N

Modern Type Theories and Their Applications
in Formal Semantics

Zhaohui Luo
Royal Holloway, Univ. of London

AN

N

This talk — three parts

I. Modern Type Theories: brief introduction

» Basics of MTTs (and meta-theory)

+ Applications (verification, formalisation and semantics)
II. MTT-semantics (NL semantics in MTTs)

+» Montague semantics v.s. MTT-semantics

» Adjectival modification: a case study
III. Donkey anaphora with both strong/weak sums

IASM-BIRS workshop

N

Part I. Modern Type Theories

IASM-BIRS workshop

Historical development of type theory

N

L

¢ Russell’s ramified type theory (1925)

» Paradoxes in naive set theory

» Zermelo: axiomatic set theory

» Russell: ramified type theory (“axiom of reducibility”
** Ramsey (1926)

- Logical v.s. semantic paradoxes

» Impredicativity is circular, but not vicious.

For example, VX:Prop.X : Prop.

¢ Church’s simple type theory (1940)
» Formal system based on A-calculus
- Higher-order logic with simple types (g, t, e—t, ...)

IASM-BIRS workshop

N

Modern Type Theories

¢ Martin-Lof has introduced/employed
» Dependent/inductive types, type universes
- Judgements with contexts, definitional equality
. Curry-Howard principle of propositions-as-types

+»» Dependent types: “types segmented by indexes”

. List =» Vect(n) with n:Nat (lists of length n)

*»» Examples of MTTs:

- Predicative TTs:
< Martin-L6f’s intensional type theory MLTT [1973, ...]
(non-standard FOL — strong sum X as existential quantifier; Agda)
» Impredicative TTs:
% CC [Coquand & Huet 1988] and CIC, (HOL; Cog/Lean)
< UTT [Luo 1990, 1994] (HOL; Lego/Plastic)

IASM-BIRS workshop

{U'I‘I'=MLTT+CC

\ Data types: /

H'h N, ITILE, .. I,-'

'||I Typeo. T'ypey,‘{

Logic: ¥, Prop

Fig. 1. The tvpe structure in UTT.

objects a: A types

values

Example: A = Nat,a =3+4,v =7.

*» UTT has nice meta-theoretic properties
» Goguen’s PhD thesis on “"Typed Operational Semantics” (1994)
» Strong normalisation, which implies, e.g., consistency etc.

IASM-BIRS workshop

>-types — strong sum (example of dependent types)

N

L

*»» Informally (borrowing set-theoretical notations,
formal rules next slide),

>X:A.B[x]={(a,b) |a:Aand b : B[a] }
+* Uses include:

» Representations of collections of structured data
(types for “subsets”: x:A.P[x] for A’s such that P[x] holds).

+ In Matin-Lof's TT, X also plays the role of existential
quantifier (strong version of Curry-Howard).

IASM-BIRS workshop 7

(projy)

(projs)

IASM-BIRS workshop

I'EAtype I, z: AF B type
'Yz : A.B type

I'ta:A I'Fb:la/z|B ' z: AF B type

['F(a,b): Xz : A.B
I'Ep:Ye: AB
I'Em(p): A
I'Fp:Ye: ADB
[+ ma(p) : [mi(p)/2]B
I'Fa:A T'Fb:a/z|B T,z: AF B type

I'+ ?T1(t1, b) =a:A
'Fa:A U'kFb:fa/z)lB U,z: AF DB type

I+ ma(a,b) = b [a/z]B

MT‘I’-based technology and applications

** Proof technology based on type theories

+ Proof assistants
% MTT-based: ALF/Agda, Coq, Lego, NuPRL, Plastic, ...
% HOL-based: Isabelle, HOL, ...

»» Applications of proof assistants

+ Math: formalisation of mathematics — eg, The Koplor conlechrs

First proposed by Johannes

% 4-colour theorem (Coq), Kepler conjecture (Isabelle) keperin 1611, it states that

the most efficient way to

% Homotopy type theory [HoTT 2013] (Cog/Agda) e Ty s
A University of Pittsburgh
mathematician has proven

o Computer SCIence: the 400-year-old conjecture.
% program verification and advanced programming

» Computational Linguistics
+ NL reasoning based on MTT-sem (Coq) .

IASM-BIRS workshop 9

N

Remark: effectiveness of applications

L

*** More effective (much more) when built-in entities are
used directly.

»» Application examples:

+ Formalisation of mathematics
< HoTT-based proof development (e.g., HITs for quotients) [HOTT 2013]
< In contrast with, e.g., setoids and related formalisation/proofs.
+ Program verification
+ Built-in functions as FP programs (and their verification)
< In contrast with, e.g., “"deep embedding + semantics” (cumbersome ...)
+ Linguistic semantics
< CNs-as-types in MTT-semantics (see below)
< In contrast with, e.g., CNs-as-predicates in Montague semantics.

IASM-BIRS workshop 10

Example: “built-in” sorting program

N

L

n:Nat [: List|Nat]
List[Nat]| type nil : List[N at] cons(n,l) : List|N at]

¢ Lists:

I'be:C(nil) U',z: Nat,y: List[Nat],z: Cly) F f(z,y,2) : Cleons(z,y))
I'EEle, f.1): C(1)

** Insertion sort:
isort : List[Nat] — List[Nat]
isort(nil) = nil

isort(cons(n,l)) = insert(n, isort(l))

insert : Nat — List|Nat] = List[Nat|
insert(n, nil) = cons(n, nil)

insert(n, cons(m,[})

= if n <, m then cons(n,cons(m,l)) else cons(m,insert(n,l))

IASM-BIRS workshop 11

N

Part II. MTT-semantics

IASM-BIRS workshop

12

Natural Language Semantics

N

L

¢ Semantics — study of meaning (communicate = convey
meaning)

+* Various kinds of theories of meaning

+ Meaning is reference (“referential theory”)
< Word meanings are things (abstract/concrete) in the world. §
% c.f., Plato, ...

+ Meaning is concept (“internalist theory”)
< Word meanings are ideas in the mind.
< c.f., Aristotle, ..., Chomsky.

+ Meaning is use (“use theory”)
< Word meanings are understood by their uses.
< c.f., Wittgenstein, ..., Dummett, Brandom.

IASM-BIRS workshop 13

Type-Theoretical Semantics

N

L

**» Montague Semantics (Montague 1930-1971)
- Dominating in linguistic semantics since 1970s
» Set-theoretic, using simple type theory as intermediate

** MTT-semantics: formal semantics in modern type theories

» Ranta (1994): formal semantics in Martin-L6f’s type theory

- Recent development on MTT-semantics = full-scale alternative to
Montague semantics

< Z. Luo. Formal Semantics in Modern Type Theories with Coercive Subtyping.
Linguistics and Philosophy, 35(6). 2012.

< S. Chatzikyriakidis and Z. Luo. Formal Semantics in Modern Type Theories.
Wiley/ISTE, 2020. (Monograph on MTT-semantics)
. Research context on rich typing in NL (many researchers ...)

< S. Chatzikyriakidis and Z. Luo (eds.) Modern Perspectives in Type Theoretical
Semantics. Springer, 2017.

IASM-BIRS workshop 14

MTT-semantics: basic categories

N

L

Category Semantic Type

S Prop (the type of all propositions)

CNs (book, man, ...) | types (each common noun is interpreted as a type)

IV A—Prop (A is the “meaningful domain” of a verb)

Adj A—Prop (A is the “meaningful domain” of an adjective)
Adv [TA:CN.(A—Prop)—(A—Prop) (polymorphic on CNs)

In MTT-semantics, common nouns (CNs) are types rather than
predicates as in Montague semantics.

IASM-BIRS workshop 15

N

Modelling Adjectival Maodification: Case Study

Classical

N Example | Characterisation MTT-semantics
classification

intersective handsome man Adj(N) = N & Adj > X:Man.handsome(x)

: Adj(N) = N large : TTA:CN. A->Prop
subsective large mouse (Adj depends on N) | large(mouse) : Mouse->Prop
. . . G = GR+GF
privative fake gun Adj(N) = =N With Gy <., G, G, < G
non-committal alleged criminal | Adj(N) = nothing H agj + Prop—>Prop

*» [Chatzikyriakidis & Luo: FG13, JoLLI17 & MTT-sem book 2020]

IASM-BIRS workshop 16

Note on Subtyping in MTT-semantics

N

*** Simple example
A human talks. Paul is a handsome man.
Does Paul talk?
Semantically, can we type talk(p)?
(talk : Human—->Prop & p : ¥(Man,handsome))
Yes, because p : ¥(Man,handsome) < Man < Human.

+*» Subtyping is crucial for MTT-semantics

+ Coercive subtyping [Luo 1999, Luo, Soloviev & Xue 2012]
is adequate for MTTs and we use it in MTT-semantics.

+ Note: Traditional subsumptive subtyping is inadequate for
MTTs (eg, canonicity fails with subsumption.)

IASM-BIRS workshop 17

N

Advanced features in MTT-semantics: examples

L

¢ Copredication
Linguistic phenomenon studied by many (Pustejovsky, Asher, Cooper, Retoré, ...)
Dot-types in MTTs [Luo 2009, Xue & Luo 2012, Chatzikyriakidis & Luo 2018]
Linguistic feature difficult, if not impossible, to find satisfactory treatment in
a Montagovian framework.

* Several developments
Linguistic coercions via coercive subtyping [Asher & Luo (S&B12)]
Dependent event types [Luo & Soloviev (WoLLIC17)]
Propositional forms of judgemental interpretations [Xue et al (NLCS18)]

CNs as setoids [Chatzikyriakidis & Luo (Oslo 2018)]
MTT-sem in MLTT,, (extension of MLTT with HOTT’s logic) [Luo (LACompLing 2018)]

IASM-BIRS workshop 18

N

Part III. Donkey Anaphora with
Both Strong and Weak Sums

IASM-BIRS workshop

19

Donkey anaphora

N

L

¢ Examples (Geach 1962, ...)

(*) Every farmer who owns a donkey beats it.
(#) Every person who buys a TV and has a credit card
uses it to pay for it.

¢ Strong/weak readings (Chierchia 1990):
» Strong reading of (*):

Every farmer who owns a donkey beats
every donkey s/he owns.

» Weak reading of (*):

Every farmer who owns a donkey beats
some donkeys s/he owns.

IASM-BIRS workshop 20

Original problem and use of dependent types

N

L

*» Every farmer who owns a donkey beats it.
¢ In traditional loqics:
o (#) Vo, [farmer(x) & Jy.(donkey(y) & own(x,y))] = beat(z,y)
where 3 is a “weak sum” and the last y is outside its scope.

¢ Using dependent types (Ménnich 85, Sundholm 86)

= V2 Fy. beat(m(2), m(m2(2)))wWith Fy = Ya:F Yy:D. own(x,y)
where X is the “strong sum” with two projections =, and =,

+ Note: the interpretation only conforms to the strong reading.

¢ ¥ plays a double role:
+ subset constructor (1st) and existential quantifier (2").
+ But this is problematic =» counting problem.

IASM-BIRS workshop 21

Problem of counting (Sundholm 89, Tanaka 15)

N

L

¢ Cardinality of finite types
=+ |Al = nif A=Fin(n) (i.e., it has exactly n objects.)

+ For example, |Zx:A.Fin(2)| = 2 x |A| (if A is finite.)

+¢» Consider the donkey sentence with “"most”:
+ Most farmers who own a donkey beat it.
s« Mosts z: Fy. beat(m1(z). m1(72(2))) With Fy = Ya:F Yy:D. own(z,y)
¢ But, this is inadequate — failing to “count” correctly:
» |Fs| = the number of (x,y,p) = #(donkey-owning farmers)
+ E.g., 10 farmers, 1 owns 20 donkeys and beats all of them,
and the other 9 own 1 donkey each and do not beat them.
+ The above sentence with “"most” could be true — incorrect.

+ C.f., the “proportion problem” in using DRT to do this.

IASM-BIRS workshop 22

N

Why and ...?

*» “"Double role” by ¥ in F,=x:Farmerzy:Donkey.own(X,y)
+ First X: representing the collection of farmers such that ...
+ Second X: representing the existential quantifier (!)

¢ But, unlike traditional 3, T is strong:

+ |ZX:A.B| is the number of pairs (a,b), not just the number of
a’s such that B is true. So, the 2™ 3 is problematic.

¢ Can we somehow replace the 2 ¥ by 3?

+ Yes, although not directly (c.f., the original scope problem),
by considering different readings of donkey sentences
AND IF we have both X and 3 in the type theory.

=» UTT (it has both ¥ and 3)
+ Note: 3 in simple TT and X in Martin-Lof’'s TT, but not both.
IASM-BIRS workshop 23

Logic in UTT and proof irrelevance

N

L

¢ Formulas/propositions: vx:A.P, 3Ix:A.P, P=Q, ...

** Proof irrelevance:

+ Every two proofs of the same proposition are the same.

+ In UTT, this can be enforced by the following rule:

P:Prop p:P q:P
p=q:P
+ Note: Proof irrelevance would not be directly possible for, e.q.,
Martin-Lo6f's type theory (we'd need to consider MLTT,, ...)

¢ As a consequence, we have, for example:

+ |P| <1,if P: Prop (e.g., |[3x:A.R| < 1)

+ |Zx:A.Q| < |A], if Ais a finite type and Q : A>Prop

IASM-BIRS workshop 24

Donkey sentences in UTT

N

L

**» Most farmers who own a donkey beat it.
+ Most farmers who own a donkey beat every donkey they own.
+ Most farmers who own a donkey beat some donkeys they own.

“* "Most” in UTT

+ Definition similar to (Sundholm 89), but with 3 as existential
quantifier, instead of X.

¢ Interpretations

F3 = X2 F. Jy:D.own(x,y)
Most z : F5. Yy : Yy:D.own(m(2),y). beat(m1(2), 71 (y))
Most z : F5. 3y : Yy:D.own(m(2),y). beat(m(2), m(y))

™

IASM-BIRS workshop 25

Combining strong and weak sums

N

L

** How to add X to an impredicative type theory with

J-propositions? 9

¢ Three possibilities:
+ UTT (seen before): X-types + 3-propositions

» 'Large” X-propositions Atype P:A— Prop
= logical inconsistency Ya:A.P(x) : Prop

» Small” Z-propositions A:Prop P:A— Prop
=> weak 3 becoming strong Ya:A.P(x) : Prop

Conclusion: Only the UTT's approach is OK.

IASM-BIRS workshop 26

N

*» How to add 3 to a type theory with X-types?

?

*** Not clear how to do this without changing the
existing type theory.

** We can, for example, extend Martin-L6f’s type theory
with HoTT's “h-logic” to become MLTT,, [Luo 2019].

IASM-BIRS workshop 27

