Discrete Lagrangian multiforms on the difference variational bicomplex

Linyu Peng

Department of Mechanical Engineering Keio University

"Lagrangian Multiform Theory and Pluri-Lagrangian System" IASM, Hangzhou, 22-27 October 2023

Based on joint works with Peter Hydon (Kent) and Frank Nijhoff (Leeds)

Discrete integrable systems: closure relation

A review of the differential variational bicomplex

Construction of the difference variational bicomplex

Discrete Lagrangian multiforms

- Let m, n be two discrete independent variables and let u = u(m, n) be the dependent variable.
- ▶ Shifts of u will be denoted by $u_{i,j} = u(m+i, n+j)$, e.g., $u_{1,0} = u(m+1, n)$, $u_{0,1} = u(m, n+1)$, etc.

- Let m, n be two discrete independent variables and let u = u(m, n) be the dependent variable.
- ► Shifts of u will be denoted by u_{i,j} = u(m + i, n + j), e.g., u_{1,0} = u(m + 1, n), u_{0,1} = u(m, n + 1), etc.

Example. H1 (lattice potential KdV, 3-leg form) equation

$$u_{1,0} - u_{0,1} - \frac{\alpha - \beta}{u - u_{1,1}} = 0$$

(Discrete) Lagrangian [Capel–Nijhoff–Papageorgiou, 1991]:

 $L(u, u_{1,0}, u_{0,1}; \alpha, \beta) = (u_{1,0} - u_{0,1})u - (\alpha - \beta)\ln(u_{1,0} - u_{0,1})$

(Discrete) Lagrangian [Capel–Nijhoff–Papageorgiou, 1991]:

 $L(u, u_{1,0}, u_{0,1}; \alpha, \beta) = (u_{1,0} - u_{0,1})u - (\alpha - \beta)\ln(u_{1,0} - u_{0,1})$

Closure relation [Lobb–Nijhoff, 2009]:

 $(S_3 - id)L_{12} + (S_2 - id)L_{31} + (S_1 - id)L_{23} = 0$ on solutions

where

$$L_{12} = L(u, u_{1,0,0}, u_{0,1,0}; \alpha, \beta)$$

$$L_{31} = L(u, u_{0,0,1}, u_{1,0,0}; \gamma, \alpha), L_{23} = L(u, u_{0,1,0}, u_{0,0,1}; \beta, \gamma)$$

A review of the differential variational bicomplex

[Vinogradov, 1977, 1978, 1984]; [Tulczyjev, 1980]; [Tsujishita, 1982]; [Olver, 1986]; [Anderson, 1989]; [Kogan–Olver, 2003]; ...

A review of the differential variational bicomplex

[Vinogradov, 1977, 1978, 1984]; [Tulczyjev, 1980]; [Tsujishita, 1982]; [Olver, 1986]; [Anderson, 1989]; [Kogan–Olver, 2003]; ...

• Consider a trivial bundle $\pi: X \times U \to X$ with $\pi(\mathbf{x}, \mathbf{u}) = \mathbf{x}$:

▶
$$\mathbf{x} = (x^1, \dots, x^p) \in X \subset \mathbb{R}^p$$
 (independent variables)
▶ $\mathbf{u} = (u^1, \dots, u^q) \in U \subset \mathbb{R}^q$ (dependent variables)

Solution $\mathbf{u} = f(\mathbf{x})$ of a DE is interpreted as a local section $s(\mathbf{x}) = (\mathbf{x}, f(\mathbf{x})).$

A review of the differential variational bicomplex

[Vinogradov, 1977, 1978, 1984]; [Tulczyjev, 1980]; [Tsujishita, 1982]; [Olver, 1986]; [Anderson, 1989]; [Kogan–Olver, 2003]; ...

• Consider a trivial bundle $\pi : X \times U \to X$ with $\pi(\mathbf{x}, \mathbf{u}) = \mathbf{x}$:

▶
$$\mathbf{x} = (x^1, \dots, x^p) \in X \subset \mathbb{R}^p$$
 (independent variables)
▶ $\mathbf{u} = (u^1, \dots, u^q) \in U \subset \mathbb{R}^q$ (dependent variables)

Solution $\mathbf{u} = f(\mathbf{x})$ of a DE is interpreted as a local section $s(\mathbf{x}) = (\mathbf{x}, f(\mathbf{x})).$

▶ A DE defines a submanifold of prolonged jet bundles; in particular, the infinite jet bundle $J^{\infty}(X \times U)$ is coordinated by

$$(x^i, u^{\alpha}, u^{\alpha}_{\mathbf{l}_i}, \ldots, u^{\alpha}_{\mathbf{J}}, \ldots),$$

where a section $s(\mathbf{x}) = (\mathbf{x}, f(\mathbf{x}))$ is prolonged to

$$(u_i^{\alpha} =) u_{\mathbf{l}_i}^{\alpha} = \frac{\partial f^{\alpha}(x)}{\partial x^i}, \quad \dots, \quad u_{\mathbf{J}}^{\alpha} = \frac{\partial^{|\mathbf{J}|} f^{\alpha}(x)}{\partial (x^1)^{j_1} \partial (x^2)^{j_2} \dots \partial (x^p)^{j_p}}, \quad \dots$$

► Here
$$\mathbf{1}_i = (0, \dots, 1, \dots, 0)$$
, $\mathbf{J} = (j_1, j_2, \dots, j_p)$ and $|\mathbf{J}| = j_1 + j_2 + \dots + j_p$.

5/34

- ▶ Let $[\mathbf{u}]$ denote \mathbf{u} and finitely many of their partial derivatives, e.g. $([\mathbf{u}]) = (u^{\alpha}, u_{\mathbf{l}_{i}}^{\alpha}, \dots, u_{\mathbf{K}}^{\alpha}).$
- The differential of a function $F(\mathbf{x}, [\mathbf{u}])$ on $J^{\infty}(X \times U)$ is

$$dF(\mathbf{x}, [\mathbf{u}]) = \frac{\partial F}{\partial x^{i}} dx^{i} + \frac{\partial F}{\partial u_{\mathbf{J}}^{\alpha}} du_{\mathbf{J}}^{\alpha}$$
$$= (\mathbf{D}_{i}F) dx^{i} + \frac{\partial F}{\partial u_{\mathbf{J}}^{\alpha}} (du_{\mathbf{J}}^{\alpha} - u_{\mathbf{J}+\mathbf{1}_{i}}^{\alpha} dx^{i}),$$

where the total derivative is

$$\mathbf{D}_{i} = \frac{\partial}{\partial x^{i}} + u^{\alpha}_{\mathbf{1}_{i}} \frac{\partial}{\partial u^{\alpha}} + \dots + u^{\alpha}_{\mathbf{J}+\mathbf{1}_{i}} \frac{\partial}{\partial u^{\alpha}_{\mathbf{J}}} + \dotsb$$

 $\blacktriangleright\,$ This allows a splitting of the exterior derivative $d=d_h+d_v$ with

• A basis for one-forms on $J^{\infty}(X \times U)$ can then be chosen as

 $\{\mathrm{d}x^i\}$

and the contact forms

$$\{\mathrm{d}_{\mathrm{v}}u^{\alpha}=\mathrm{d}u^{\alpha}-u^{\alpha}_{\mathbf{1}_{i}}\,\mathrm{d}x^{i},\quad\ldots,\quad\mathrm{d}_{\mathrm{v}}u^{\alpha}_{\mathbf{J}}=\mathrm{d}u^{\alpha}_{\mathbf{J}}-u^{\alpha}_{\mathbf{J}+\mathbf{1}_{i}}\,\mathrm{d}x^{i},\quad\ldots\}.$$

This basis extends to a basis for the set of all differential forms on $J^{\infty}(X \times U)$, denoted by Ω , using the wedge product.

• A basis for one-forms on $J^{\infty}(X \times U)$ can then be chosen as

 $\{\mathrm{d}x^i\}$

and the contact forms

$$\{\mathrm{d}_{\mathrm{v}}u^{\alpha}=\mathrm{d}u^{\alpha}-u_{\mathbf{1}_{i}}^{\alpha}\,\mathrm{d}x^{i},\quad\ldots,\quad\mathrm{d}_{\mathrm{v}}u_{\mathbf{J}}^{\alpha}=\mathrm{d}u_{\mathbf{J}}^{\alpha}-u_{\mathbf{J}+\mathbf{1}_{i}}^{\alpha}\,\mathrm{d}x^{i},\quad\ldots\}.$$

This basis extends to a basis for the set of all differential forms on $J^{\infty}(X \times U)$, denoted by Ω , using the wedge product.

From $d^2 = 0$, direct calculations lead to

$$d_h^2=0,\quad d_hd_v=-d_vd_h,\quad d_v^2=0.$$

▶ A basis for one-forms on $J^{\infty}(X \times U)$ can then be chosen as

 $\{\mathrm{d}x^i\}$

and the contact forms

 $\{\mathrm{d}_{\mathrm{v}}u^{\alpha}=\mathrm{d}u^{\alpha}-u^{\alpha}_{\mathbf{l}_{i}}\,\mathrm{d}x^{i},\quad\ldots,\quad\mathrm{d}_{\mathrm{v}}u^{\alpha}_{\mathbf{J}}=\mathrm{d}u^{\alpha}_{\mathbf{J}}-u^{\alpha}_{\mathbf{J}+\mathbf{l}_{i}}\,\mathrm{d}x^{i},\quad\ldots\}.$

This basis extends to a basis for the set of all differential forms on $J^\infty(X \times U)$, denoted by Ω , using the wedge product.

From $d^2 = 0$, direct calculations lead to

$$d_h^2=0,\quad d_hd_v=-d_vd_h,\quad d_v^2=0.$$

▶ A (k + l)-form ω is said to be of type (k, l) if it can be written as

$$\omega = f_{i_1,\ldots,i_k;\alpha_1,\ldots,\alpha_l}^{\mathbf{J}_1,\ldots,\mathbf{J}_l}(\mathbf{x},[\mathbf{u}]) \,\mathrm{d}_{\mathbf{h}} x^{i_1} \wedge \cdots \wedge \mathrm{d}_{\mathbf{h}} x^{i_k} \wedge \mathrm{d}_{\mathbf{v}} u_{\mathbf{J}_1}^{\alpha_1} \wedge \cdots \,\mathrm{d}_{\mathbf{h}} u_{\mathbf{J}_l}^{\alpha_l}.$$

Denote all (k,l)-forms over $J^\infty(X\times U)$ as $\Omega^{k,l}$ and

$$\mathbf{d}_{\mathbf{h}}: \Omega^{k,l} \to \Omega^{k+1,l}, \quad \mathbf{d}_{\mathbf{v}}: \Omega^{k,l} \to \Omega^{k,l+1}$$

yield a double complex.

The (differential) variational bicomplex

<ロ > < 回 > < 回 > < 目 > < 目 > < 目 > う Q @ 8/34

Cohomology of the variational bicomplex

Note: For a cochain complex

$$\cdots \to A_{i-1} \xrightarrow{\mathrm{d}_{i-1}} A_i \xrightarrow{\mathrm{d}_i} A_{i+1} \to \cdots,$$

its cohomology groups are

$$H^i := \frac{\ker \mathbf{d}_i}{\operatorname{im} \mathbf{d}_{i-1}}.$$

Cohomology of the variational bicomplex

Note: For a cochain complex

$$\cdots \to A_{i-1} \xrightarrow{\mathrm{d}_{i-1}} A_i \xrightarrow{\mathrm{d}_i} A_{i+1} \to \cdots,$$

its cohomology groups are

$$H^i := \frac{\ker \mathbf{d}_i}{\operatorname{im} \mathbf{d}_{i-1}}.$$

Theorems. [Vinogradov, 1984]

- Empty equation/free case: One-line theorem
 † Only horizontal cohomologies at the last column are nontrivial.
- *l*-normal equations: Two-line theorem (e.g. Kovalevskaya type of equations)

† Symmetries are in the kernel of the linearization operator, while conservation laws (co-symmetries) are in the kernel of its adjoint.

 \dagger Euler–Lagrange equations are self-adjoint \longrightarrow Noether's theorem

 Non *l*-normal equations: Three-line theorem (e.g. Maxwell, Yang–Mills, Einstein equations)

The augmented variational bicomplex (empty equation)

The interior Euler operator is

$$\mathcal{I}(\omega) := \frac{1}{l} \operatorname{d}_{\mathbf{v}} u^{\alpha} \wedge (-\operatorname{D})_{\mathbf{J}} \left(\frac{\partial}{\partial u_{\mathbf{J}}^{\alpha}} \,\lrcorner\, \omega \right), \quad \forall \omega \in \Omega^{p,l}, \quad l \ge 1,$$

where $(-D)_{\mathbf{J}} = (-1)^{|\mathbf{J}|} D_{\mathbf{J}}$ is adjoint to $D_{\mathbf{J}} = D_1^{j_1} D_2^{j_2} \cdots D_p^{j_p}$ for $\mathbf{J} = (j_1, j_2, \dots, j_p)$.

- ▶ The interior Euler operator is a projection, namely $\mathcal{I}^2 = \mathcal{I}$, and $\mathscr{F}^l = \mathcal{I}(\Omega^{p,l}) \subset \Omega^{p,l}$.
- The Euler-Lagrange operator is given by $\mathcal{E} := \mathcal{I} d_v$ and define $\delta := \mathcal{I} d_v$.

- ► The interior Euler operator is a projection, namely $\mathcal{I}^2 = \mathcal{I}$, and $\mathscr{F}^l = \mathcal{I}(\Omega^{p,l}) \subset \Omega^{p,l}$.
- The Euler-Lagrange operator is given by E := I d_v and define δ := I d_v.

Theorem. The following properties hold that

$$\mathcal{I} d_h = 0, \quad \mathcal{E} d_h = 0, \quad \delta \mathcal{E} = 0, \quad \delta^2 = 0.$$

The resulting augmented variational bicomplex is exact providing the base manifold is contractible (following the Poincaré Lemma).

- ► The interior Euler operator is a projection, namely $\mathcal{I}^2 = \mathcal{I}$, and $\mathscr{F}^l = \mathcal{I}(\Omega^{p,l}) \subset \Omega^{p,l}$.
- The Euler-Lagrange operator is given by E := I d_v and define δ := I d_v.

Theorem. The following properties hold that

$$\mathcal{I} d_h = 0, \quad \mathcal{E} d_h = 0, \quad \delta \mathcal{E} = 0, \quad \delta^2 = 0.$$

The resulting augmented variational bicomplex is exact providing the base manifold is contractible (following the Poincaré Lemma).

Remark. The boundary complex is called the *Euler–Lagrange complex* or the *variational complex*. When p = 3, it is

$$0 \longrightarrow \mathbb{R} \longrightarrow \Omega^0 \longrightarrow \Omega^1 \longrightarrow \Omega^2 \longrightarrow \Omega^3 \longrightarrow \mathscr{F}^1 \longrightarrow \mathscr{F}^2 \longrightarrow \cdots$$

Grad Curl Div Euler Helmholtz

The augmented variational bicomplex

- ▶ Lagrangian forms: $\Omega^{p,0}$ & Euler–Lagrange equations: \mathscr{F}^1
- Conservation Laws: $\Omega^{p-1,0} \longleftrightarrow$ Symmetries
- Helmholtz conditions: $\mathscr{F}^2 \longleftrightarrow$ Inverse problems
- Lagrangian k-forms: $\Omega^{k,0} \leftarrow$ Integrability

The difference variational bicomplex

LP, From Differential to Difference: The Variational Bicomplex and Invariant Noether's Theorems, Ph.D. Thesis, University of Surrey, 2013.

LP–Hydon, The difference variational bicomplex and multisymplectic systems, arXiv:2307.13935, 2023.

The difference variational bicomplex

LP, From Differential to Difference: The Variational Bicomplex and Invariant Noether's Theorems, Ph.D. Thesis, University of Surrey, 2013. LP–Hydon, The difference variational bicomplex and multisymplectic systems, arXiv:2307.13935, 2023.

Some challenges:

- ▶ Discrete counterpart of jet spaces (differentiable manifolds) \checkmark
- \blacktriangleright Arrange differential and difference forms into horizontal and vertical forms \checkmark
- Cohomology
 - One-line theorem: variational calculus, inverse problem, Noether's theorem √
 - Two-line theorem: conservation laws (cosymmetries) of normal equations ([Mikhailov–Wang–Xenitidis, 2011] on cosymmetries)
 - Three-line theorem

The total prolongation space (discrete counterpart of jets) [Mansfield–Rojo-Echeburúa–Hydon–LP, 2019], [LP–Hydon, 2023]

The total prolongation space (discrete counterpart of jets) [Mansfield–Rojo-Echeburúa–Hydon–LP, 2019], [LP–Hydon, 2023]

• Consider a P Δ E with p independent variables $\mathbf{n} = (n^1, \dots, n^p) \in \mathbb{Z}^p$, and q dependent variables $\mathbf{u} = (u^1, \dots, u^q) \in \mathbb{R}^q$. They form a *total space* $\mathbb{Z}^p \times \mathbb{R}^q$.

The total prolongation space (discrete counterpart of jets) [Mansfield–Rojo-Echeburúa–Hydon–LP, 2019], [LP–Hydon, 2023]

• Consider a P Δ E with p independent variables $\mathbf{n} = (n^1, \dots, n^p) \in \mathbb{Z}^p$, and q dependent variables $\mathbf{u} = (u^1, \dots, u^q) \in \mathbb{R}^q$. They form a *total space* $\mathbb{Z}^p \times \mathbb{R}^q$.

 \blacktriangleright Fibres are mapped to one another by translations $(\mathbf{J}\in\mathbb{Z}^p)$

$$\begin{aligned} \mathrm{T}_{\mathbf{J}} : \mathbb{Z}^p \times \mathbb{R}^q &\to \mathbb{Z}^p \times \mathbb{R}^q \\ (\mathbf{n}, \mathbf{u}) &\mapsto (\mathbf{n} + \mathbf{J}, \mathbf{u}) \end{aligned}$$

As the total space is disconnected, it is necessary to construct a connected representative over each base point. We prolong each fibre to include values over all other fibres in a Cartesian product by pulling back each u using T_J:

$$u_{\mathbf{J}}^{\alpha} = \mathrm{T}_{\mathbf{J}}^{*}(u^{\alpha}|_{\mathbf{n}+\mathbf{J}}).$$

This gives the (connected) total prolongation space $P(\mathbb{R}^q)$ over an arbitrary base point with local coordinates $(\ldots, u_{\mathbf{J}}^{\alpha}, \ldots)$.

Let f be a function on $\mathbb{Z}^p \times P(\mathbb{R}^q)$. Its restriction to each total prolongation space $P_n(\mathbb{R}^q)$ is denoted by

$$f_{\mathbf{n}}(\ldots, u_{\mathbf{J}}^{\alpha}, \ldots) = f(\mathbf{n}, \ldots, u_{\mathbf{J}}^{\alpha}, \ldots).$$

The pullback of $f_{n+K}(\ldots, u_J^{\alpha}, \ldots)$ defined in $P_{n+K}(\mathbb{R}^q)$ with respect to T_K is the function

$$\mathbf{T}_{\mathbf{K}}^{*} f_{\mathbf{n}+\mathbf{K}}(\dots, u_{\mathbf{J}}^{\alpha}, \dots) = f(\mathbf{n} + \mathbf{K}, \dots, u_{\mathbf{J}+\mathbf{K}}^{\alpha}, \dots)$$

on $P_{\mathbf{n}}(\mathbb{R}^q)$.

Shift operators

The shift operator S_K is defined by $\mathrm{S}_K \mathit{f}_n = \mathrm{T}_K^* \mathit{f}_{n+K}$:

$$S_{\mathbf{K}}: f(\mathbf{n}, \ldots, u_{\mathbf{J}}^{\alpha}, \ldots) \mapsto f(\mathbf{n} + \mathbf{K}, \ldots, u_{\mathbf{J}+\mathbf{K}}^{\alpha}, \ldots),$$

where both f_n and $S_K f_n$ are functions in $P_n(\mathbb{R}^q)$.

Shift operators

The shift operator S_K is defined by $S_K f_n = T_K^* f_{n+K}$:

$$S_{\mathbf{K}}: f(\mathbf{n}, \ldots, u_{\mathbf{J}}^{\alpha}, \ldots) \mapsto f(\mathbf{n} + \mathbf{K}, \ldots, u_{\mathbf{J} + \mathbf{K}}^{\alpha}, \ldots),$$

where both $f_{\mathbf{n}}$ and $S_{\mathbf{K}} f_{\mathbf{n}}$ are functions in $P_{\mathbf{n}}(\mathbb{R}^{q})$.

- ▶ For any $\mathbf{K} = (k_1, \dots, k_p)$, $S_{\mathbf{K}} = S_1^{k_1} \cdots S_p^{k_p}$ where $S_i = S_{\mathbf{1}_i}$
- ▶ The **forward difference** in the n^i -direction is represented on $P_{\mathbf{n}}(\mathbb{R}^q)$ by the operator

$$D_{n^i} = S_i - id$$

Adjoint operators:

$$\mathbf{S}_{\mathbf{K}}^{\dagger} = \mathbf{S}_{-\mathbf{K}}, \quad \mathbf{D}_{n^{i}}^{\dagger} = -\mathbf{S}_{i}^{-1} \mathbf{D}_{n^{i}}$$

Differential forms

• Let ω be a differential form on $\mathbb{Z}^p \times P(\mathbb{R}^q)$ whose restriction to $P_{\mathbf{n}}(\mathbb{R}^q)$ is $\omega_{\mathbf{n}}$. The action of $S_{\mathbf{K}}$ on $\omega_{\mathbf{n}}$ is represented by

$$\mathbf{S}_{\mathbf{K}}\,\omega_{\mathbf{n}} = \mathbf{T}_{\mathbf{K}}^*\,\omega_{\mathbf{n}+\mathbf{K}}.$$

 \blacktriangleright S_K commutes with the wedge product and with the exterior derivative, denoted by d_v :

$$S_{\mathbf{K}}(\omega_1 \wedge \omega_2) = (S_{\mathbf{K}} \, \omega_1) \wedge (S_{\mathbf{K}} \, \omega_2), \quad S_{\mathbf{K}}(d_v \omega) = d_v(S_{\mathbf{K}} \, \omega).$$

Difference forms

Exterior algebra of p symbols, $\Delta^1, \ldots, \Delta^p$ ([Kupershmidt, 1985]; [Hydon–Mansfield, 2004]).

▶ Invariance with respect to shifts: $\Delta^i|_{\mathbf{n}} = T^*_{\mathbf{K}}(\Delta^i|_{\mathbf{n}+\mathbf{K}}) =: S_{\mathbf{K}}(\Delta^i|_{\mathbf{n}})$

Exterior difference operator is defined by

$$\mathbf{\Delta}\omega = \Delta^i \wedge \mathbf{D}_{n^i}\omega$$

for a difference k-form over $\mathbb{Z}^p \times P(\mathbb{R}^q)$

$$\omega = f_{i_1,\ldots,i_k}(\mathbf{n},\ldots,u_{\mathbf{J}}^{\alpha},\ldots)\Delta^{i_1}\wedge\cdots\wedge\Delta^{i_k}.$$

Differential-difference forms

Using $[\mathbf{u}]$ to denote a finite subset of $(\ldots, u_{\mathbf{J}}^{\alpha}, \ldots)$, a (k, l)-form over $\mathbb{Z}^p \times P(\mathbb{R}^q)$ is a (k+l)-form, $\omega \in \Omega^{k,l}$, that can be written as

$$\omega = f_{i_1,\ldots,i_k;\alpha_1,\ldots,\alpha_l}^{\mathbf{J}_1,\ldots,\mathbf{J}_l}(\mathbf{n},[\mathbf{u}])\Delta^{i_1}\wedge\cdots\wedge\Delta^{i_k}\wedge \mathbf{d}_{\mathbf{v}} u_{\mathbf{J}_1}^{\alpha_1}\wedge\cdots\wedge\mathbf{d}_{\mathbf{v}} u_{\mathbf{J}_l}^{\alpha_l}.$$

Differential-difference forms

Using $[\mathbf{u}]$ to denote a finite subset of $(\ldots, u_{\mathbf{J}}^{\alpha}, \ldots)$, a (k, l)-form over $\mathbb{Z}^p \times P(\mathbb{R}^q)$ is a (k+l)-form, $\omega \in \Omega^{k,l}$, that can be written as

$$\omega = f_{i_1,\ldots,i_k;\alpha_1,\ldots,\alpha_l}^{\mathbf{J}_1,\ldots,\mathbf{J}_l}(\mathbf{n},[\mathbf{u}])\Delta^{i_1}\wedge\cdots\wedge\Delta^{i_k}\wedge \mathrm{d}_{\mathbf{v}} u_{\mathbf{J}_1}^{\alpha_1}\wedge\cdots\wedge\mathrm{d}_{\mathbf{v}} u_{\mathbf{J}_l}^{\alpha_l}.$$

• (Vertical) exterior derivative $d_v : \Omega^{k,l} \to \Omega^{k,l+1}$:

$$\mathbf{d}_{\mathbf{v}}\omega = \frac{\partial f_{i_{1},\dots,i_{k};\alpha_{1},\dots,\alpha_{l}}^{\mathbf{J}_{1},\dots,\mathbf{J}_{l}}}{\partial u_{\mathbf{K}}^{\beta}} \, \mathbf{d}_{\mathbf{v}} u_{\mathbf{K}}^{\beta} \wedge \Delta^{i_{1}} \wedge \dots \wedge \Delta^{i_{k}} \wedge \mathbf{d}_{\mathbf{v}} u_{\mathbf{J}_{1}}^{\alpha_{1}} \wedge \dots \wedge \mathbf{d}_{\mathbf{v}} u_{\mathbf{J}_{l}}^{\alpha_{l}}$$

• (Horizontal) exterior difference $d_{h}^{\Delta} : \Omega^{k,l} \to \Omega^{k+1,l}$:

$$\mathbf{d}_{\mathbf{h}}^{\Delta}\omega = \Delta^{i} \wedge \mathbf{D}_{n^{i}}\omega$$

where

$$\mathbf{S}_{\mathbf{K}}\,\omega = \mathbf{S}_{\mathbf{K}}\left(f_{i_{1},\ldots,i_{k};\alpha_{1},\ldots,\alpha_{l}}^{\mathbf{J}_{1},\ldots,\mathbf{J}_{l}}\right)\Delta^{i_{1}}\wedge\cdots\wedge\Delta^{i_{k}}\wedge\mathbf{d}_{\mathbf{v}}u_{\mathbf{J}_{1}+\mathbf{K}}^{\alpha_{1}}\wedge\cdots\wedge\mathbf{d}_{\mathbf{v}}u_{\mathbf{J}_{l}+\mathbf{K}}^{\alpha_{l}}.$$

<ロト < 団ト < 臣ト < 臣ト < 臣ト 19 / 34 Proposition. The exterior derivative and difference satisfy

$$\left(d_h^{\scriptscriptstyle \Delta}\right)^2=0, \quad d_h^{\scriptscriptstyle \Delta}d_v=-\,d_vd_h^{\scriptscriptstyle \Delta}, \quad d_v^2=0.$$

Proposition. The exterior derivative and difference satisfy

$$\left(d_h^{\scriptscriptstyle \Delta}\right)^2=0, \ \ d_h^{\scriptscriptstyle \Delta}d_v=-d_vd_h^{\scriptscriptstyle \Delta}, \ \ d_v^2=0.$$

 $\label{eq:definition} \text{Definition. Define } d^{\vartriangle} = d^{\vartriangle}_h + d_v. \text{ It satisfies } \left(d^{\vartriangle}\right)^2 = 0.$

• For a function f defined over $\mathbb{Z}^p \times P(\mathbb{R}^q)$:

$$\mathrm{d}^{\Delta}f(\mathbf{n},[\mathbf{u}]) := (\mathrm{D}_{n^{i}}f)\Delta^{i} + \frac{\partial f}{\partial u_{\mathbf{J}}^{\alpha}} \mathrm{d}_{\mathrm{v}} u_{\mathbf{J}}^{\alpha},$$

Lie difference

Remark. The operator D_{n^i} is the *Lie difference* [Crampin–Pirani, 1987] with respect to the translation T_{1_i} :

$$(\mathbf{D}_{n^i}\omega)|_{\mathbf{n}} = \mathbf{T}^*_{\mathbf{1}_i}(\omega_{\mathbf{n}+\mathbf{1}_i}) - \omega_{\mathbf{n}}.$$

It satisfies the Cartan formula

$$\mathbf{D}_{n^{i}}\omega = \partial_{n^{i}} \,\lrcorner\, \mathbf{d}^{\Delta}\omega + \mathbf{d}^{\Delta}(\partial_{n^{i}} \,\lrcorner\, \omega)\,,$$

where $\{\partial_{n^1}, \ldots, \partial_{n^p}\}$ are the duals to the 1-forms $\{\Delta^1, \ldots, \Delta^p\}$:

$$\partial_{n^i} \lrcorner \Delta^j = \delta^j_i, \quad \partial_{n^i} \lrcorner \mathrm{d}_{\mathbf{v}} u^{\alpha}_{\mathbf{J}} = 0, \quad \frac{\partial}{\partial u^{\alpha}_{\mathbf{J}}} \lrcorner \Delta^j = 0, \quad \frac{\partial}{\partial u^{\alpha}_{\mathbf{J}}} \lrcorner \mathrm{d}_{\mathbf{v}} u^{\beta}_{\mathbf{K}} = \delta^{\beta}_{\alpha} \delta^{\mathbf{K}}_{\mathbf{J}}$$

The augmented difference variational bicomplex

The difference interior Euler operator is defined as

$$\mathcal{I}^{\Delta}(\omega) := \frac{1}{l} \operatorname{d}_{\mathbf{v}} u^{\alpha} \wedge \operatorname{S}_{-\mathbf{J}} \left(\frac{\partial}{\partial u_{\mathbf{J}}^{\alpha}} \,\lrcorner\, \omega \right), \quad \forall \omega \in \Omega^{p,l}, \quad l \ge 1.$$

 $\label{eq:loss_loss} \begin{array}{l} \blacktriangleright \mbox{ Define } \delta^{\Delta} := \mathcal{I}^{\Delta} \, d_v \mbox{ and the difference Euler-Lagrange operator is} \\ \mathcal{E}^{\Delta} := \mathcal{I}^{\Delta} \, d_v. \end{array}$

Cohomology of the difference variational bicomplex

Proposition. Analogous to the differential case, we have

$$\mathcal{I}^{\Delta} d_{h}^{\Delta} = 0, \quad \mathcal{E}^{\Delta} d_{h}^{\Delta} = 0, \quad \delta^{\Delta} \mathcal{E}^{\Delta} = 0, \quad (\delta^{\Delta})^{2} = 0.$$

[**One-line theorem.**] The augmented difference variational bicomplex (empty equation) is exact:

$$\omega = h(\mathrm{d}^{\Delta}\omega) + \mathrm{d}^{\Delta}(h(\omega))$$

with h the homotopy operators.

(Note. Exactness of the EL complex was proved in [Hydon–Mansfield, 2004]; the exactness around $\mathcal{E}^{\vartriangle}$ was proved in [Kupershmidt, 1985].)

Cohomology of the difference variational bicomplex

Proposition. Analogous to the differential case, we have

$$\mathcal{I}^{\Delta} d_{h}^{\Delta} = 0, \quad \mathcal{E}^{\Delta} d_{h}^{\Delta} = 0, \quad \delta^{\Delta} \mathcal{E}^{\Delta} = 0, \quad (\delta^{\Delta})^{2} = 0.$$

[**One-line theorem.**] The augmented difference variational bicomplex (empty equation) is exact:

$$\omega = h(\mathrm{d}^{\Delta}\omega) + \mathrm{d}^{\Delta}(h(\omega))$$

with h the homotopy operators.

(Note. Exactness of the EL complex was proved in [Hydon–Mansfield, 2004]; the exactness around $\mathcal{E}^{\vartriangle}$ was proved in [Kupershmidt, 1985].)

- ▶ Lagrangian forms: $\Omega^{p,0}$ & Euler–Lagrange equations: \mathscr{F}^1
- Conservation Laws: $\Omega^{p-1,0} \longleftrightarrow$ Symmetries
- Helmholtz conditions: $\mathscr{F}^2 \longleftrightarrow$ Inverse problems

Discrete variational problems

The H1 equation.

$$u_{1,0} - u_{0,1} - \frac{\alpha - \beta}{u - u_{1,1}} = 0$$

• Lagrangian form in $\Omega^{2,0}$:

$$\mathscr{L} = L\Delta^1 \wedge \Delta^2, \quad L = (u_{1,0} - u_{0,1})u - (\alpha - \beta)\ln(u_{1,0} - u_{0,1})$$

Discrete Euler–Lagrange equation (two copies of H1):

$$\mathscr{F}^1 \ni \mathscr{E}^{\vartriangle}(\mathscr{L}) = 0$$

where

$$\mathcal{E}^{\Delta}(\mathscr{L}) = \mathbf{E}(L) \,\mathrm{d}_{\mathrm{v}} u \wedge \Delta^1 \wedge \Delta^2$$

Note. Euler operators:

$$\mathbf{E}_{\alpha} := \mathbf{S}_{-\mathbf{K}} \, \frac{\partial}{\partial u_{-\mathbf{K}}^{\alpha}}$$

24 / 34

Discrete Noether's theorem

Define the difference divergence as Div F := D_{nⁱ} Fⁱ(n, [u]). A conservation law Div F = 0 can be interpreted as

$$\mathrm{d}_{\mathrm{h}}^{\Delta}\omega = 0, \quad \text{where } \omega = F^{i}\partial_{n^{i}} \,\lrcorner\, \left(\Delta^{1}\wedge \dots \wedge \Delta^{p}\right) \in \Omega^{p-1,0}$$

A variational symmetry satisfies

$$\mathbf{v}(L) = \operatorname{Div} \mathbf{P}, \quad \text{where } \mathbf{v} = (\operatorname{S}_{\mathbf{J}} Q^{lpha}(\mathbf{n}, [\mathbf{u}])) \frac{\partial}{\partial u_{\mathbf{J}}^{lpha}}.$$

 \Leftrightarrow

$$\mathbf{v} \,\lrcorner\, \mathrm{d}_{\mathrm{v}}\mathscr{L} = \mathrm{d}_{\mathrm{h}}^{\vartriangle}\sigma$$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q (~ 25 / 34 **Lemma.** 1. There exists $\eta \in \Omega^{p-1,1}$ such that

$$\mathrm{d}_{\mathrm{v}}\mathscr{L} - \mathscr{E}^{\wedge}(\mathscr{L}) = \mathrm{d}_{\mathrm{h}}^{\wedge}\eta$$

2. For an evolutionary vector field $\mathbf{v} = (S_J Q^{\alpha}(\mathbf{n}, [\mathbf{u}])) \frac{\partial}{\partial u_J^{\alpha}}$, the following identity holds

$$\mathbf{v} \,\lrcorner\, \mathbf{d}_{\mathbf{h}}^{\Delta} \omega + \mathbf{d}_{\mathbf{h}}^{\Delta} (\mathbf{v} \,\lrcorner\, \omega) = 0, \quad \forall \omega \in \Omega^{k,l}.$$

Noether's Theorem.

$$0 = \mathbf{v} \lrcorner \left(\mathrm{d}_{\mathbf{v}} \mathscr{L} - \mathscr{E}^{\vartriangle}(\mathscr{L}) - \mathrm{d}_{\mathrm{h}}^{\vartriangle} \eta \right) = \mathrm{d}_{\mathrm{h}}^{\vartriangle} \sigma - Q^{\alpha} \mathbf{E}_{\alpha}(L) \Delta^{1} \land \dots \land \Delta^{p} - \mathbf{v} \lrcorner \mathrm{d}_{\mathrm{h}}^{\vartriangle} \eta = \mathrm{d}_{\mathrm{h}}^{\vartriangle} (\sigma + \mathbf{v} \lrcorner \eta) - Q^{\alpha} \mathbf{E}_{\alpha}(L) \Delta^{1} \land \dots \land \Delta^{p}$$

Discrete Lagrangian k-forms $\Omega^{k,0}$ [Hydon-Nijhoff-LP, draft]

Discrete Lagrangian k-forms $\Omega^{k,0}$ [Hydon-Nijhoff-LP, draft]

Lagrangian *k*-forms:

$$\Omega^{k,0} \ni \mathscr{L}_k = \sum_{i_1 < \cdots < i_k} L_{i_1 \dots i_k}(\mathbf{n}, [\mathbf{u}]) \Delta^{i_1} \wedge \cdots \wedge \Delta^{i_k}$$

•
$$\mathcal{I}_k^{\Delta} = \mathcal{I}^{\Delta}|_{\Omega^{k,l}}$$
. Again $\mathcal{I}_k^{\Delta} \operatorname{d}_h^{\Delta} \equiv 0$.

Multi Euler–Lagrange equations:

$$\mathcal{E}_k^{\wedge}(\mathscr{L}_k) = 0$$
 & BEs = 0

where

$$\mathbf{d}_{\mathbf{v}}\mathscr{L}_{k} - \mathscr{E}_{k}^{\Delta}(\mathscr{L}_{k}) - \mathsf{BEs} = \mathbf{d}_{\mathbf{h}}^{\Delta}\eta \text{ for some } \eta \in \Omega^{k-1,1}$$

The closure relation in discrete integrable systems can then be interpreted as

$$\mathrm{d}_{\mathrm{h}}^{\wedge}\mathscr{L}_{k} = 0$$
 for $k = p - 1$,

on solutions of the multi EL equations.

The closure relation in discrete integrable systems can then be interpreted as

$$\mathrm{d}_{\mathrm{h}}^{\wedge}\mathscr{L}_{k} = 0$$
 for $k = p - 1$,

on solutions of the multi EL equations.

Recall closure relation of the H1 equation:

$$(S_3 - id)L_{12} + (S_2 - id)L_{31} + (S_1 - id)L_{23} = 0$$
 on solutions

where

$$\begin{split} &L_{12} = L(u, u_{1,0,0}, u_{0,1,0}; \alpha, \beta), \\ &L_{31} = L(u, u_{0,0,1}, u_{1,0,0}; \gamma, \alpha), \\ &L_{23} = L(u, u_{0,1,0}, u_{0,0,1}; \beta, \gamma). \end{split}$$

• The Lagrangian 2-form (p = 3) is simply

$$\mathscr{L}_2 = L_{12}\Delta^1 \wedge \Delta^2 + L_{31}\Delta^3 \wedge \Delta^1 + L_{23}\Delta^2 \wedge \Delta^3$$

and each of the multi EL equations is H1.

Noether's theorem when the BEs vanish

This is the case for most integrable systems with the closure relation.

• Assume an evolutionary vector field $\mathbf{v} = (S_J Q^{\alpha}(\mathbf{n}, [\mathbf{u}])) \frac{\partial}{\partial u_J^{\alpha}}$ generates a variational symmetry for each $L_{i_1,...,i_k}$ as

$$\mathbf{v}\left(L_{i_1,\ldots,i_k}\right)=0$$

and hence

$$\mathbf{v} \,\lrcorner\, \mathrm{d}_{\mathrm{v}} \mathscr{L}_k = \mathrm{d}_{\mathrm{h}}^{\vartriangle} \eta.$$

► A similar proof to the usual Noether's theorem follows when all BEs vanish. These conservation laws are (k - 1, 0)-forms.

When the BEs do not vanish:

$$\mathbf{v} \,\lrcorner\, \mathcal{E}_k^{\vartriangle}(\mathscr{L}_k) + \mathbf{v} \,\lrcorner\, \mathsf{BEs} = \mathrm{d}_\mathrm{h}^{\vartriangle} \omega$$

and $\mathbf{v} \sqcup \mathsf{BEs}$ is not in characteristic form.

H1 (7-point equation): no BEs

• The Lagrangian 2-form with three independent variables (m, n, l):

$$\mathscr{L}_2 = L_{12}\Delta^1 \wedge \Delta^2 + L_{31}\Delta^3 \wedge \Delta^1 + L_{23}\Delta^2 \wedge \Delta^3$$

Multi EL equations:

$$\begin{aligned} \mathcal{E}_{2}^{\Delta}(\mathscr{L}_{2}) &= \mathbf{E}(L_{12}) \,\mathrm{d}_{\mathrm{v}} u \wedge \Delta^{1} \wedge \Delta^{2} \\ &+ \mathbf{E}(L_{31}) \,\mathrm{d}_{\mathrm{v}} u \wedge \Delta^{3} \wedge \Delta^{1} + \mathbf{E}(L_{23}) \,\mathrm{d}_{\mathrm{v}} u \wedge \Delta^{2} \wedge \Delta^{3} \end{aligned}$$

• Consider a variational symmetry $\mathbf{v} = (S_J Q^{\alpha}(\mathbf{n}, [\mathbf{u}])) \frac{\partial}{\partial u_J^{\alpha}}$ of \mathscr{L}_2 , e.g., $Q = (-1)^{m+n+l} u$, such that

$$\mathbf{v} \,\lrcorner\, d_v \mathscr{L}_2 = d_h^{\scriptscriptstyle \Delta} \eta$$
 for some $\eta \in \Omega^{1,0}$

▶ Noether's theorem gives a conservation law/form $\omega \in \Omega^{1,0}$ satisfying

$$\mathbf{v} \,\lrcorner\, \mathcal{E}_2^{\vartriangle}(\mathscr{L}_2) = \mathrm{d}_{\mathrm{h}}^{\vartriangle} \omega$$

▶ Assume $\omega = a_1 \Delta^1 + a_2 \Delta^2 + a_3 \Delta^3$, and the corresponding conservation laws are

$$Q\mathbf{E}(L_{12}) = \text{Div}(a_2, -a_1, 0)$$
$$Q\mathbf{E}(L_{31}) = \text{Div}(-a_3, 0, a_1)$$
$$Q\mathbf{E}(L_{23}) = \text{Div}(0, a_3, -a_2)$$

Assume $\omega = a_1 \Delta^1 + a_2 \Delta^2 + a_3 \Delta^3$, and the corresponding conservation laws are

$$Q\mathbf{E}(L_{12}) = \text{Div}(a_2, -a_1, 0)$$
$$Q\mathbf{E}(L_{31}) = \text{Div}(-a_3, 0, a_1)$$
$$Q\mathbf{E}(L_{23}) = \text{Div}(0, a_3, -a_2)$$

Remark. If BEs do not vanish, then the conservation laws will look like, for instance,

$$Q\mathbf{E}(L_{12}) + (S_{\mathbf{J}}Q) \times \mathsf{BEs} = \operatorname{Div} \mathbf{F}, \quad \dots$$

meaning that summation by parts must be applied to achieve the characteristic form:

$$(S_J Q) \times \mathsf{BEs} = Q \times S_{-J}(\mathsf{BEs}) + \operatorname{Div} \mathbf{F}_0, \quad \dots$$

▶ Assume $\omega = a_1 \Delta^1 + a_2 \Delta^2 + a_3 \Delta^3$, and the corresponding conservation laws are

$$Q\mathbf{E}(L_{12}) = \text{Div}(a_2, -a_1, 0)$$
$$Q\mathbf{E}(L_{31}) = \text{Div}(-a_3, 0, a_1)$$
$$Q\mathbf{E}(L_{23}) = \text{Div}(0, a_3, -a_2)$$

Remark. If BEs do not vanish, then the conservation laws will look like, for instance,

$$Q\mathbf{E}(L_{12}) + (S_{\mathbf{J}}Q) \times \mathsf{BEs} = \operatorname{Div} \mathbf{F}, \quad \dots$$

meaning that summation by parts must be applied to achieve the characteristic form:

$$(S_J Q) \times \mathsf{BEs} = Q \times S_{-J}(\mathsf{BEs}) + \operatorname{Div} \mathbf{F}_0, \quad \dots$$

Question. Can it be achieved without using local coordinates?

Questions. 1. Cohomology/exactness of the multi Euler–Lagrange complex and its relation with the canonical Euler–Lagrange complex.

$$\cdots \xrightarrow{d_{h}^{\Delta}} \Omega^{p-2,0} \xrightarrow{d_{h}^{\Delta}} \Omega^{p-1,0} \xrightarrow{\mathcal{E}_{p-1}^{\Delta}} \mathcal{F}^{p-1,1} \xrightarrow{\delta_{p-1}^{\Delta}} \cdots$$
$$\overset{d_{h}^{\Delta}}{\Omega^{p,0}} \xrightarrow{\mathcal{E}^{\Delta}} \mathcal{F}^{1} \xrightarrow{\delta^{\Delta}} \cdots$$

Questions. 1. Cohomology/exactness of the multi Euler–Lagrange complex and its relation with the canonical Euler–Lagrange complex.

$$\cdots \xrightarrow{d_{\mathbf{h}}^{\Delta}} \Omega^{p-2,0} \xrightarrow{d_{\mathbf{h}}^{\Delta}} \Omega^{p-1,0} \xrightarrow{\mathcal{E}_{p-1}^{\Delta}} \mathcal{F}^{p-1,1} \xrightarrow{\delta_{p-1}^{\Delta}} \cdots$$
$$\overset{d_{\mathbf{h}}^{\Delta}}{\Omega^{p,0} \underbrace{\mathcal{E}^{\Delta}}} \mathcal{F}^{1} \xrightarrow{\delta^{\Delta}} \cdots$$

2. To determine the integrability of a $P\Delta E$ or to classify integrable systems with the closure relation (double zeroes?) feature may be related to the two-line theorem?

Summary

- Structure of the total prolongation space
- Construction of the difference variational bicomplex
- Discrete integrable systems with closure relation

Ongoing

► ...

- Two-line and three-line theorems for $P\Delta Es$
- Further analysis on the BEs

Thanks!

▶ Return!

<ロト < 回 > < 直 > < 亘 > < 亘 > < 亘 > < 亘 > < 亘 > 34/34