BOUNDARY LAGRANGIAN FORMALISM FOR INTEGRABLE QUAD-EQUATIONS

Cheng Zhang ch.zhang.maths@gmail.com Department of Mathematics Shanghai University

Institute for Advanced Study in Mathematics Hangzhou, October 24, 2023

Outline

Integrable quad-graph systems

Quad-graph systems with an integrable boundary

Lagriangian formalism

Some perspectives

Outline

Integrable quad-graph systems

Quad-graph systems with an integrable boundary

Lagriangian formalism

Some perspectives

Example: lattice KdV-type equations

the potential KdV equation:

$$u_t = u_{xxx} + 3u_x^2, \quad u := u(x, t)$$

potential dressing chain obtained by Darboux-Bäcklund transformation:

$$\widetilde{u}^2 + \widetilde{u}_x + u^2 + u_x = 2a_1 + \widetilde{u}u$$
, $u := u(x, t, n)$

or with $y = u^2 + u_x$

$$\widetilde{y} + y = 2a_1 + \widetilde{u}u$$

- # the action of $\tilde{}$ as a shift: $\tilde{u}(n) = u(n+1)$ is accompanied by a parameter a_1 , and n is the discrete variable induced by Darboux-Bäcklund transformation
- \ddagger using additive and multiplicative compatibilities ($\hat{}$ is associated with another discrete variable *m* accompanied by *a*₂)

$$(\widetilde{y} + y) + (\widehat{\widetilde{y}} + \widehat{y}) = (\widehat{y} + y) + (\widetilde{\widetilde{y}} + \widetilde{y})$$
$$\widehat{\widetilde{u}}\widehat{u} \times \widetilde{u}u = \widetilde{\widetilde{u}}\widetilde{u} \times \widehat{u}u$$

yields (according to Adler-Bobenko-Suris classification)

H1:
$$(\widetilde{\widetilde{y}} - u)(\widehat{u} - \widetilde{u}) = a_2 - a_1$$

H2: $(\widetilde{\widetilde{y}} - y)(\widehat{y} - \widetilde{y}) + 2(a_1 - a_2)(\widetilde{\widetilde{y}} + \widehat{y} + \widetilde{y} + y) = 4(a_1^2 - a_2^2)$

Compatibility as Bianchi permutability

Darboux-Bäcklund discretization induces two discrete variables

$$u(x,t)
ightarrow u(x,t;n,m,a_1,a_2)$$

and yields lattice potential KdV equation defined on a quadrilateral

$$(\widetilde{\widehat{u}}-u)(\widehat{u}-\widetilde{u})=a_2-a_1$$

- Proper double continuous limit leads to the whole hierarchy of KdV equations
- # Darboux-Bäcklund discretization could induce more than two discrete variables (discrete hierarchy)

3D-consistent equations

As an emerging notion: three-dimensional consistency, or consistency around the cube, as the defining criterion of discrete integrability (Nijhoff, Bobenko & Suris)

 $\begin{aligned} & Q(w, w_i, w_j, w_{ij}, a_i, a_j) = 0, \quad Q(w_k, w_{ki}, w_{jk}, w_{kij}, a_i, a_j) = 0, \\ & Q(w, w_j, w_k, w_{jk}, a_j, a_k) = 0, \quad Q(w_i, w_{ij}, w_{ki}, w_{ijk}, a_j, a_k) = 0, \\ & Q(w, w_w, w_i, w_{wi}, a_w, a_i) = 0, \quad Q(w_j, w_{jk}, w_{ij}, w_{jki}, a_w, a_i) = 0. \end{aligned}$

Given w_i , w_j , w_j and w_k , the computations of w_{ijk} remains the same

$$w_{kij} = w_{ijk} = w_{jki}$$

3D-consistency implies multi-dimensional consistency (for instance on a hypercube), as a **discrete analogue of the infinite commuting flows**, and a natural derivation of the **discrete zero curvature condition**

$$M_{n+1,m} L_{n,m} = L_{n,m+1} M_{n,m}$$

Consistency around a hypercube

If a quadrilateral equation is 3D consistent, then it is also 4D consistent

Figure: Consistency around a hypercube

Integrable quad-graph systems (Mercat, Bobenko & Suris)

- Quad-graph systems are discrete systems defined on a quad-graph (roughly a decomposition of a surface where elementary patterns are quadrilaterals)
- "Quad-graph discretization" of an arbitrary planar graph:

the resulting quad-graph consists of quadrilaterals whose edges connecting adjacent black (original graph) and white (dual graph) dots

- # this "simple" construction together with 3D-consistent equations lead to the notion of integrable quad-graph systems.
- some important results include classification results (Adler, Bobenko & Suris), Lagrangian multiform or pluri-Lagrangian theory (Lobbs & Nijhoff, Bobenko & Suris, etc.), connection to discrete complex analytic functions and discrete Riemann surface theory (Schramm, Mercat, Bobenko, Suris, Smirnov, etc), etc.

ABS classification for scalar quad-equations

- the classification [Adler Bobenko & Suris, '03] [Adler Bobenko & Suris, '09] is based on some basic techniques in projective multivariate polynomials and their invariants, in particular the field is living in CP¹ (we lose the sense of real field in the continuous case)
- ABS list contains some equations, named as H1-H3, Q1-Q4, they are all KdV-type equations, Q4 is the top equation of the list where the parameters are sitting on elliptic curves

$$\begin{aligned} \mathsf{H3:}s(v\widehat{v} - \widetilde{v}\widehat{\widetilde{v}}) - t(v\widetilde{v} - \widehat{v}\widehat{\widetilde{v}}) &= (-1)^{n+m}\delta\left(\frac{s}{t} - \frac{t}{s}\right) \\ \mathsf{Q1:}s^2(z - \widetilde{z})(\widehat{z} - \widehat{\widetilde{z}}) - t^2(z - \widehat{z})(\widetilde{z} - \widehat{\widetilde{z}}) &= 4p^2\delta\left(\frac{1}{t^2} - \frac{1}{s^2}\right). \\ \mathsf{Q2:}s^2(y - \widetilde{y})(\widehat{y} - \widehat{\widetilde{y}}) - t^2(y - \widehat{y})(\widetilde{y} + \widehat{\widetilde{y}}) + (\frac{1}{t^2} - \frac{1}{s^2})(y + \widetilde{y} + \widehat{y} + \widehat{y}) &= \frac{s^6 + 2s^2t^2(t^2 - s^2t^6)}{s^6t^6} \\ \mathsf{Q3:}s\,\mu(x\widehat{x} + \widehat{x}\widehat{\widetilde{x}}) - t\,\nu(x\widetilde{x} + \widehat{x}\widehat{\widetilde{x}}) &= (\alpha^2 - \beta^2)\left(\widetilde{x}\widehat{x} + x\widehat{\widetilde{x}} + (p^2 - q^2)^2\frac{\delta}{s\mu t\nu}\right) \end{aligned}$$

Q4 (discrete Krichever-Novikov equation) (Hietarinta)

$$\operatorname{sn}(s)(xu+vy)-\operatorname{sn}(t)(xv+uy)-\operatorname{sn}(s-t)(xy+uv)+\operatorname{sn}(s-t)\operatorname{sn}(s)\operatorname{sn}(t)(1+k^2xuvy)=0$$

Cross-ratio as a *nonlinear* discrete analytic functions

the cross-ratio, or lattice Schwarzian KdV, or Q0 equaiton:

$$\mathsf{Q0}: \quad [u, \widetilde{u}, \widehat{u}, \widehat{\widetilde{u}}] = \frac{(u - \widehat{u})(\widetilde{u} - \widehat{\widetilde{u}})}{(u - \widetilde{u})(\widehat{u} - \widehat{\widetilde{u}})} = \frac{\mathsf{a}}{\mathsf{b}}$$

 $\sharp z$: quad-graph $\to \mathbb{C}$ such that (obeying the *Delauney decomposition*)

discrete analytic functions are cross-ratio preserving maps (idea due to Thurston to approximate Riemann mappings theorem using circle patterns, see for example [Bobenko, Mercat & Suris, 04])

Lagrangian multi-form structures

Closure relation, and star-triangle relations

closure relation : capture the property of 3D-Consistency: $\int_{X} \left(x, \overline{z} \right) - \int_{X} \left(x, \overline{z} \right) = 0$ $(T_j L - L) + (T_j L - L) + (T_j L - L)$ × ; ; - Jurther relation for the Lagrangions of egn in the ABS list. Mar-triangle relation: ا <u>~</u> ا

Outline

Integrable quad-graph systems

Quad-graph systems with an integrable boundary

Lagriangian formalism

Some perspectives

Quad-graph discretization with a boundary

Figure: Planar graph with a boundary

Quad-graph discretization with a boundary

Figure: Quad-graph with a boundary

"Triangular equations" as discrete boundary conditions

Q(u, w, v, t, a, b) = 0 q(x, y, z, a, b) = 0

We call Q = 0 bulk equation, q = 0 boundary equations. Given Q and q, a discrete initial-boundary value problem can be defined on a quad-graph, and q gives rise to the notion of **discrete boundary conditions**.

Example: a well-posed discrete interval problem (n = 2k + 1)

Non-degenerate $(\exists \sigma)$ boundary consistency

Figure: Boundary consistency around half of a rhombic dodecahedron (left) and its planar projection (right), here σ is an involution acting on the parameters.

Some developments for quad-graph systems with a boundary

- # we obtained an efficient method (classification) for obtaining integrable boundary equations for ABS classification
- Lax representation of integrable boundary equations, and an inverse scattering scheme for "interval problems"
- set up a Lagrangian formalism for the boundary equations
 - set up the boundary Lagrangian
 - the set of Euler-Lagrange equations (involving both bulk and boundary Lagrangians)
 - systematic way to derive the boundary Lagrangians
 - o an integrable variational principle involving boundary

[Caudrelier, Crampé, **ZC**, 2014], [Caudrelier, van der Kamp, **ZC**, 2022], [Sun, **ZC**, 2023], [Caudrelier, Nijhoff, **ZC**, in preparation]

Definition of boundary equations

Figure: Elementary triangle supporting a boundary equation

Def 1: an equation defined on a triangle in the form q(x, u, y; a, b) = 0 is called a **boundary equation**, if 1) q(x, u, y; a, b) is a multivariate polynomial in x, u, y, and affine-linear with respect to x and y, 2) q is Z^2 -symmetric meaning there exists certain function γ uniquely depending on parameters such that

$$q(x, u, y; a, b) = \gamma(a, b)q(y, u, x; b, a).$$

we call such q boundary polynomial.

Classification of factorized boundary equations

Figure: Factorization of *Q* along the two diagonals (thick lines).

- the boundary polynomials p and q are playing dual roles
- Lemma: degree of the middle fields in p (and q) is less or equal than 2 (by counting the degrees of polynomials)

$$\deg q_u + \deg p_x \le 2$$

Full classification

One class (among three classes) of integrable boundary equ reads like. $\mathbf{p} = r_1 x y + r_2 (x+y) + r_4$ $q = r_1 q_1 + r_2 q_2 + r_4 q_4$ $Q1(\delta)$ x + y q_2 Q3(0) $q_1 + q_4, q_2$ xy + 1, x + y $Q3(\delta \neq 0)$ q_2 x + yQ4 $kq_1 + 1, q_2$ kxy+1, x+yH1 $q_1 + c q_4, q_2$ $xy + c \cdot x + y$ H2 $q_2 + cq_4$ x+y+cH3(0) $q_1 + q_4, q_2$ xy + 1, x + y $H3(\delta \neq 0)$ $q_1 + cq_4, q_2$ xy + c, x + y $P(x,y)=0 \Rightarrow y = f(x).$ with 6/a? $Q\left(\mu, X, \sqrt{J}d\right) = \left(\Im\left(X, u, \sqrt{J}, f(X); d, 6\left(\alpha\right)\right) = 0\right)$ P MPORTANT CONVERENCEN: Two-leg form for 9=0 x $\varphi(x,u;d) - \varphi(x,v;6|d) + \sum \{x;d\} = \varphi(x,u;d) - \varphi(x,v;6|d) + \psi(x,f(y),d-6|d))$

Outline

Integrable quad-graph systems

Quad-graph systems with an integrable boundary

Lagriangian formalism

Some perspectives

• • • • • • • 0 0 0 0 0 0 - liv

Xj	L)	•	•	•	•	•	•	•	•	•	•	•	•
زېر	مر)	†	ŀ	.X	زمز	•	•	•	•	•	•	•	•
۰	٠	۰	٠	•	۰	•	•	•	٠	٠	۰	۰	٠
٠	٠	۰	٠	٠	•	٠	٠	٠	٠	٠	۰	•	۰
۰	٠	٠	۰	٠	٥	٠	٠	٠	۰	۰	۰	۰	۰
•	•	۰		٠	·			<u></u>	•	•)	•	

 $\Rightarrow q_{j=0}$ Q

• • • •

Q+Q

•	•	•	•
•	•	•	•
•	•	•	•
•	•	•	•
•	•	•	•
•	•	•	•
•	•	•	•
•	•	•	•
•	•	•	•
•	•	•	•
•	•	•	•
•	•	•	•
•	•	•	•
:0	•	•	•
•	•	•	•
	-		

 $-\ell(x, x_i; a_i) + \ell(x, x_j; a_j) + \mathcal{L}(x, x_i, x_j; a_i, a_j)$ $S[x;\mathcal{D}] = +\mathcal{L}(x_i, x'_i, x_{ij}; a'_i, a_j) + \mathcal{L}(x_j, x_{ij}, x'_j; a_i, a'_j)$ $+ \ell(x'_j, x'_{ji}; a_i) - \ell(x'_i, x'_{ij}; a_j) + \mathcal{L}(x_{ij}, x'_{ij}, x'_{ji}; a'_i, a'_j)$

•	•	•	•
•	•	•	•
•	•	•	•
•	•	•	•
0	•	•	•
•	•	•	•
•	•	•	•
•	•	•	•
•	•	•	•
•	•	•	•
•	•	•	•
•	•	•	•
0	•	•	•
•	•	•	•
•	•	•	•
•	•	•	•
•	•	•	•
0	•	•	•
٠	•	•	•
٠	•	•	•
•	•	•	•
•	•	•	•
•	•	•	•
•	•	•	•
•	•	•	•

AN INTERRABLE BOUNDARY VARIATIONAL PRINCIPLE:

THE ABOVE SET OF E-L EQUATIONS ARE CONSEQUENCES OF THE CLOSURE RELATION

 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •

IN PARTICULAR: 1) GIVEN 2 and l, ONLY THREE OF THEM ARE

2) THE DET OF E-L EQUATIONS BY VARYING X IS A CONSEQUENCES, HENCE THE BULK AND BOUNDARY EQ.

FUNDAMENTAL (THE REST CAN BE SEEN AS CONSE GUENCES)

Outline

Integrable quad-graph systems

Quad-graph systems with an integrable boundary

Lagriangian formalism

Some perspectives

SITUATIONS WHERE YOU MIGHT NEED A DOUNDARY