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Closure relation of discrete integrable systems: H1 eq.
I Let m,n be two discrete independent variables and let u = u(m,n)

be the dependent variable.
I Shifts of u will be denoted by ui,j = u(m + i,n + j), e.g.,

u1,0 = u(m + 1,n), u0,1 = u(m,n + 1), etc.

Example. H1 (lattice potential KdV, 3-leg form) equation

u1,0 − u0,1 −
α− β

u − u1,1
= 0
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Closure relation of discrete integrable systems: H1 eq.
I (Discrete) Lagrangian [Capel–Nijhoff–Papageorgiou, 1991]:

L(u, u1,0, u0,1;α, β) = (u1,0 − u0,1)u − (α− β) ln(u1,0 − u0,1)

I Closure relation [Lobb–Nijhoff, 2009]:
(S3− id)L12 + (S2− id)L31 + (S1− id)L23 = 0 on solutions

where
L12 = L(u, u1,0,0, u0,1,0;α, β)

L31 = L(u, u0,0,1, u1,0,0; γ, α),L23 = L(u, u0,1,0, u0,0,1;β, γ)
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A review of the differential variational bicomplex
[Vinogradov, 1977, 1978, 1984]; [Tulczyjev, 1980]; [Tsujishita, 1982]; [Olver, 1986];
[Anderson, 1989]; [Kogan–Olver, 2003]; ...

I Consider a trivial bundle π : X ×U → X with π(x,u) = x:
I x = (x1, . . . , xp) ∈ X ⊂ Rp (independent variables)
I u = (u1, . . . , uq) ∈ U ⊂ Rq (dependent variables)

I Solution u = f (x) of a DE is interpreted as a local section
s(x) = (x, f (x)).

I A DE defines a submanifold of prolonged jet bundles; in particular,
the infinite jet bundle J∞(X ×U ) is coordinated by

(xi, uα, uα
1i
, . . . , uα

J , . . .),

where a section s(x) = (x, f (x)) is prolonged to

(uα
i =)uα

1i
=

∂f α(x)
∂xi , . . . , uα

J =
∂|J|f α(x)

∂(x1)j1∂(x2)j2 . . . ∂(xp)jp
, . . .

I Here 1i = (0, . . . , 1, . . . , 0), J = (j1, j2, . . . , jp) and
|J| = j1 + j2 + · · ·+ jp.
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I Let [u] denote u and finitely many of their partial derivatives, e.g.
([u]) = (uα, uα

1i
, . . . , uα

K).
I The differential of a function F(x, [u]) on J∞(X ×U ) is

dF(x, [u]) = ∂F
∂xi dxi +

∂F
∂uα

J
duα

J

= (DiF)dxi +
∂F
∂uα

J

(
duα

J − uα
J+1i

dxi) ,
where the total derivative is

Di =
∂

∂xi + uα
1i

∂

∂uα
+ · · ·+ uα

J+1i

∂

∂uα
J
+ · · · .

I This allows a splitting of the exterior derivative d = dh +dv with

I Horizontal operator: dh := dxi ∧Di
I Vertical operator: dv :=

(
duα

J − uα
J+1i

dxi) ∧ ∂
∂uα

J
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I A basis for one-forms on J∞(X ×U ) can then be chosen as

{dxi}

and the contact forms

{dvuα = duα − uα
1i

dxi, . . . , dvuα
J = duα

J − uα
J+1i

dxi, . . .}.

This basis extends to a basis for the set of all differential forms on
J∞(X ×U ), denoted by Ω, using the wedge product.

I From d2 = 0, direct calculations lead to

d2
h = 0, dhdv = −dvdh, d2

v = 0.

I A (k + l)-form ω is said to be of type (k, l) if it can be written as

ω = f J1,...,Jl
i1,...,ik ;α1,...,αl

(x, [u])dhxi1 ∧ · · · ∧ dhxik ∧ dvuα1

J1
∧ · · · dhuαl

Jl
.

Denote all (k, l)-forms over J∞(X ×U ) as Ωk,l and

dh : Ωk,l → Ωk+1,l, dv : Ωk,l → Ωk,l+1

yield a double complex.
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The (differential) variational bicomplex

0 - R- Ω0,0 - Ω1,0 - · · · - Ωp−1,0 - Ωp,0 - 0

0 - Ω0,1 - Ω1,1 - · · · - Ωp−1,1 - Ωp,1 - 0

0 - Ω0,2 - Ω1,2 - · · · - Ωp−1,2 - Ωp,2 - 0

6

6

6

...

6

6

6

...

6

6

6

...

6

6

6

...

dh dh dh dh dh

dh dh dh dh dh

dh dh dh dh dh

dv

dv

dv

dv

dv

dv

dv

dv

dv

dv

dv

dv

8 / 34



Cohomology of the variational bicomplex
Note: For a cochain complex

· · · → Ai−1
di−1−→ Ai

di−→ Ai+1 → · · · ,

its cohomology groups are

H i :=
ker di

im di−1
.

Theorems. [Vinogradov, 1984]
I Empty equation/free case: One-line theorem
† Only horizontal cohomologies at the last column are nontrivial.

I `-normal equations: Two-line theorem (e.g. Kovalevskaya type of
equations)
† Symmetries are in the kernel of the linearization operator, while
conservation laws (co-symmetries) are in the kernel of its adjoint.
† Euler–Lagrange equations are self-adjoint −→ Noether’s theorem

I Non `-normal equations: Three-line theorem (e.g. Maxwell,
Yang–Mills, Einstein equations)
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The augmented variational bicomplex (empty equation)

0 R- Ω0,0 - Ω1,0 - · · · - Ωp−1,0 - Ωp,0

0 - Ω0,1 - Ω1,1 - · · · - Ωp−1,1 - Ωp,1 - F 1 - 0

0 - Ω0,2 - Ω1,2 - · · · - Ωp−1,2 - Ωp,2 - F 2 - 0

6

6

6

...

6

6

6

...

6

6

6

...

6

6

6

...

dh dh dh dh

dh dh dh dh I

dh dh dh dh I

dv

dv

dv

dv

dv

dv

dv

dv

dv

dv

dv

dv

6

6

...

δ

δ







�E

I The interior Euler operator is

I(ω) := 1

l
dvuα ∧ (−D)J

(
∂

∂uα
J
y ω

)
, ∀ω ∈ Ωp,l, l ≥ 1,

where (−D)J = (−1)|J| DJ is adjoint to DJ = Dj1
1 Dj2

2 · · ·D
jp
p for

J = (j1, j2, . . . , jp).
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I The interior Euler operator is a projection, namely I2 = I, and
F l = I(Ωp,l) ⊂ Ωp,l.

I The Euler–Lagrange operator is given by E := I dv and define
δ := I dv.

Theorem. The following properties hold that

I dh = 0, E dh = 0, δE = 0, δ2 = 0.

The resulting augmented variational bicomplex is exact providing the
base manifold is contractible (following the Poincaré Lemma).

Remark. The boundary complex is called the Euler–Lagrange complex or
the variational complex. When p = 3, it is

0 −→ R −→ Ω0 −→ Ω1 −→ Ω2 −→ Ω3 −→ F 1 −→ F 2 −→ · · ·
Grad Curl Div Euler Helmholtz
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The augmented variational bicomplex
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I Lagrangian forms: Ωp,0 & Euler–Lagrange equations: F 1

I Conservation Laws: Ωp−1,0 ←→ Symmetries
I Helmholtz conditions: F 2 ←→ Inverse problems
I Lagrangian k-forms: Ωk,0 ←− Integrability
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The difference variational bicomplex
LP, From Differential to Difference: The Variational Bicomplex and Invariant Noether’s
Theorems, Ph.D. Thesis, University of Surrey, 2013.
LP–Hydon, The difference variational bicomplex and multisymplectic systems,
arXiv:2307.13935, 2023.

Some challenges:
I Discrete counterpart of jet spaces (differentiable manifolds) X

I Arrange differential and difference forms into horizontal and vertical
forms X

I Cohomology
I One-line theorem: variational calculus, inverse problem,

Noether’s theorem X
I Two-line theorem: conservation laws (cosymmetries) of normal

equations ([Mikhailov–Wang–Xenitidis, 2011] on
cosymmetries)

I Three-line theorem
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The total prolongation space (discrete counterpart of jets)
[Mansfield–Rojo-Echeburúa–Hydon–LP, 2019], [LP–Hydon, 2023]

I Consider a P∆E with p independent variables
n = (n1, . . . ,np) ∈ Zp, and q dependent variables
u = (u1, . . . , uq) ∈ Rq. They form a total space Zp × Rq.

I Fibres are mapped to one another by translations (J ∈ Zp)

TJ : Zp × Rq → Zp × Rq

(n,u) 7→ (n + J,u).
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I As the total space is disconnected, it is necessary to construct a
connected representative over each base point. We prolong each
fibre to include values over all other fibres in a Cartesian product by
pulling back each u using TJ:

uα
J = T∗

J(uα|n+J).

This gives the (connected) total prolongation space P(Rq) over
an arbitrary base point with local coordinates (. . . , uα

J , . . .).
I Let f be a function on Zp × P(Rq). Its restriction to each total

prolongation space Pn(Rq) is denoted by

fn(. . . , uα
J , . . .) = f (n, . . . , uα

J , . . .).

The pullback of fn+K(. . . , uα
J , . . .) defined in Pn+K(Rq) with respect

to TK is the function

T∗
K fn+K(. . . , uα

J , . . .) = f (n + K, . . . , uα
J+K, . . .)

on Pn(Rq).
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Shift operators

The shift operator SK is defined by SK fn = T∗
K fn+K:

SK : f (n, . . . , uα
J , . . .) 7→ f (n + K, . . . , uα

J+K, . . .),

where both fn and SK fn are functions in Pn(Rq).

I For any K = (k1, . . . , kp), SK = Sk1
1 · · · S

kp
p where Si = S1i

I The forward difference in the ni-direction is represented on
Pn(Rq) by the operator

Dni = Si − id

I Adjoint operators:

S†
K = S−K, D†

ni = −S−1
i Dni
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Differential forms

I Let ω be a differential form on Zp × P(Rq) whose restriction to
Pn(Rq) is ωn. The action of SK on ωn is represented by

SK ωn = T∗
K ωn+K.

I SK commutes with the wedge product and with the exterior
derivative, denoted by dv:

SK(ω1 ∧ ω2) = (SK ω1) ∧ (SK ω2), SK(dvω) = dv(SK ω).

17 / 34



Difference forms

Exterior algebra of p symbols, ∆1, . . . ,∆p ([Kupershmidt, 1985];
[Hydon–Mansfield, 2004]).
I Invariance with respect to shifts: ∆i|n = T∗

K(∆
i|n+K) =: SK(∆

i|n)
I Exterior difference operator is defined by

∆ω = ∆i ∧Dniω

for a difference k-form over Zp × P(Rq)

ω = fi1,...,ik (n, . . . , uα
J , . . .)∆

i1 ∧ · · · ∧∆ik .

18 / 34



Differential-difference forms
Using [u] to denote a finite subset of (. . . , uα

J , . . .), a (k, l)-form over
Zp × P(Rq) is a (k + l)-form, ω ∈ Ωk,l, that can be written as

ω = f J1,...,Jl
i1,...,ik ;α1,...,αl

(n, [u])∆i1 ∧ · · · ∧∆ik ∧ dvuα1

J1
∧ · · · ∧ dvuαl

Jl
.

I (Vertical) exterior derivative dv : Ωk,l → Ωk,l+1:

dvω =
∂f J1,...,Jl

i1,...,ik ;α1,...,αl

∂uβ
K

dvuβ
K ∧∆i1 ∧ · · · ∧∆ik ∧ dvuα1

J1
∧ · · · ∧ dvuαl

Jl

I (Horizontal) exterior difference dM
h : Ωk,l → Ωk+1,l:

dM
hω = ∆i ∧Dniω

where

SK ω = SK

(
f J1,...,Jl
i1,...,ik ;α1,...,αl

)
∆i1∧· · ·∧∆ik ∧dvuα1

J1+K∧· · ·∧dvuαl
Jl+K.
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Proposition. The exterior derivative and difference satisfy(
dM

h
)2

= 0, dM
h dv = −dvdM

h , d2
v = 0.

Definition. Define dM = dM
h +dv. It satisfies

(
dM)2 = 0.

I For a function f defined over Zp × P(Rq):

dMf (n, [u]) := (Dni f )∆i +
∂f
∂uα

J
dvuα

J ,
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Lie difference

Remark. The operator Dni is the Lie difference [Crampin–Pirani, 1987]
with respect to the translation T1i :

(Dniω) |n = T∗
1i
(ωn+1i )− ωn.

I It satisfies the Cartan formula

Dniω = ∂ni y dMω + dM(∂ni y ω) ,

where {∂n1 , . . . , ∂np} are the duals to the 1-forms {∆1, . . . ,∆p}:

∂niy∆j = δj
i , ∂niydvuα

J = 0,
∂

∂uα
J
y∆j = 0,

∂

∂uα
J
ydvuβ

K = δβαδ
K
J
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The augmented difference variational bicomplex

0 R-Ω0,0 - Ω1,0 - · · · -Ωp−1,0 -Ωp,0

0 -Ω0,1 - Ω1,1 - · · · -Ωp−1,1 -Ωp,1 -F 1 -0

0 -Ω0,2 - Ω1,2 - · · · -Ωp−1,2 -Ωp,2 -F 2 -0

6

6

6

...

6

6

6

...

6

6

6

...

6

6

6

...

dM
h dM

h dM
h dM

h

dM
h dM

h dM
h dM

h IM

dM
h dM

h dM
h dM

h IM

dv

dv

dv

dv

dv

dv

dv

dv

dv

dv

dv

dv

6

6

...

δM

δM

�
�

���
EM

I The difference interior Euler operator is defined as

IM(ω) := 1

l
dvuα ∧ S−J

(
∂

∂uα
J
y ω

)
, ∀ω ∈ Ωp,l, l ≥ 1.

I Define δM := IM dv and the difference Euler–Lagrange operator is
EM := IM dv.
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Cohomology of the difference variational bicomplex

Proposition. Analogous to the differential case, we have

IM dM
h = 0, EM dM

h = 0, δMEM = 0, (δM)2 = 0.

[One-line theorem.] The augmented difference variational bicomplex
(empty equation) is exact:

ω = h(dMω) + dM(h(ω))

with h the homotopy operators.
(Note. Exactness of the EL complex was proved in [Hydon–Mansfield,
2004]; the exactness around EM was proved in [Kupershmidt, 1985].)

I Lagrangian forms: Ωp,0 & Euler–Lagrange equations: F 1

I Conservation Laws: Ωp−1,0 ←→ Symmetries
I Helmholtz conditions: F 2 ←→ Inverse problems
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Discrete variational problems
The H1 equation.

u1,0 − u0,1 −
α− β

u − u1,1
= 0

I Lagrangian form in Ω2,0:

L = L∆1 ∧∆2, L = (u1,0 − u0,1)u − (α− β) ln(u1,0 − u0,1)

I Discrete Euler–Lagrange equation (two copies of H1):

F 1 3 EM(L ) = 0

where
EM(L ) = E(L)dvu ∧∆1 ∧∆2

Note. Euler operators:
Eα := S−K

∂

∂uα
−K
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Discrete Noether’s theorem

I Define the difference divergence as Div F := Dni F i(n, [u]). A
conservation law Div F = 0 can be interpreted as

dM
hω = 0, where ω = F i∂ni y

(
∆1 ∧ · · · ∧∆p) ∈ Ωp−1,0

I A variational symmetry satisfies

v(L) = Div P, where v = (SJQα(n, [u])) ∂

∂uα
J
.

⇐⇒
v y dvL = dM

hσ
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Lemma. 1. There exists η ∈ Ωp−1,1 such that

dvL − EM(L ) = dM
hη.

2. For an evolutionary vector field v = (SJQα(n, [u])) ∂
∂uα

J
, the following

identity holds

v y dM
hω + dM

h (v y ω) = 0, ∀ω ∈ Ωk,l.

Noether’s Theorem.

0 = v y
(
dvL − EM(L )− dM

hη
)

= dM
hσ −QαEα(L)∆1 ∧ · · · ∧∆p − v y dM

hη

= dM
h (σ + v y η)−QαEα(L)∆1 ∧ · · · ∧∆p
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Discrete Lagrangian k-forms Ωk,0

[Hydon–Nijhoff–LP, draft]

I Lagrangian k-forms:

Ωk,0 3 Lk =
∑

i1<···<ik

Li1...ik (n, [u])∆i1 ∧ · · · ∧∆ik

I IMk = IM|Ωk,l . Again IMk dM
h ≡ 0.

I Multi Euler–Lagrange equations:

EMk (Lk) = 0 & BEs = 0

where

dvLk − EMk (Lk)− BEs = dM
hη for some η ∈ Ωk−1,1
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The closure relation in discrete integrable systems can then be
interpreted as

dM
h Lk = 0 for k = p − 1,

on solutions of the multi EL equations.

I Recall closure relation of the H1 equation:

(S3− id)L12 + (S2− id)L31 + (S1− id)L23 = 0 on solutions

where
L12 = L(u, u1,0,0, u0,1,0;α, β),

L31 = L(u, u0,0,1, u1,0,0; γ, α),

L23 = L(u, u0,1,0, u0,0,1;β, γ).

I The Lagrangian 2-form (p = 3) is simply

L2 = L12∆
1 ∧∆2 + L31∆

3 ∧∆1 + L23∆
2 ∧∆3

and each of the multi EL equations is H1.
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Noether’s theorem when the BEs vanish
This is the case for most integrable systems with the closure relation.

I Assume an evolutionary vector field v = (SJQα(n, [u])) ∂
∂uα

J
generates a variational symmetry for each Li1,...,ik as

v (Li1,...,ik ) = 0

and hence
v y dvLk = dM

hη.

I A similar proof to the usual Noether’s theorem follows when all BEs
vanish. These conservation laws are (k − 1, 0)-forms.

When the BEs do not vanish:

v y EMk (Lk) + v y BEs = dM
hω

and v y BEs is not in characteristic form.

29 / 34



H1 (7-point equation): no BEs
I The Lagrangian 2-form with three independent variables (m,n, l):

L2 = L12∆
1 ∧∆2 + L31∆

3 ∧∆1 + L23∆
2 ∧∆3

I Multi EL equations:

EM2 (L2) = E(L12)dvu ∧∆1 ∧∆2

+ E(L31)dvu ∧∆3 ∧∆1 + E(L23)dvu ∧∆2 ∧∆3

I Consider a variational symmetry v = (SJQα(n, [u])) ∂
∂uα

J
of L2, e.g.,

Q = (−1)m+n+lu, such that

v y dvL2 = dM
hη for some η ∈ Ω1,0

I Noether’s theorem gives a conservation law/form ω ∈ Ω1,0 satisfying

v y EM2 (L2) = dM
hω
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I Assume ω = a1∆
1 + a2∆

2 + a3∆
3, and the corresponding

conservation laws are

QE(L12) = Div(a2,−a1, 0)

QE(L31) = Div(−a3, 0, a1)

QE(L23) = Div(0, a3,−a2)

Remark. If BEs do not vanish, then the conservation laws will look like,
for instance,

QE(L12) + (SJQ)× BEs = Div F, . . .

meaning that summation by parts must be applied to achieve the
characteristic form:

(SJQ)× BEs = Q × S−J(BEs) + Div F0, . . .

Question. Can it be achieved without using local coordinates?
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Questions. 1. Cohomology/exactness of the multi Euler–Lagrange
complex and its relation with the canonical Euler–Lagrange complex.

2. To determine the integrability of a P∆E or to classify integrable
systems with the closure relation (double zeroes?) feature may be related
to the two-line theorem?
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Summary

I Structure of the total prolongation space
I Construction of the difference variational bicomplex
I Discrete integrable systems with closure relation

I Ongoing
I Two-line and three-line theorems for P∆Es
I Further analysis on the BEs
I ...
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Thanks!
Return!
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