Boundary Lagrangian formalism for INTEGRABLE QUAD-EQUATIONS

Cheng Zhang ch.zhang.maths@gmail.com Department of Mathematics Shanghai University

Institute for Advanced Study in Mathematics
Hangzhou, October 24, 2023

Outline

Integrable quad-graph systems

Quad-graph systems with an integrable boundary

Lagriangian formalism

Some perspectives

Outline

Integrable quad-graph systems

Quad-graph systems with an integrable boundary

Lagriangian formalism

Some perspectives

Example: lattice KdV-type equations

$\#$ the potential KdV equation:

$$
u_{t}=u_{x x x}+3 u_{x}^{2}, \quad u:=u(x, t)
$$

\# potential dressing chain obtained by Darboux-Bäcklund transformation:

$$
\widetilde{u}^{2}+\widetilde{u}_{x}+u^{2}+u_{x}=2 a_{1}+\widetilde{u} u, \quad u:=u(x, t, n)
$$

or with $y=u^{2}+u_{x}$

$$
\tilde{y}+y=2 a_{1}+\widetilde{u} u
$$

$\#$ the action of \sim as a shift: $\widetilde{u}(n)=u(n+1)$ is accompanied by a parameter a_{1}, and n is the discrete variable induced by Darboux-Bäcklund transformation
$\#$ using additive and multiplicative compatibilities (${ }^{\wedge}$ is associated with another discrete variable m accompanied by a_{2})

$$
\begin{aligned}
(\widetilde{y}+y)+(\widehat{\widetilde{y}}+\widehat{y}) & =(\hat{y}+y)+(\widetilde{\widehat{y}}+\widetilde{y}) \\
\widehat{\widetilde{u}} \widehat{u} \times \widetilde{u} u & =\widetilde{\widetilde{u}} \widetilde{u} \times \widehat{u} u
\end{aligned}
$$

yields (according to Adler-Bobenko-Suris classification)
$\mathrm{H} 1:(\widetilde{\widehat{u}}-u)(\widehat{u}-\widetilde{u})=a_{2}-a_{1}$
H2: $(\tilde{\hat{y}}-y)(\hat{y}-\tilde{y})+2\left(a_{1}-a_{2}\right)(\tilde{\hat{y}}+\hat{y}+\tilde{y}+y)=4\left(a_{1}^{2}-a_{2}^{2}\right)$

Compatibility as Bianchi permutability

\# Darboux-Bäcklund discretization induces two discrete variables

$$
u(x, t) \rightarrow u\left(x, t ; n, m, a_{1}, a_{2}\right)
$$

and yields lattice potential KdV equation defined on a quadrilateral

$$
(\widetilde{\widetilde{u}}-u)(\widehat{u}-\widetilde{u})=a_{2}-a_{1}
$$

\# Proper double continuous limit leads to the whole hierarchy of KdV equations
\# Darboux-Bäcklund discretization could induce more than two discrete variables (discrete hierarchy)

As an emerging notion: three-dimensional consistency, or consistency around the cube, as the defining criterion of discrete integrability (Nijhoff, Bobenko \& Suris)

$$
\begin{array}{rll}
Q\left(w, w_{i}, w_{j}, w_{i j}, a_{i}, a_{j}\right)=0, & Q\left(w_{k}, w_{k i}, w_{j k}, w_{k i j}, a_{i}, a_{j}\right)=0, \\
Q\left(w, w_{j}, w_{k}, w_{j k}, a_{j}, a_{k}\right)=0, & Q\left(w_{i}, w_{i j}, w_{k i}, w_{i j k}, a_{j}, a_{k}\right)=0 \\
Q\left(w, w_{w}, w_{i}, w_{w i}, a_{w}, a_{i}\right)=0, & Q\left(w_{j}, w_{j k}, w_{i j}, w_{j k i}, a_{w}, a_{i}\right)=0 .
\end{array}
$$

Given w, w_{i}, w_{j} and w_{k}, the computations of $w_{i j k}$ remains the same

$$
w_{k i j}=w_{i j k}=w_{j k i}
$$

3D-consistency implies multi-dimensional consistency (for instance on a hypercube), as a discrete analogue of the infinite commuting flows, and a natural derivation of the discrete zero curvature condition

$$
M_{n+1, m} L_{n, m}=L_{n, m+1} M_{n, m}
$$

Consistency around a hypercube

If a quadrilateral equation is 3 D consistent, then it is also 4D consistent

Figure: Consistency around a hypercube

Integrable quad-graph systems (Mercat, Bobenko \& Suris)
\# Quad-graph systems are discrete systems defined on a quad-graph (roughly a decomposition of a surface where elementary patterns are quadrilaterals)
\# "Quad-graph discretization" of an arbitrary planar graph:

the resulting quad-graph consists of quadrilaterals whose edges connecting adjacent black (original graph) and white (dual graph) dots
\# this "simple" construction together with 3D-consistent equations lead to the notion of integrable quad-graph systems.
\# some important results include classification results (Adler, Bobenko \& Suris), Lagrangian multiform or pluri-Lagrangian theory (Lobbs \& Nijhoff, Bobenko \& Suris, etc.), connection to discrete complex analytic functions and discrete Riemann surface theory (Schramm, Mercat, Bobenko, Suris, Smirnov, etc), etc.

ABS classification for scalar quad-equations

\sharp the classification [Adler Bobenko \& Suris, '03] [Adler Bobenko \& Suris, '09] is based on some basic techniques in projective multivariate polynomials and their invariants, in particular the field is living in $\mathbb{C P}^{1}$ (we lose the sense of real field in the continuous case)
$\#$ ABS list contains some equations, named as H1-H3, Q1-Q4, they are all KdV -type equations, Q 4 is the top equation of the list where the parameters are sitting on elliptic curves

$$
\begin{aligned}
& \mathrm{H} 3: s(v \widehat{v}-\widetilde{v} \widehat{\widetilde{v}})-t(v \widetilde{v}-\widehat{v} \widehat{\tilde{v}})=(-1)^{n+m} \delta\left(\frac{s}{t}-\frac{t}{s}\right) \\
& \text { Q1:s } s^{2}(z-\widetilde{z})(\widehat{z}-\widehat{\widetilde{z}})-t^{2}(z-\widehat{z})(\widetilde{z}-\widehat{\widetilde{z}})=4 p^{2} \delta\left(\frac{1}{t^{2}}-\frac{1}{s^{2}}\right) . \\
& \text { Q2:s } s^{2}(y-\widetilde{y})(\widehat{y}-\widehat{\widetilde{y}})-t^{2}(y-\widehat{y})(\widetilde{y}+\widehat{\widetilde{y}})+\left(\frac{1}{t^{2}}-\frac{1}{s^{2}}\right)(y+\widetilde{y}+\widehat{y}+\widehat{\widetilde{y}})=\frac{s^{6}+2 s^{2} t^{2}\left(t^{2}-s^{2} t^{6}\right)}{s^{6} t^{6}} \\
& \text { Q3:s } \mu(x \widehat{x}+\widehat{x} \widehat{\widetilde{x}})-t \nu(x \widetilde{x}+\widehat{x} \widehat{\widetilde{x}})=\left(\alpha^{2}-\beta^{2}\right)\left(\widetilde{x} \widehat{x}+x \widehat{\widetilde{x}}+\left(p^{2}-q^{2}\right)^{2} \frac{\delta}{s \mu t \nu}\right)
\end{aligned}
$$

\# Q4 (discrete Krichever-Novikov equation) (Hietarinta)

$$
\operatorname{sn}(s)(x u+v y)-\operatorname{sn}(t)(x v+u y)-\operatorname{sn}(s-t)(x y+u v)+\operatorname{sn}(s-t) \operatorname{sn}(s) \operatorname{sn}(t)\left(1+k^{2} x u v y\right)=0
$$

Cross-ratio as a nonlinear discrete analytic functions

\# the cross-ratio, or lattice Schwarzian KdV, or Q0 equaiton:

$$
\text { Q0 : } \quad[u, \widetilde{u}, \widehat{u}, \widehat{\tilde{u}}]=\frac{(u-\widehat{u})(\widetilde{u}-\widehat{\widetilde{u}})}{(u-\widehat{u})(\widehat{u}-\widehat{\widetilde{u}})}=\frac{a}{b} .
$$

$\sharp z:$ quad-graph $\rightarrow \mathbb{C}$ such that (obeying the Delauney decomposition)

$$
\left[z\left(y_{0}\right), z\left(x_{1}\right), z\left(x_{0}\right), z\left(y_{1}\right)\right]=\frac{\left(z\left(y_{0}\right)-z\left(x_{0}\right)\right)\left(z\left(x_{1}\right)-z\left(y_{1}\right)\right)}{\left(z\left(y_{0}\right)-z\left(x_{1}\right)\right)\left(z\left(x_{0}\right)-z\left(y_{1}\right)\right)}=e^{2 i \phi}
$$

$\#$ discrete analytic functions are cross-ratio preserving maps (idea due to Thurston to approximate Riemann mappings theorem using circle patterns, see for example [Bobenko, Mercat \& Suris, 04])

Lagrangian multi-form structures
Consider the ABS classification, all eqp admit a "three-leg" representation: $^{\text {P }}$.

$$
\begin{aligned}
& Q\left(x, \hat{x}, \hat{x}_{x}, \hat{\tilde{x}}_{j} \alpha, \beta\right)=0 \\
& \phi\left(x, \tilde{x}_{j} \alpha\right)-\phi(x, \hat{x} j \beta)=\psi(\hat{x}, \hat{x} ; \alpha-\beta)
\end{aligned}
$$

$$
L(x, \tilde{x}, \hat{x} ; \alpha \beta)=C\left(x_{\hat{x}, j \alpha)-C(x, \hat{x} ; \beta)+V(\hat{x}, \hat{x} ; \alpha-\beta)}\right.
$$

where $\frac{d c(x, \tilde{x} ; \alpha)}{d x}=\phi(x, \tilde{x} ; \alpha) \quad \frac{d}{d x}(\underset{x \rightarrow \tilde{x}}{\stackrel{\alpha}{\rightarrow}})=\rightarrow \sim \phi(x, \sim \neq \alpha)$

$$
\begin{aligned}
& \frac{d C(x, \hat{x} ; \beta)}{d x}=\phi(x, \hat{x} ; \beta) \\
& \frac{d V(\tilde{x}, \hat{x} ; \alpha-\beta)}{d \hat{x}}=\psi\left((\hat{x}, \hat{x} j \alpha, \beta) \frac{\alpha}{d \tilde{x}}\left(\frac{d}{d \tilde{x}}\right)=\rightarrow \sim \phi(x, \hat{x} ; \alpha) .\right. \\
& \left.\frac{\alpha-\beta}{\vec{x} \hat{x}}\right)=\rightarrow \sim \psi(\tilde{x}, \hat{x} ; \alpha-\beta)
\end{aligned}
$$

$S[x ; \varepsilon]=\sum l, \quad$ Eular-Lagrango eggs: $\quad \delta f[x ; \Sigma]=0$
$\frac{\partial}{\partial x}\left(L+T_{i}^{-1}(L)+T_{j}^{-1}(L)\right)=0$ np to 2 copies of a quad-eq.

Closure relation, and star-triangle relations
closure relation: capture the property of 3D-comsistency:

$$
s(x \cdot \Sigma)-s(x, \bar{\Sigma})=0
$$

$$
\begin{array}{r}
\left(T_{j} \mathcal{L}-\mathcal{L}\right)+\left(T_{i} \mathcal{L}-\mathcal{L}\right)+\left(T_{k} \mathcal{L}-\mathcal{L}\right) \\
=0
\end{array}
$$

further relation for the lagraugions of en in the ABS list:
star-kuangle relation:

Or:

Outline

Integrable quad-graph systems

Quad-graph systems with an integrable boundary

Lagriangian formalism

Some perspectives

Quad-graph discretization with a boundary

Figure: Planar graph with a boundary

Quad-graph discretization with a boundary

Figure: Quad-graph with a boundary

$$
Q(u, w, v, t, a, b)=0
$$

$q(x, y, z, a, b)=0$

We call $Q=0$ bulk equation, $q=0$ boundary equations. Given Q and q, a discrete initial-boundary value problem can be defined on a quad-graph, and q gives rise to the notion of discrete boundary conditions.

Example: a well-posed discrete interval problem $(n=2 k+1)$

Non-degenerate $(\exists \sigma)$ boundary consistency

Figure: Boundary consistency around half of a rhombic dodecahedron (left) and its planar projection (right), here σ is an involution acting on the parameters.

Some developments for quad-graph systems with a boundary

\# we obtained an efficient method (classification) for obtaining integrable boundary equations for ABS classification
\# Lax representation of integrable boundary equations, and an inverse scattering scheme for "interval problems"
$\#$ set up a Lagrangian formalism for the boundary equations
\diamond set up the boundary Lagrangian
\diamond the set of Euler-Lagrange equations (involving both bulk and boundary Lagrangians)
\diamond systematic way to derive the boundary Lagrangians
\diamond an integrable variational principle involving boundary
[Caudrelier, Crampé, ZC, 2014],
[Caudrelier, van der Kamp, ZC, 2022],
[Sun, ZC, 2023],
[Caudrelier, Nijhoff, ZC, in preparation]

Definition of boundary equations

Figure: Elementary triangle supporting a boundary equation

Def 1: an equation defined on a triangle in the form $q(x, u, y ; a, b)=0$ is called a boundary equation, if 1) $q(x, u, y ; a, b)$ is a multivariate polynomial in x, u, y, and affine-linear with respect to x and $y, 2) q$ is Z^{2}-symmetric meaning there exists certain function γ uniquely depending on parameters such that

$$
q(x, u, y ; a, b)=\gamma(a, b) q(y, u, x ; b, a) .
$$

we call such q boundary polynomial.

Classification of factorized boundary equations

Figure: Factorization of Q along the two diagonals (thick lines).
$\#$ the boundary polynomials p and q are playing dual roles
$\#$ Lemma: degree of the middle fields in p (and q) is less or equal than 2 (by counting the degrees of polynomials)

$$
\operatorname{deg} q_{u}+\operatorname{deg} p_{x} \leq 2
$$

Rongh idea: cunting the 12-vhombic face object juto 2 hatres.

Full classification
One class (among three classes) of integrable boundary eqs reads like.

Q	$q=r_{1} \boldsymbol{q}_{1}+r_{2} \boldsymbol{q}_{2}+r_{4} \boldsymbol{q}_{4}$	$\boldsymbol{\Phi}=r_{1} x y+r_{2}(x+y)+r_{4}$
Q1 (δ)	\boldsymbol{q}_{2}	$x+y$
Q3(0)	$\boldsymbol{q}_{1}+\boldsymbol{q}_{4}, \boldsymbol{q}_{2}$	$x y+1, x+y$
Q3($\delta \neq 0)$	\boldsymbol{q}_{2}	$x+y$
Q4	$k \boldsymbol{q}_{1}+1, \boldsymbol{q}_{2}$	$k x y+1, x+y$
H1	$\boldsymbol{q}_{1}+c \boldsymbol{q}_{4}, \boldsymbol{q}_{2}$	$x y+c, x+y$
H2	$\boldsymbol{q}_{2}+c \boldsymbol{q}_{4}$	$x+y+c$
H3(0)	$\boldsymbol{q}_{1}+\boldsymbol{q}_{4}, \boldsymbol{q}_{2}$	$x y+1, x+y$
H3 $(\delta \neq 0)$	$\boldsymbol{q}_{1}+c \boldsymbol{q}_{4}, \boldsymbol{q}_{2}$	$x y+c, x+y$

$$
\begin{aligned}
& P(x \cdot y)=0 \Rightarrow y=f(x) . \\
& q(\mu, x, v ; \alpha)=Q(x, u \cdot v \cdot f(x) ; \alpha \cdot 6(\alpha))=0
\end{aligned}
$$

Important conjeqencen: "two-leg "form for $q=0$

Outline

Integrable quad-graph systems
Quad-graph systems with an integrable boundary

Lagriangian formalism

Some perspectives

Boundary Lagrangzan.

$$
\begin{aligned}
l & :=\left(\mu, x_{j}\right) \\
& =C(\mu \cdot x ; \alpha)+H((x ; \alpha)
\end{aligned}
$$

wheve $\frac{d}{d \mu} c(u \cdot x, \alpha)=\phi(u \cdot x ; \alpha)$

$$
\frac{d}{d x} H(x ; \alpha)=\mathcal{X}(x ; \alpha)
$$

$\delta S=0 \Rightarrow A$ SET of Euler-Lagrange equations:

- When there in " two -leg " 1 presentation of $9=0$ that is compatible with the "thre-leg representation of $Q=0$ (same" Kinetic part) one gets a systematic way to computer the boundary Laginengion l.
- the set of $E-L$ es will produce both $Q=0$ and $q=0$.

Boundary clone relation:

or

(THIS MOVE IS A BOUNDARY VERSION OF THE Star-Triangle relation.

An inferable boundary variational Principle:

The above set of ell equations are conse quencej of the closure Relation
In particular: 1) GIVEN \mathcal{L} and l, only ThREE of They are fundamental (The rest can be seen as cone quences)
2) THE DET OF E-L EQUATIONS BY VARYING x IS A CONSEQUENCES, HENCE THE BULK AND BOUNDARY EQ.

Outline

Integrable quad-graph systems

Quad-graph systems with an integrable boundary

Lagriangian formalism

Some perspectives

SItuAtions where You might need a Boundary

