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Quote

Paul Dirac, in his seminal paper1 of 1933, stated:

”The two formulations [namely that of Hamilton and of Lagrange] are, of course,
closely related but there are reasons for believing that the Lagrangian one is more
fundamental.”

Dirac’s paper contained already the key ideas underlying the path integral, later
introduced by Feynman.

1P.A.M. Dirac, The Lagrangian in Quantum Mechanics, Physikalische Zeitschrift der Sowjetunion, Bd. 3, Heft
1, (1933)



The talk gives a brief overview of Lagrangian multi-form theory2, which is a variational
approach to integrability in the sense of multidimensional consistency (MDC).
It differs from the conventional variational approach in a number of respects:

I Lagrangians are no longer scalar objects (or volume forms) but genuine
differential- or difference forms (with co-dimension nonzero) in the space of
independent variables;

I the action is a functional not only of the dependent variables (the ”fields”) but
also of (hyper)surfaces in the space of independent variables;

I at the critical point of the action, i.e., subject to solutions of a system of
generalized Euler-Lagrange (EL) equations, the action is independent on local
variations of the (hyper)surface in the space of multi-variables;

I the Lagrangians are no longer input (from tertiary considerations) but are to be
viewed as solutions of the system of generalized EL equations.

Pluri-Lagrangian systems: The term was introduced by A. Bobenko & Yu. Suris, and
it relaxes some of the assumptions of multiform theory, but there is also a subtly
different perspective.

• First steps to a quantum multiform theory were undertaken in terms of Feynman
propagators3 ,4.

2S. Lobb & FWN: Lagrangian multiforms and multidimensional consistency, J. Phys. A:Math Theor. 42 (2009)
454013

3S.D. King and FWN, Quantum variational principle and quantum multiform structure: The case of quadratic
Lagrangians, Nucl Phys. B947 (2019) 114686.

4T. Kongkoom and S. Yoo-Kong, Quantum integrability: Lagrangian 1-form case, Nucl. Phys. B987 (2023)
116101.



Multidimensional consistency on the lattice

quadrilateral P∆Es on the 2D lattice:

Q(u,T1u,T2u,T1T2u; p1, p2) = 0

notation of shifts on the elementary
quadrilateral on a rectangular lattice:

u := u(n1, n2), T1u = u(n1 + 1, n2)
T2u := u(n1, n2 + 1), T1T2u = u(n1 + 1, n2 + 1)
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Verifying consistency: Values at the black disks are initial values, values at open
circles are uniquely determined from them, but there are three different ways to
compute T1T2T3u.



Conventional variational formalism: discrete Euler-Lagrange equations
Define an action functional:

S[u(n1, n2)] =
∑

n1,n2∈Z
L (u,T1u,T2u; p1, p2) .

Following the usual least-action principle, the lattice equations for u are determined by
the demand that S attains a minimum under local variations
u(n1, n2)→ u(n1, n2) + δu(n1, n2). Thus,

δS =
∑

n1,n2∈Z

{
∂

∂u
L (u,T1u,T2u; p1, p2)δu +

∂

∂T1u
L (u,T1u,T2u; p1, p2)δ(T1u)

+
∂

∂T2u
L (u,T1u,T2u; p1, p2)δ(T2u)

}
= 0

Setting δ(Tiu) = Tiδu, and resumming each of the terms we get:

0 =
∑

n1,n2∈Z

{
∂

∂u
L (u,T1u,T2u; p1, p2) +

∂

∂u
L (T−1

1 u, u,T−1
1 T2u; p1, p2)

+
∂

∂u
L (T−1

2 u,T1T
−1
2 u, u; p1, p2)

}
δu

(ignoring boundary terms) and since δu is arbitrary the discrete Euler-Lagrange (EL)
equation follow:

∂

∂u

(
L (u,T1u,T2u; p1, p2) + L (T−1

1 u, u,T−1
1 T2u; p1, p2)

+L (T−1
2 u,T1T

−1
2 u, u; p1, p2)

)
= 0



The problem
Multidimensional consistency: We know that many ”integrable” equations, discrete
and continuous possess the property of multidimenional consistency.

I continuous: commuting flows, higher symmetries & master symmetries,
hierarchies;

I discrete: consistency-around-the-cube, Bäcklund transforms, higher continuous
symmetries, commuting discrete flows

In all these cases we can think of the dependent variable a (possibly vector-valued)
function of many (discrete and continuous) variables

u = u(n1, n2, . . . ; x , t1, t2, . . . )

on which we can impose many equations simultaneously, and it is the compatibility of
those equations that makes the integrability manifest.

Key question: How to capture the property of multidimensional consistency within a
Lagrange formalism?

Main problem: The EL equations, only produces one equation per component of the
dependent variables, but not an entire system of compatible equations on one and the
same dependent variable!
Answer: Lagrangians of an integrable theory (in the sense of MDC) must be
differential- or difference forms in space of multi-variables!
A key discovery was that Lagrangians for MDC quad-lattice equations obey a closure
relation:

∆iLjk + ∆jLki + ∆kLij = 0 , (where ∆i = Ti − id) .



Simple example of a MDC system: linear case
here we consider multi-variable functions

u = u(n1, n2, . . . ; p1, p2, . . . )

of discrete ({ni}) and continuous ({pi}) variables.

P∆E Fully discrete Lagrangian:

Lij = u(Ti − Tj )u −
1

2

(
pi + pj

pi − pj

)(
(Ti − Tj )u

)2
,

Linear quadrilateral lattice equation:

(pi + pj )(Ti − Tj )u − (pi − pj )(id− TiTj )u = 0 .

The lattice Lagrangian Lij obeys the closure relation:

∆iLjk + ∆jLki + ∆kLij = 0

(where ∆i = Ti − id) on solutions of the lattice equation.

D∆E Linear differential-difference equation:

2pi
∂

∂pi
u = ni (T

−1
i − Ti )u ,

Semi-discrete Lagrangian:

Li = niu
∂

∂pi
Tiu − pi

(
∂

∂pi
u

)2

.



PDE Fully continuous equation;

∂pi ∂pj (p
2
i − p2

j )∂pi ∂pjw = 4(nj∂pi − ni∂pj )
1

p2
i − p2

j

(njp
2
i ∂pi − nip

2
j ∂pj )w ,

arises as (conventional) EL equation from the Lagrangian:

Lij =
1

njni

{
1

2
(p2

i −p
2
j )(∂pi ∂pjw)2+(n2

j (∂piw)2−n2
i (∂pjw)2)+

p2
i + p2

j

p2
i − p2

j

(nj∂piw−ni∂pjw)2

}

The continuous Lagrangian Lij obeys the closure relation:

∂pi Ljk + ∂pj Lki + ∂pk Lij = 0

on solutions of the continuous equation.
In fact, off-shell we have

∂pi Ljk + ∂pj Lki + ∂pk Lij =

1

ninjnk

[
nk (p2

i − p2
j )∂pi ∂pjw + ni (p

2
j − p2

k )∂pj ∂pkw + nj (p
2
k − p2

i )∂pi ∂pkw
]

×
[
∂pi ∂pj ∂pkw +

4njnkp
2
i ∂piw

(p2
k − p2

i )(p2
i − p2

j )
+

4nknip
2
j ∂pjw

(p2
i − p2

j )(p2
j − p2

k )
+

4ninjp
2
k∂pkw

(p2
j − p2

k )(p2
k − p2

i )

]
,

which implies that dL has a ’double zero’ and vanishes on the solutions of either factor.
These factors are the multiform EL equations, and imply the 2-variable EL equation.



Continuous 2-form action
The Lagrangian 2-formaction functional, defined on an arbitrary surface σ (embedded
in a space of independent variables {p} of arbitrary dimension), e.g. parametrised as:

σ : p = p(s, t) = (pi (s, t)) , (s, t) ∈ Ω ⊂ R2 ,

takes the form

S[u(p);σ] =

∫
σ

∑
i<j

Li,jdpi ∧ dpj =

∫∫
Ω

∑
i<j

{
Li,j

∂(pi , pj )

∂(s, t)

}
ds dt ,

where typically (2-jet case)

Lij = L (u, ∂pi u, ∂pj u, ∂pi ∂pj u; pi , pj ; ni , nj ) .

We have two types of variations:
• Variations of the surface: σ → σ + δσ , (i.e., p 7→ p + δp, in the parametrisation).
This gives the closure relation as variational equations of the Lagrangian as a function
of the independent variables

L(p(s, t)) :=
∑
i<j

{
Li,j

∂(pi , pj )

∂(s, t)

}
,

and apply the variational derivative:

δL

δp(s, t)
= 0 ⇒ ∂pi Lj,k + ∂pj Lk,i + ∂pk Li,j = 0 .

• Infinitesimal variations of the dependent variable u 7→ u + δu, on an arbitrary, but
fixed, surface. This has two contributions:
♦ tangential contributions, i.e. from components (∇δu)‖ along the surface;
♦ orthogonal contributions, i.e. from components (∇δu)⊥ orthogonal to the surface.



Lagrange 2-form in 3D space
In the simple case of smooth 2D surfaces σ embedded in R3, and L depending only
on the first jet, we get the following set of equations:

• From the tangential contributions:∑
i<j

[
∂(pi , pj )

∂(s, t)

∂Lij

∂u
−

∂

∂s

(
∂(pi , pj )

∂(s, t)

pt × n
‖ps × pt‖

·
∂Lij

∂∇u

)

+
∂

∂t

(
∂(pi , pj )

∂(s, t)

ps × n
‖ps × pt‖

·
∂Lij

∂∇u

)]
= 0

where n is the unit normal to the surface,

• From the transversal contributions:∑
i<j

∂(pi , pj )

∂(s, t)
n ·

∂Lij

∂∇u
= 0 .

• From the variation of the surface we obtain the continuous closure relation

∂pi Ljk + ∂pj Lki + ∂pk Lij = 0

where Lji = −Lij , means that the Lagrangian 2-form with components Lij is closed
but only on the solutions of the equations of the motion.
The latter guarantees that at critical point the action is stationary under changes of
the surface σ.
Question: Can one solve the Lagrangian components Lij from this system of
generalised EL equations?



A different approach to the variational system for the general continuous 2-form case
was proposed5, using ”stepped surfaces”, amounting to choosing piecewise flat
surfaces for the action functional along the coordinate patches.
The resulting EL equations for a Lagrangian 2-form an actions defined on
two-dimensional surfaces embedded in D-dimensional space, are:

δijLij

δϕI

= 0 ∀I 63 i , j ,
δijLij

δϕIj

=
δikLik

δϕIk

∀I 63 i ,

δijLij

δϕIij

+
δjkLjk

δϕIjk

+
δkiLki

δϕIki

= 0 ∀I

where I = (i1, . . . , iD) and

ϕI =
∂|I |u

(∂p1)i1 . . . (∂pD)iD

with |I | = i1 + . . .+ iD and Iik = (i1, . . . , ik+1, . . . , iD) and the variational derivative

δijLij

δϕI

=
∑
α,β≥0

(−1)α+βDαpiD
β
pj

∂L(ij)

∂ϕIiαjβ
.

where Dpi , Dpj are the total derivative operators w.r.t. the variables pi ,pj .
A yet alternative approach employs the variational bicomplex, and encodes the system

of EL eqs. in the formula δdL = 0 .

5Yu. Suris & M. Vermeeren, On the Lagrangian structure of integrable hierarchies, in: Ed A. Bobenko,
”Advances in Discrete Differential Geometry”,(Springer, 2016) pp 347–78.



Application: KdV generating PDE system
The higher-order Lagrangian 6

Lij =
1

4
(p2

i − p2
j )

(∂pi ∂pj u)2

(∂pi u)∂pj u
+

1

p2
i − p2

j

(
n2
i p

2
i

∂pj u

∂pi u
+ n2

j p
2
j

∂pi u

∂pj u

)
,

through the Euler-Lagrange equation:

∂

∂pi

∂

∂pj

(
∂Lij

∂(∂pi ∂pj u)

)
−

∂

∂pi

(
∂Lij

∂(∂pi u)

)
−

∂

∂pj

(
∂Lij

∂(∂pj u)

)
= 0 ,

yields a 2nd order PDE in both independent variables, which generates the KdV
hierarchy by multi-time expansion i.t.o. the Miwa variables pi , pj .
The generalised EL system yields 3D equations, similar to the linear case, namely

(p2
i − p2

j )(∂pk u)∂pi ∂pj u + (p2
j − p2

k )(∂pi u)∂pj ∂pk u + (p2
k − p2

i )(∂pj u)∂pi ∂pk u = 0 ,

and

2∂pi ∂pj ∂pk u =
∂pi ∂pj u

∂pk u
+
∂pj ∂pk u

∂pi u
+
∂pi ∂pk u

∂pj u

+
n2
i /(∂pi u)2

(p2
i − p2

j )(p2
i − p2

k )
+

n2
j /(∂pj u)2

(p2
j − p2

i )(p2
j − p2

k )
+

n2
k/(∂pk u)2

(p2
k − p2

i )(p2
k − p2

j )
,

which imply the 2-variable EL equation, as well as the closure relation on the
Lagrangian:

∂pk Lij + ∂pi Ljk + ∂pj Lki = 0 .

6FWN, A. Hone, N. Joshi, Phys. Lett. 267 (2000).



Surface-dependent actions
The closure relation suggests the introduction of surface-dependent action functionals.

S[u(n);σ] =
∑
σ

L =
∑

σij (n)∈σ
Lij (n)

where Lij (n) is a discrete Lagrangian 2-form 7: L =
∑

i<j Lij∆i ∧∆j

These are oriented expressions of the form:

Lij (n) = L (u(n), u(n + e i ), u(n + e j ); pi , pj )

defined on elementary plaquettes, in a
multidimensional lattice, characterized by
triplets σij (n) = (n, n + e i , n + e j ).
σ a quad surface consisting of (a connected
configuration of) elementary plaquettes σij (n)

n

e i

e j

7Notation borrowed from: E.L. Mansfield and P.E. Hydon, Difference forms, Found. of Comp. Math. 8 (2008)
427–467.



Surface independence on the latice

The closure relation implies the invariance of the action S under local deformations
S → S ′ of the surface:

S ′ = S −L (u, ui , uj ; pi , pj ) + L (uk , ui,k , uj,k ; pi , pj ) + L (ui , ui,j , ui,k ; pj , pk )

+L (uj , uj,k , ui,j ; pk , pi )−L (u, uj , uk ; pj , pk )−L (u, uk , ui ; pk , pi )

taking into account the orientation of the plaquettes.



Surface independence on the lattice

The closure relation implies the invariance of the action S under local deformations
S → S ′ of the surface:

S ′ = S −L (u, ui , uj ; pi , pj ) + L (uk , ui,k , uj,k ; pi , pj ) + L (ui , ui,j , ui,k ; pj , pk )

+L (uj , uj,k , ui,j ; pk , pi )−L (u, uj , uk ; pj , pk )−L (u, uk , ui ; pk , pi )

taking into account the orientation of the plaquettes.



Fundamental EL system for quad-equations
We will now describe how to resolve the issue of “weak equations”: that the closure
requires stronger equations than the variational one8.

Assuming the 3-point form of the Lagrangians:

Li,j (u,Tiu,Tju) := L (u,Tiu,Tju; pi , pj ) ,

the lattice EL can be written as:

(EL0) ∂
∂u

(
Li,j (T

−1
i u, u,T−1

i Tju) + Li,j (u,Tiu,Tju) + Li,j (T
−1
j u,TiT

−1
j u, u)

)
= 0 .

This represents the “planar” EL eqs, illustrated by the diagram (embedded in 3D
lattice):

Figure: EL in flat 2D lattice.

This is the weak (non-quadrilateral) form of the equations. However, by the extended
variational principle of the multiform structure, the quad-lattice equation is recovered.

8S.B.Lobb & F.W. Nijhoff. A variational principle for discrete integrable systems. ArXiv: 1312.1440.
R. Boll, M. Petrera and Yu. Suris, What is integrability of discrete variational systems?, arXiv:1307.0523.



Lattice action for the closed cube surface
To derive elementary configurations we need action over the (decorated) full oriented
cube:

TiTju

Tiu

u

TiTku

Tku

TjTku
Tju

TiTjTku

Figure: Decorated cube.

This gives rise to a lattice action functional:

S[u; cube] = Li,j (u,Tiu,Tju) + Lj,k (u,Tju,Tku) + Lk,i (u,Tku,Tiu)

−Li,j (Tku,TiTku,TjTku)−Lj,k (Tiu,TiTju,TiTku)−Lk,i (Tju,TjTku,TiTju).

The faces joining each vertex involved in the action will give rise to the various
elementary surface configurations: the elementary actions that will lead to the
fundamental system of EL equations.



Elementary configurations for lattice action
Over curved quad-surfaces we need the following types of elementary configurations:

Figure: Elementary lattice configurations in 3D.

The action functionals corresponding to these configurations give rise to the
fundamental system of EL equations:

(EL1)
∂

∂u

(
Li,j (u,Tiu,Tju) + Lj,k (u,Tju,Tku) + Lk,i (u,Tku,Tiu)

)
= 0,

(EL2)
∂

∂u

(
Li,j (T

−1
i u, u,T−1

i Tju) − Lj,k (u,Tju,Tku) + Lk,i (T
−1
i u,T−1

i Tku, u)

)
= 0,

(EL3)
∂

∂u

(
Lj,k (T−1

j (u), u,T−1
j Tku) + Lk,i (T

−1
i u,T−1

i Tku, u)

)
= 0.

(up to permutations of the lattice indices).
Furthermore, imposing that the action remains invariant under (discrete) deformations
of the surface (allowing the above equations to hold simultaneously) the system is
supplemented with the closure relation:

(EL4) ∆iL (u,Tju,Tku; pj , pk ) + ∆jL (u,Tku,Tiu; pk , pj ) + ∆kL (u,Tiu,Tju; pi , pj ) = 0 .



General quad-lattice Lagrangian
Main hypothesis: The solutions of above linear system of equations for the
Lagrangians L correspond exactly to the Lagrangians for integrable (in the sense of
multidimensional consistency) quadrilateral lattice systems.

For affine-linear D4-symmetric quad-lattice equations

0 = Qpi ,pj (u, ui , uj , uij ) = Qpi ,pj (ui , u, uij , uj ) = Qpi ,pj (uj , uij , u, ui ) = −Qpj ,pi (u, uj , ui , uij )

for scalar dependent variable u = u(n) , with
ui := u(n + e i ) , uij := u(n + e i + e j ) , introducing the biquadratic functions:

QujQuij − Q Qujuij =: Kpi ,pj hpi (u, ui )

QuiQuij − Q Qui uij =: Kpj ,pi hpj (u, uj )

QuQuij − Q Quuij =: −Kpi ,pj hpij (ui , uj )

where Kp,q = −Kq,p is a function of the lattice parameters p, q only, we have the
following general solution for the Lagrangian of the multiform EL system9

L (u, ui , uj ; u
0, u0

i , u
0
j ) =

∫ u

u0

∫ ui

u0
i

dx dy

hpi (x , y)
−
∫ u

u0

∫ uj

u0
j

dx dy

hpj (x , y)
−
∫ ui

u0
i

∫ uj

u0
j

dx dy

hpij (x , y)

+

∫ ui

u0
i

dx

∫ Y (u0,x,u0
ij )

u0
j

dy

hpij (x , y)
+

∫ uj

u0
j

dy

∫ X (u0,y,u0
ij )

u0
i

dx

hpij (x , y)

where the functions X and Y are solutions of the equations

Qpi ,pj (u
0, x ,Y , u0

ij ) = 0 respectively Qpi ,pj (u
0,X , y , u0

ij ) = 0 .

9P. Xenitidis, FWN & S. Lobb, On the Lagrangian formulation of multidimensionally consistent systems, Proc.
Roy. Soc. A467 # 2135 (2011) 3295-3317.



Quantisation of the Lattice Equation

Defining a multiform path integral approach to quantising the linear lattice equation10.

(pi + pj )(ui − uj ) = (pi − pj )(u − uij ) , where ui = Tiu, uij = TiTju ,

through a quadratic Lagrangian:

Lij (u, ui , uj ; pi , pj ) = u(ui − uj )−
1

2
sij (ui − uj )

2 ; sij =
pi + pj

pi − pj

Thus, we have a discrete 2D quantum field theory with fields variables u(n) with n
coordinates of the lattice sites.Consider a quad surface σ with boundary ∂σ.

Action: S [un,m;σ] =
∑
σ L (n).

Propagator (all interior field variables are
integrated over):

Kσ(∂σ) =

∫
[Dun,m] e iS [un,m ;σ]/~

= Nσ

∏
n∈σ

∫
du(n) e iS [u(n);σ]/~

with normalisation factor Nσ .

10S. King and F.W. Nijhoff, Quantum variational principle and quantum multiform structure: the case of
quadratic Lagrangians, arXiv: 1702.08709.



Surface-independence of the propagator

Main question: What happens to propagator Kσ(∂σ) under variation of the surface σ?
Consider a pop-up cube, and performing Gaussian integrals:

(a)

̂

˜
u

u2

u1

u12L12(u)

(b)

u

u1

u12

u3

u23

u123L12(u3)

L31(u) L23(u1)

Kσ = N exp

(
i

~
L12(u, u1, u2)

)
Spop[un,m] = L23(u1) + L31(u2) + L12(u3)−L23(u)−L31(u)

Kpop = N

∫∫∫∫
du3du31du23du123 exp

(
i

~
Spop [un,m]

)
= N V 2 2π~

s23
exp

(
i

~
L12(u, u1, u2)

)
The contributions to the propagator from each surface are (up to normalisation) the
same. Thus, the propagator invariant under this surface-move! In fact, this also holds
for all elemntary surface moves (as in the classical case).



Quantum variational principle for surface actions
This result suggests a quantum variational principle in analogy to the classical case,
containing the following ingredients:
• Propagator for general quadratic Lagrangian 2-form over discrete surface σ, with
action S [u(n);σ] as defined before;
• Path integral over interior field variables:

Kσ(∂σ) =

∫
[Dun,m] e iS [un,m ;σ]/~ := N

∏
n∈σ

∫
du(n) e iS [u(n);σ]/~ .

In general Kσ(∂σ) is a function of the field variables on the boundary ∂σ and also
depends on the surface σ itself;
• For a special choice of discrete Lagrangian 2-form the propagator Kσ(∂σ) is
independent of the surface σ. This Lagrangian exists at a critical point of the
variation of the surface, such that some of the integrations over field variables reduce
to volume factors;
• The condition of stationarity of propagator under surface moves determines (up to
equivalence) the Lagrangian form (this has been demonstrated for the case of
quadratic 3-point Lagrangians), leading to Lagrangian of the form:

Lij (u, ui , uj ; pi , pj ) = u(ui − uj )−
1

2
sij (ui − uj )

2 ; sij =
pi + pj

pi − pj
.

• The invariance under surface deformation suggests that one could consider a novel
quantum object obtained by a sum over all surfaces, leading to a functional of the
Lagrangian 2-form, and which attains a critical point for Lagrangians for which the
usual surface-dependent propagator Kσ(∂σ) becomes invariant.



Possible quantum 1-form theory
In the Lagrangian 1-form case11 we have an action functional

S[x(n); Γ]
∑
γ(n)∈Γ

Li (x(n), x(n + e i )) ,

over a discrete curve Γ or in the continuous-time case, an action functional:

S[x(t); Γ ] =

∫
Γ
L(x(t), x t) =

∫ sb

sa

∑
k

(
Lk (x(t(s)), x t1 (t(s)), x t2 (t(s)), . . . )

dtk

ds

)
ds

for a system with commuting flows in higher-time variables t = (t1, t2, . . . ).
This structure, and the corresponding multi-time EL equations, applies to the CM and
Ruijsenaars system in both discrete as well as continuous time.
A tentative proposal for a quantum Lagrangian 1-form structure is the Feynman type
propagator12:

K(xb, tb, sb; xa, ta, sa) =

∫ t(sb)=tb

t(sa)=ta
[Dt(s)]

∫ x(tb)=xb

x(ta)=xa
[DΓx(t)] exp

(
i

~
S[x(t); Γ]

)
.

Here:
I [DΓx(t)] is some path integral measure along a curve Γ in the space of dependent

variables x(t);
I Γ is a curve in the space of independent variables, parametrised by the parameter

s ∈ [sa, sb], bounded by the points t(sa) = ta and t(sb) = tb;
I [Dt(s)] is some path integral measure in the space of independent variables.

11S. Yoo-Kong, S. Lobb and FWN , Discrete Caloger-Moser system and Lagrangian 1-form structure, J. Phys A:
Math Theor. 44 (2011) 365203.

12FWN, talk given at the 2013 Newton Institute meeting on Discrete Integrable Systems



Discussion

Some of the main points resulting from Lagrangian multiform theory are the following:

I The many explicit examples studied so far seem to indicate that the multiform
structure is a universal aspect of integrability;

I The main motivation was to formulate a least-action principle that produces the
whole system of multidimensionally consistent equations, rather than a single
equation of the motion;

I This new variational principle brings in an essential way the geometry of the
independent variables into play: a kind of “democracy between independent and
dependent variables”;

I The variational principle determines not only the equations for the classical
trajectories of the system, but more prominently it selects the admissable
Lagrangians as solutions of the system of generalized EL equations;

I The close interplay between compatible continuous and discrete structures
(exhibiting a role reversal of parameters and independent variables) indicates that
both are intechangeable aspects of one and the same structure;

I Because of the determinacy of the Lagrangian components, in a way the
multiform structure provides a partial answer to the question of the inverse
problem of Lagrangian dynamics.

I The main motivation comes from quantum theory: the multiform structure seems
to point to novel quantum objects which are a kind of “sum over geometries”
(here there may be parallels with LQG).
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