mathbf{F}:=\mathrm{D}_{n^{i}} F^{i}(\mathbf{n},[\mathbf{u}])$. A conservation law $\operatorname{Div} \mathbf{F}=0$ can be interpreted as

$$
\left.\mathrm{d}_{\mathrm{h}}^{\Delta} \omega=0, \quad \text { where } \omega=F^{i} \partial_{n^{i}}\right\lrcorner\left(\Delta^{1} \wedge \cdots \wedge \Delta^{p}\right) \in \Omega^{p-1,0}
$$

- A variational symmetry satisfies

$$
\mathbf{v}(L)=\operatorname{Div} \mathbf{P}, \quad \text { where } \mathbf{v}=\left(\mathrm{S}_{\mathbf{J}} Q^{\alpha}(\mathbf{n},[\mathbf{u}])\right) \frac{\partial}{\partial u_{\mathbf{J}}^{\alpha}}
$$

\Longleftrightarrow

$$
\mathbf{v}\lrcorner \mathrm{d}_{\mathrm{v}} \mathscr{L}=\mathrm{d}_{\mathrm{h}}^{\Delta} \sigma
$$

Lemma. 1. There exists $\eta \in \Omega^{p-1,1}$ such that

$$
\mathrm{d}_{\mathrm{v}} \mathscr{L}-\mathcal{E}^{\Delta}(\mathscr{L})=\mathrm{d}_{\mathrm{h}}^{\Delta} \eta .
$$

2. For an evolutionary vector field $\mathbf{v}=\left(\mathrm{S}_{\mathbf{J}} Q^{\alpha}(\mathbf{n},[\mathbf{u}])\right) \frac{\partial}{\partial u_{\mathrm{J}}^{\alpha}}$, the following identity holds

$$
\left.\mathbf{v}\lrcorner \mathrm{d}_{\mathrm{h}}^{\Delta} \omega+\mathrm{d}_{\mathrm{h}}^{\Delta}(\mathbf{v}\lrcorner \omega\right)=0, \quad \forall \omega \in \Omega^{k, l} .
$$

Noether's Theorem.

$$
\begin{aligned}
0 & =\mathbf{v}\lrcorner\left(\mathrm{d}_{\mathrm{v}} \mathscr{L}-\mathcal{E}^{\Delta}(\mathscr{L})-\mathrm{d}_{\mathrm{h}}^{\Delta} \eta\right) \\
& \left.=\mathrm{d}_{\mathrm{h}}^{\Delta} \sigma-Q^{\alpha} \mathbf{E}_{\alpha}(L) \Delta^{1} \wedge \cdots \wedge \Delta^{p}-\mathbf{v}\right\lrcorner \mathrm{d}_{\mathrm{h}}^{\Delta} \eta \\
& \left.=\mathrm{d}_{\mathrm{h}}^{\Delta}(\sigma+\mathbf{v}\lrcorner \eta\right)-Q^{\alpha} \mathbf{E}_{\alpha}(L) \Delta^{1} \wedge \cdots \wedge \Delta^{p}
\end{aligned}
$$

Discrete Lagrangian k-forms $\Omega^{k, 0}$

[Hydon-Nijhoff-LP, draft]

Discrete Lagrangian k-forms $\Omega^{k, 0}$

[Hydon-Nijhoff-LP, draft]

- Lagrangian k-forms:

$$
\Omega^{k, 0} \ni \mathscr{L}_{k}=\sum_{i_{1}<\cdots<i_{k}} L_{i_{1} \ldots i_{k}}(\mathbf{n},[\mathbf{u}]) \Delta^{i_{1}} \wedge \cdots \wedge \Delta^{i_{k}}
$$

- $\mathcal{I}_{k}^{\Delta}=\left.\mathcal{I}^{\Delta}\right|_{\Omega^{k, l}}$. Again $\mathcal{I}_{k}^{\Delta} \mathrm{d}_{\mathrm{h}}^{\Delta} \equiv 0$.
- Multi Euler-Lagrange equations:

$$
\mathcal{E}_{k}^{\Delta}\left(\mathscr{L}_{k}\right)=0 \& B E s=0
$$

where

$$
\mathrm{d}_{\mathrm{v}} \mathscr{L}_{k}-\mathcal{E}_{k}^{\Delta}\left(\mathscr{L}_{k}\right)-\mathrm{BEs}=\mathrm{d}_{\mathrm{h}}^{\Delta} \eta \text { for some } \eta \in \Omega^{k-1,1}
$$

The closure relation in discrete integrable systems can then be interpreted as

$$
\mathrm{d}_{\mathrm{h}}^{\Delta} \mathscr{L}_{k}=0 \text { for } k=p-1,
$$

on solutions of the multi EL equations.

The closure relation in discrete integrable systems can then be interpreted as

$$
\mathrm{d}_{\mathrm{h}}^{\Delta} \mathscr{L}_{k}=0 \text { for } k=p-1,
$$

on solutions of the multi EL equations.

- Recall closure relation of the H 1 equation:

$$
\left(\mathrm{S}_{3}-\mathrm{id}\right) L_{12}+\left(\mathrm{S}_{2}-\mathrm{id}\right) L_{31}+\left(\mathrm{S}_{1}-\mathrm{id}\right) L_{23}=0 \text { on solutions }
$$

where

$$
\begin{aligned}
& L_{12}=L\left(u, u_{1,0,0}, u_{0,1,0} ; \alpha, \beta\right), \\
& L_{31}=L\left(u, u_{0,0,1}, u_{1,0,0} ; \gamma, \alpha\right), \\
& L_{23}=L\left(u, u_{0,1,0}, u_{0,0,1} ; \beta, \gamma\right) .
\end{aligned}
$$

- The Lagrangian 2-form ($p=3$) is simply

$$
\mathscr{L}_{2}=L_{12} \Delta^{1} \wedge \Delta^{2}+L_{31} \Delta^{3} \wedge \Delta^{1}+L_{23} \Delta^{2} \wedge \Delta^{3}
$$

and each of the multi EL equations is H 1 .

Noether's theorem when the BEs vanish

This is the case for most integrable systems with the closure relation.

- Assume an evolutionary vector field $\mathbf{v}=\left(\mathrm{S}_{\mathbf{J}} Q^{\alpha}(\mathbf{n},[\mathbf{u}])\right) \frac{\partial}{\partial u_{\mathbf{J}}^{\alpha}}$ generates a variational symmetry for each $L_{i_{1}, \ldots, i_{k}}$ as

$$
\mathbf{v}\left(L_{i_{1}, \ldots, i_{k}}\right)=0
$$

and hence

$$
\mathbf{v}\lrcorner \mathrm{d}_{\mathrm{v}} \mathscr{L}_{k}=\mathrm{d}_{\mathrm{h}}^{\Delta} \eta
$$

- A similar proof to the usual Noether's theorem follows when all BEs vanish. These conservation laws are $(k-1,0)$-forms.

When the BEs do not vanish:

$$
\left.\mathbf{v}\lrcorner \mathcal{E}_{k}^{\Delta}\left(\mathscr{L}_{k}\right)+\mathbf{v}\right\lrcorner \mathrm{BEs}=\mathrm{d}_{\mathrm{h}}^{\Delta} \omega
$$

and $\mathbf{v}\lrcorner B E s$ is not in characteristic form.

H1 (7-point equation): no BEs

- The Lagrangian 2-form with three independent variables (m, n, l):

$$
\mathscr{L}_{2}=L_{12} \Delta^{1} \wedge \Delta^{2}+L_{31} \Delta^{3} \wedge \Delta^{1}+L_{23} \Delta^{2} \wedge \Delta^{3}
$$

- Multi EL equations:

$$
\begin{aligned}
\mathcal{E}_{2}^{\Delta}\left(\mathscr{L}_{2}\right)= & \mathbf{E}\left(L_{12}\right) \mathrm{d}_{\mathrm{v}} u \wedge \Delta^{1} \wedge \Delta^{2} \\
& +\mathbf{E}\left(L_{31}\right) \mathrm{d}_{\mathrm{v}} u \wedge \Delta^{3} \wedge \Delta^{1}+\mathbf{E}\left(L_{23}\right) \mathrm{d}_{\mathrm{v}} u \wedge \Delta^{2} \wedge \Delta^{3}
\end{aligned}
$$

- Consider a variational symmetry $\mathbf{v}=\left(\mathrm{S}_{\mathbf{J}} Q^{\alpha}(\mathbf{n},[\mathbf{u}])\right) \frac{\partial}{\partial u_{\mathrm{J}}^{\alpha}}$ of \mathscr{L}_{2}, e.g., $Q=(-1)^{m+n+l} u$, such that

$$
\mathbf{v}\lrcorner \mathrm{d}_{\mathrm{v}} \mathscr{L}_{2}=\mathrm{d}_{\mathrm{h}}^{\Delta} \eta \text { for some } \eta \in \Omega^{1,0}
$$

- Noether's theorem gives a conservation law/form $\omega \in \Omega^{1,0}$ satisfying

$$
\mathbf{v}\lrcorner \mathcal{E}_{2}^{\Delta}\left(\mathscr{L}_{2}\right)=\mathrm{d}_{\mathrm{h}}^{\Delta} \omega
$$

- Assume $\omega=a_{1} \Delta^{1}+a_{2} \Delta^{2}+a_{3} \Delta^{3}$, and the corresponding conservation laws are

$$
\begin{aligned}
& Q \mathbf{E}\left(L_{12}\right)=\operatorname{Div}\left(a_{2},-a_{1}, 0\right) \\
& Q \mathbf{E}\left(L_{31}\right)=\operatorname{Div}\left(-a_{3}, 0, a_{1}\right) \\
& Q \mathbf{E}\left(L_{23}\right)=\operatorname{Div}\left(0, a_{3},-a_{2}\right)
\end{aligned}
$$

- Assume $\omega=a_{1} \Delta^{1}+a_{2} \Delta^{2}+a_{3} \Delta^{3}$, and the corresponding conservation laws are

$$
\begin{aligned}
& Q \mathbf{E}\left(L_{12}\right)=\operatorname{Div}\left(a_{2},-a_{1}, 0\right) \\
& Q \mathbf{E}\left(L_{31}\right)=\operatorname{Div}\left(-a_{3}, 0, a_{1}\right) \\
& Q \mathbf{E}\left(L_{23}\right)=\operatorname{Div}\left(0, a_{3},-a_{2}\right)
\end{aligned}
$$

Remark. If BEs do not vanish, then the conservation laws will look like, for instance,

$$
Q \mathbf{E}\left(L_{12}\right)+\left(\mathrm{S}_{\mathbf{J}} Q\right) \times \mathrm{BEs}=\operatorname{Div} \mathbf{F}, \quad \ldots
$$

meaning that summation by parts must be applied to achieve the characteristic form:

$$
\left(\mathrm{S}_{\mathbf{J}} Q\right) \times \mathrm{BEs}=Q \times \mathrm{S}_{-\mathbf{J}}(\mathrm{BEs})+\operatorname{Div} \mathbf{F}_{0}, \quad \ldots
$$

- Assume $\omega=a_{1} \Delta^{1}+a_{2} \Delta^{2}+a_{3} \Delta^{3}$, and the corresponding conservation laws are

$$
\begin{aligned}
& Q \mathbf{E}\left(L_{12}\right)=\operatorname{Div}\left(a_{2},-a_{1}, 0\right) \\
& Q \mathbf{E}\left(L_{31}\right)=\operatorname{Div}\left(-a_{3}, 0, a_{1}\right) \\
& Q \mathbf{E}\left(L_{23}\right)=\operatorname{Div}\left(0, a_{3},-a_{2}\right)
\end{aligned}
$$

Remark. If BEs do not vanish, then the conservation laws will look like, for instance,

$$
Q \mathbf{E}\left(L_{12}\right)+\left(\mathrm{S}_{\mathbf{J}} Q\right) \times \mathrm{BEs}=\operatorname{Div} \mathbf{F}, \quad \ldots
$$

meaning that summation by parts must be applied to achieve the characteristic form:

$$
\left(\mathrm{S}_{\mathbf{J}} Q\right) \times \mathrm{BEs}=Q \times \mathrm{S}_{-\mathbf{J}}(\mathrm{BEs})+\operatorname{Div} \mathbf{F}_{0}, \quad \ldots
$$

Question. Can it be achieved without using local coordinates?

Questions. 1. Cohomology/exactness of the multi Euler-Lagrange complex and its relation with the canonical Euler-Lagrange complex.

$$
\begin{aligned}
& \cdots \xrightarrow{\mathrm{d}_{\mathrm{h}}^{\Delta}} \Omega^{p-2,0} \xrightarrow{\mathrm{~d}_{\mathrm{h}}^{\Delta}} \Omega^{p-1,0} \xrightarrow{\mathcal{E}_{p-1}^{\Delta}} \mathcal{F}^{p-1,1} \stackrel{\delta_{p-1}^{\Delta}}{\longrightarrow} \cdots \\
& \mathrm{d}_{\mathrm{h}}^{\Delta} \\
& \Omega^{p, 0} \xrightarrow{\mathcal{E}^{\Delta}} \mathscr{F}^{1} \xrightarrow{\delta^{\Delta}} \cdots
\end{aligned}
$$

Questions. 1. Cohomology/exactness of the multi Euler-Lagrange complex and its relation with the canonical Euler-Lagrange complex.

$$
\begin{aligned}
& \cdots \xrightarrow{\mathrm{d}_{\mathrm{h}}^{\Delta}} \Omega^{p-2,0} \xrightarrow{\mathrm{~d}_{\mathrm{h}}^{\Delta}} \Omega^{p-1,0} \xrightarrow{\mathcal{E}_{p-1}^{\Delta}} \mathcal{F}^{p-1,1} \stackrel{\delta_{p-1}^{\Delta}}{\bullet} \cdots \\
& \mathrm{d}_{\mathrm{h}}^{\Delta} \\
& \Omega^{p, 0} \xrightarrow{\mathcal{E}^{\Delta}} \mathscr{F}^{1} \xrightarrow{\delta^{\Delta}} \cdots
\end{aligned}
$$

2. To determine the integrability of a $\mathrm{P} \Delta \mathrm{E}$ or to classify integrable systems with the closure relation (double zeroes?) feature may be related to the two-line theorem?

Summary

- Structure of the total prolongation space
- Construction of the difference variational bicomplex
- Discrete integrable systems with closure relation
- Ongoing
- Two-line and three-line theorems for $\mathrm{P} \Delta \mathrm{Es}$
- Further analysis on the BEs
- ...

Thanks!

Return!

