Modern Type Theories and Their Applications in Formal Semantics

Zhaohui Luo Royal Holloway, Univ. of London

This talk – three parts

- I. Modern Type Theories: brief introduction
 - Basics of MTTs (and meta-theory)
 - Applications (verification, formalisation and semantics)
- II. MTT-semantics (NL semantics in MTTs)
 - Montague semantics v.s. MTT-semantics
 - Adjectival modification: a case study
- III. Donkey anaphora with both strong/weak sums

Part I. Modern Type Theories

Historical development of type theory

Russell's ramified type theory (1925)

- ✤ Paradoxes in naïve set theory
- Zermelo: axiomatic set theory
- Russell: ramified type theory ("axiom of reducibility")

Ramsey (1926)

- Logical v.s. semantic paradoxes
- Impredicativity is circular, but not vicious.
 For example, ∀X:Prop.X : Prop.

Church's simple type theory (1940)

- * Formal system based on λ -calculus
- * Higher-order logic with simple types (e, t, $e \rightarrow t$, ...)

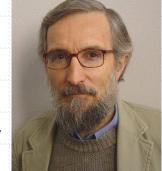
Modern Type Theories

Martin-Löf has introduced/employed

- Dependent/inductive types, type universes
- Judgements with contexts, definitional equality
- Curry-Howard principle of propositions-as-types
- Dependent types: "types segmented by indexes"
 - * List \rightarrow Vect(n) with n:Nat (lists of length n)

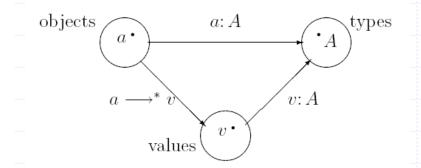
Examples of MTTs:

- Predicative TTs:
 - Martin-Löf's intensional type theory MLTT [1973, ...]
 - (non-standard FOL strong sum Σ as existential quantifier; Agda)
- ✤ Impredicative TTs:
 - ✤ CC [Coquand & Huet 1988] and CIC_p (HOL; Coq/Lean)
 - ✤ UTT [Luo 1990, 1994] (HOL; Lego/Plastic)



Data types: N, Π, Σ, \dots $Type_0, Type_1, \dots$ Logic: $\forall, Prop$

Fig. 1. The type structure in UTT.



Example:
$$A = Nat$$
, $a = 3+4$, $v = 7$.

UTT has nice meta-theoretic properties

- Goguen's PhD thesis on "Typed Operational Semantics" (1994)
- * Strong normalisation, which implies, e.g., consistency etc.

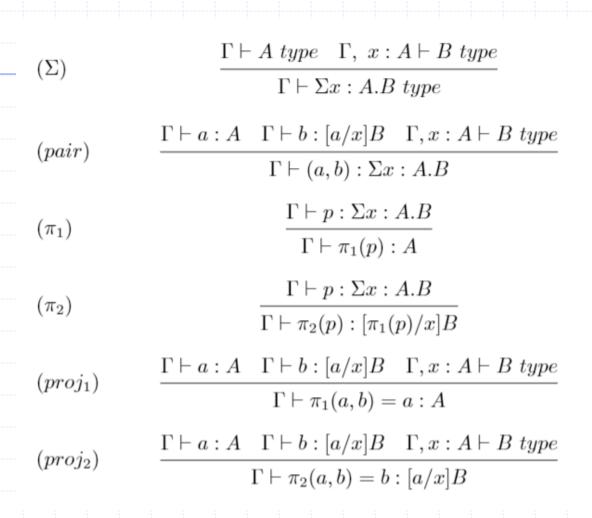
Σ -types – strong sum (example of dependent types)

Informally (borrowing set-theoretical notations, formal rules next slide),

 $\Sigma x:A.B[x] = \{ (a,b) | a : A and b : B[a] \}$

Uses include:

- Representations of collections of structured data (types for "subsets": Σx:A.P[x] for A's such that P[x] holds).
- * In Matin-Lof's TT, Σ also plays the role of existential quantifier (strong version of Curry-Howard).



IASM-BIRS workshop

8

MTT-based technology and applications

Proof technology based on type theories

- Proof assistants
 - MTT-based: ALF/Agda, Coq, Lego, NuPRL, Plastic, ...
 - ✤ HOL-based: Isabelle, HOL, …

Applications of proof assistants

- Math: formalisation of mathematics eg,
 4-colour theorem (Coq), Kepler conjecture (Isabelle)
 - Homotopy type theory [HoTT 2013] (Coq/Agda)
- * Computer Science:
 - program verification and advanced programming
- Computational Linguistics
 - NL reasoning based on MTT-sem (Coq)

The Kepler conjecture

First proposed by Johannes Kepler in 1611, it states that the most efficient way to stack cannonballs or equalsized spheres is in a pyramid. A University of Pittsburgh mathematician has proven the 400-year-old conjecture.

Source: Thomas C. Hales Post-Gazette

Remark: effectiveness of applications

- More effective (much more) when built-in entities are used <u>directly</u>.
- Application examples:
 - Formalisation of mathematics
 - Hott-based proof development (e.g., HITs for quotients) [Hott 2013]
 - In contrast with, e.g., setoids and related formalisation/proofs.
 - Program verification
 - ✤ Built-in functions as FP programs (and their verification)
 - In contrast with, e.g., "deep embedding + semantics" (cumbersome ...)
 - Linguistic semantics
 - CNs-as-types in MTT-semantics (see below)
 - ✤ In contrast with, e.g., CNs-as-predicates in Montague semantics.

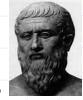
Example: "built-in" sorting program

Lists:	$\overline{List[Nat] type}$	$\overline{nil:List[Nat]}$	$\frac{n:Nat l:List[Nat]}{cons(n,l):List[Nat]}$		
	$\Gamma \vdash c : C(nil) \ \ \Gamma, x$: Nat, y : List[Nat], z	$x: C(y) \vdash f(x, y, z): C(cons(x, y))$		
Insertio	n sort:	$\Gamma \vdash \mathcal{E}_L(c, f, l)$) : <i>C</i> (<i>l</i>)		
	$isort: List[Nat] \rightarrow List[Nat]$				
	isort(nil) = nil				
	isort(cons(n,l))	= insert(n, isort(l)))		
	$insert: Nat \rightarrow Li$	$st[Nat] \rightarrow List[Nat]$			
	insert(n, nil) = co	ms(n, nil)			
	insert(n, cons(m, l))	l))			
	$= \underline{\mathrm{if}} \ n \leq_2 m \underline{\mathrm{th}}$	$\underline{en} cons(n, cons(m, l))$) <u>else</u> $cons(m, insert(n, l))$		

Part II. MTT-semantics

Natural Language Semantics

- Semantics study of meaning (communicate = convey meaning)
- Various kinds of theories of meaning
 - Meaning is reference ("referential theory")
 - Word meanings are things (abstract/concrete) in the world.
 - ✤ c.f., Plato, …
 - Meaning is concept ("internalist theory")
 - Word meanings are ideas in the mind.
 - ✤ c.f., Aristotle, ..., Chomsky.
 - Meaning is use ("use theory")
 - Word meanings are understood by their uses.
 - ☆ c.f., Wittgenstein, …, Dummett, Brandom.



Type-Theoretical Semantics

Montague Semantics (Montague 1930–1971)

- Dominating in linguistic semantics since 1970s
- ✤ Set-theoretic, using simple type theory as intermediate

- MTT-semantics: formal semantics in modern type theories
 - ✤ Ranta (1994): formal semantics in Martin-Löf's type theory
 - Recent development on MTT-semantics → full-scale alternative to Montague semantics
 - Z. Luo. Formal Semantics in Modern Type Theories with Coercive Subtyping. Linguistics and Philosophy, 35(6). 2012.
 - S. Chatzikyriakidis and Z. Luo. Formal Semantics in Modern Type Theories. Wiley/ISTE, 2020. (Monograph on MTT-semantics)
 - Research context on rich typing in NL (many researchers ...)
 - S. Chatzikyriakidis and Z. Luo (eds.) Modern Perspectives in Type Theoretical Semantics. Springer, 2017.

IASM-BIRS workshop

14

MTT-semantics: basic categories

Category	Semantic Type	
S	Prop (the type of all propositions)	
CNs (book, man,)	types (each common noun is interpreted as a type)	
IV	$A \rightarrow Prop$ (A is the "meaningful domain" of a verb)	
Adj	A \rightarrow Prop (A is the "meaningful domain" of an adjective)	
Adv	\square A:CN.(A \rightarrow Prop) \rightarrow (A \rightarrow Prop) (polymorphic on CNs)	

In MTT-semantics, common nouns (CNs) are types rather than predicates as in Montague semantics.

Modelling Adjectival Modification: Case Study

Classical classification	Example	Characterisation	MTT-semantics
intersective	handsome man	Adj(N) 🗲 N & Adj	∑x:Man.handsome(x)
subsective	large mouse	Adj(N) → N (Adj depends on N)	large : ∏A:CN. A→Prop large(mouse) : Mouse→Prop
privative	fake gun	Adj(N) → ¬N	$G = G_R + G_F$ with $G_R \leq_{inl} G, G_F \leq_{inr} G$
non-committal	alleged criminal	Adj(N) → nothing	H _{h,Adj} : Prop→Prop

[Chatzikyriakidis & Luo: FG13, JoLLI17 & MTT-sem book 2020]

IASM-BIRS workshop

16

Note on Subtyping in MTT-semantics

Simple example A human talks. Paul is a handsome man. Does Paul talk? Semantically, can we type talk(p)? (talk : Human \rightarrow Prop & p : Σ (Man,handsome)) Yes, because p : Σ (Man,handsome) \leq Man \leq Human. Paul Subtyping is crucial for MTT-semantics Coercive subtyping [Luo 1999, Luo, Soloviev & Xue 2012] is adequate for MTTs and we use it in MTT-semantics. Note: Traditional subsumptive subtyping is inadequate for MTTs (eg, canonicity fails with subsumption.)

Advanced features in MTT-semantics: examples

Copredication

- Linguistic phenomenon studied by many (Pustejovsky, Asher, Cooper, Retoré, ...)
- Dot-types in MTTs [Luo 2009, Xue & Luo 2012, Chatzikyriakidis & Luo 2018]
- Linguistic feature difficult, if not impossible, to find satisfactory treatment in a Montagovian framework.

Several developments

- Linguistic coercions via coercive subtyping [Asher & Luo (S&B12)]
- Dependent event types [Luo & Soloviev (WoLLIC17)]
- Propositional forms of judgemental interpretations [Xue et al (NLCS18)]
- * CNs as setoids [Chatzikyriakidis & Luo (Oslo 2018)]
- ✤ MTT-sem in MLTT_h (extension of MLTT with HoTT's logic) [Luo (LACompLing 2018)]

Part III. Donkey Anaphora with Both Strong and Weak Sums

Donkey anaphora

Examples (Geach 1962, ...)

- (*) Every farmer who owns <u>a donkey</u> beats <u>it</u>.
- (#) Every person who buys <u>a TV</u> and has <u>a credit card</u> uses <u>it</u> to pay for <u>it</u>.

Strong/weak readings (Chierchia 1990):

- Strong reading of (*):
 - Every farmer who owns a donkey beats
 - every donkey s/he owns.
- Weak reading of (*):
 - Every farmer who owns a donkey beats some donkeys s/he owns.

Original problem and use of dependent types

Every farmer who owns a donkey beats it.

- In traditional logics:
 - ★ (#) $\forall x. [farmer(x) \& \exists y. (donkey(y) \& own(x, y))] \Rightarrow beat(x, y)$ where \exists is a "weak sum" and the last y is outside its scope.

Using dependent types (Mönnich 85, Sundholm 86)

- ★ $\forall z : F_{\Sigma}$. $beat(\pi_1(z), \pi_1(\pi_2(z)))$ with $F_{\Sigma} = \Sigma x : F \Sigma y : D$. own(x, y)where Σ is the "strong sum" with two projections π_1 and π_2
- Note: the interpretation only conforms to the strong reading.
- Σ plays a <u>double role</u>:
 - * subset constructor (1st Σ) and existential quantifier (2nd Σ).
 - $\ast\,$ But this is problematic $\rightarrow\,$ counting problem.

Problem of counting (Sundholm 89, Tanaka 15)

Cardinality of finite types

- \Rightarrow |A| = n if A \cong Fin(n) (i.e., it has exactly n objects.)
- * For example, $|\Sigma x:A.Fin(2)| = 2 \times |A|$ (if A is finite.)
- Consider the donkey sentence with "most":
 - Most farmers who own a donkey beat it.
 - $Most_S \ z : F_{\Sigma}. \ beat(\pi_1(z), \pi_1(\pi_2(z)))$ with $F_{\Sigma} = \Sigma x : F \ \Sigma y : D. \ own(x, y)$
- But, this is inadequate failing to "count" correctly:
 - $+ |F_Σ| = the number of (x,y,p) ≠ #(donkey-owning farmers)$
 - E.g., 10 farmers, 1 owns 20 donkeys and beats all of them, and the other 9 own 1 donkey each and do not beat them.
 - ✤ The above sentence with "most" could be true incorrect.
- C.f., the "proportion problem" in using DRT to do this.
 IASM-BIRS workshop
 22

Why and ...?

• "Double role" by Σ in $F_{\Sigma} = \Sigma x$: Farmer Σy : Donkey.own(x,y) * First Σ : representing the collection of farmers such that ... * Second Σ : representing the existential quantifier (!) • But, unlike traditional \exists , Σ is strong: * $|\Sigma x:A.B|$ is the number of pairs (a,b), not just the number of a's such that B is true. So, the $2^{nd} \Sigma$ is problematic. ↔ Can we somehow replace the $2^{nd} \Sigma$ by \exists ? Yes, although not directly (c.f., the original scope problem), by considering different readings of donkey sentences <u>AND IF</u> we have both Σ and \exists in the type theory. \rightarrow UTT (it has both Σ and \exists)

* Note: \exists in simple TT and Σ in Martin-Löf's TT, but <u>not both</u>.

Logic in UTT and proof irrelevance

Formulas/propositions: ∀x:A.P, ∃x:A.P, P⇒Q, ...
Proof irrelevance:

- Every two proofs of the same proposition are the same.
- In UTT, this can be enforced by the following rule:

$$\frac{P:Prop \quad p:P \quad q:P}{p=q:P}$$

- * Note: Proof irrelevance would not be directly possible for, e.g., Martin-Löf's type theory (we'd need to consider $MLTT_h$...)
- As a consequence, we have, for example:
 - \Rightarrow |P| ≤ 1, if P : Prop (e.g., $|\exists x:A.R| \le 1$)
 - \Rightarrow |Σx:A.Q| ≤ |A|, if A is a finite type and Q : A→Prop

Donkey sentences in UTT

Most farmers who own a donkey beat it.

- Most farmers who own a donkey beat every donkey they own.
- Most farmers who own a donkey beat <u>some</u> donkeys they own.
- "Most" in UTT
 - ★ Definition similar to (Sundholm 89), but with ∃ as existential quantifier, instead of Σ.

Interpretations

 $F_{\exists} = \Sigma x : F. \ \exists y : D.own(x, y)$

- Most $z: F_{\exists}$. $\forall y': \Sigma y: D.own(\pi_1(z), y)$. $beat(\pi_1(z), \pi_1(y'))$
- Most $z : F_{\exists}$. $\exists y' : \Sigma y : D.own(\pi_1(z), y)$. $beat(\pi_1(z), \pi_1(y'))$

Combining strong and weak sums

How to add Σ to an impredicative type theory with \exists -propositions? ? \land \exists

Three possibilities:

- \Rightarrow UTT (seen before): Σ-types + ∃-propositions
- * "Large" Σ -propositions
 - → logical inconsistency

 $\frac{A \ type \quad P: A \to Prop}{\Sigma x: A.P(x): Prop}$

ons $A: Prop \ P: A \to Prop$

→ weak ∃ becoming strong

 $\Sigma x: A.P(x): Prop$

Conclusion: Only the UTT's approach is OK.

• How to add \exists to a type theory with Σ -types?

∃ _____ (

Not clear how to do this without changing the existing type theory.

We can, for example, extend Martin-Löf's type theory with HoTT's "h-logic" to become MLTT_h [Luo 2019].

Σ