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Wilf–Zeilberger theory

In the early 1990s, Wilf and Zeilberger developed an algorithmic
theory for proving identities in combinatorics and special functions.
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Telescoping

Problem. For a sequence f (k) in some class S(k), decide whether
there exists g(k) ∈S(k) s.t.

f (k) = g(k+1)−g(k)

= ∆k(g)⇓b∑
k=a

f (k) = g(b+1)−g(a)
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Rational sums

n∑
k=1

1
k(k+1)

=

n∑
k=1

∆k

(
−

1
k

)
= 1−

1
n+1

Hypergeometric sums
n∑

k=0

(2k
k

)2

(k+1)42k =

n∑
k=0

∆k

(
4k
(2k

k

)2

42k

)
=

4(n+1)
(2n+2

n+1

)2

42n+2

, 3/28



Telescoping

Problem. For a sequence f (k) in some class S(k), decide whether
there exists g(k) ∈S(k) s.t.

f (k) = g(k+1)−g(k) = ∆k(g)

⇓b∑
k=a

f (k) = g(b+1)−g(a)

Examples.
Rational sums

n∑
k=1

1
k(k+1)

=

n∑
k=1

∆k

(
−

1
k

)
= 1−

1
n+1

Hypergeometric sums
n∑

k=0

(2k
k

)2

(k+1)42k =

n∑
k=0

∆k

(
4k
(2k

k

)2

42k

)
=

4(n+1)
(2n+2

n+1

)2

42n+2

, 3/28



Telescoping

Problem. For a sequence f (k) in some class S(k), decide whether
there exists g(k) ∈S(k) s.t.

f (k) = g(k+1)−g(k) = ∆k(g)⇓b∑
k=a

f (k) = g(b+1)−g(a)

Examples.
Rational sums

n∑
k=1

1
k(k+1)

=

n∑
k=1

∆k

(
−

1
k

)
= 1−

1
n+1

Hypergeometric sums
n∑

k=0

(2k
k

)2

(k+1)42k =

n∑
k=0

∆k

(
4k
(2k

k

)2

42k

)
=

4(n+1)
(2n+2

n+1

)2

42n+2

, 3/28



Telescoping

Problem. For a sequence f (k) in some class S(k), decide whether
there exists g(k) ∈S(k) s.t.

f (k) = g(k+1)−g(k) = ∆k(g)⇓b∑
k=a

f (k) = g(b+1)−g(a)

Examples.

Rational sums
n∑

k=1

1
k(k+1)

=

n∑
k=1

∆k

(
−

1
k

)
= 1−

1
n+1

Hypergeometric sums
n∑

k=0

(2k
k

)2

(k+1)42k =

n∑
k=0

∆k

(
4k
(2k

k

)2

42k

)
=

4(n+1)
(2n+2

n+1

)2

42n+2

, 3/28



Telescoping

Problem. For a sequence f (k) in some class S(k), decide whether
there exists g(k) ∈S(k) s.t.

f (k) = g(k+1)−g(k) = ∆k(g)⇓b∑
k=a

f (k) = g(b+1)−g(a)

Examples.
Rational sums

n∑
k=1

1
k(k+1)

=

n∑
k=1

∆k

(
−

1
k

)
= 1−

1
n+1

Hypergeometric sums
n∑

k=0

(2k
k

)2

(k+1)42k =

n∑
k=0

∆k

(
4k
(2k

k

)2

42k

)
=

4(n+1)
(2n+2

n+1

)2

42n+2

, 3/28



Telescoping

Problem. For a sequence f (k) in some class S(k), decide whether
there exists g(k) ∈S(k) s.t.

f (k) = g(k+1)−g(k) = ∆k(g)⇓b∑
k=a

f (k) = g(b+1)−g(a)

Examples.
Rational sums

n∑
k=1

1
k(k+1)

=

n∑
k=1

∆k

(
−

1
k

)
= 1−

1
n+1

Hypergeometric sums
n∑

k=0

(2k
k

)2

(k+1)42k =

n∑
k=0

∆k

(
4k
(2k

k

)2

42k

)
=

4(n+1)
(2n+2

n+1

)2

42n+2

, 3/28



Creative telescoping

Problem. For a sequence f (n,k) in some class S(n,k), find a linear
recurrence operator L ∈ F[n,Sn] and g ∈S(n,k) s.t.

L(n,Sn)︸ ︷︷ ︸
Telescoper

(f ) = ∆k(g)

Call g the certificate for L.

Example. Let f (n,k) =
(n

k

)2. Then a telescoper for f and its
certificate are

L = (n+1)Sn −4n−2 and g =
(2k−3n−3)k2

(n
k

)2

(k−n−1)2
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Proving identities
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Taking sums on both sides of L(f ) = ∆k(g):

+∞∑
k=−∞L(f ) = L

(
+∞∑

k=−∞f

)
= g(n,+∞)−g(n,−∞) = 0
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Example: Dixon’s Identity

a∑
k=−a

(−1)k
(

a+b
a+ k

)(
b+ c
b+ k

)(
c+a
c+ k

)
︸ ︷︷ ︸

F(b,k)

=
(a+b+ c)!

a!b!c!︸ ︷︷ ︸
f (b)

1 Creative telescoping for F(b,k) yields L(b,Sb)(F) = ∆k(G) with

L = (−b−1)Sb +(a+b+ c+1) and G =
(a+ k)(c+ k)
2(b− k+1)

·F.

2 Summing both sides of L(F) = ∆k(G) for k from −a to a gets
a∑

k=−a

L(F) = L

(
n∑

k=1

F

)
=

n∑
k=1

∆k(G)

= G(b,a+1)−G(b,−a) = 0 ⇒ L

(
a∑

k=−a

F

)
= 0.

3 Note that L(f (b)) = 0 and the identity holds for b = 0.
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Example: Identity about Harmonic Numbers

n∑
k=1

(−1)k+1 1
k

(
n
k

)
︸ ︷︷ ︸

F(n,k)

= 1+
1
2
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n
, Hn.

1 Creative telescoping for F(n,k) yields L(n,Sn)(F) = ∆k(G) with

L = Sn −1 and G =
(−1)k

n+1

(
n

k−1

)
.

2 Summing both sides of L(F) = ∆k(G) for k from 1 to n gets
n∑

k=1

L(F) = L

(
n∑

k=1

F

)
−F(n+1,n+1) =

n∑
k=1

∆k(G)

= G(n,n+1)−G(n,1) ⇒ L

(
n∑

k=1

F

)
=

1
n+1
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An Identity from Representation Theory

min{a,b}∑
m=0

min{c,d}∑
n=0

F(m,n,a,b,c,d, t)= (−1)t (a+ c)!(a+d)!(b+ c)!(b+d)!
a!(b− t)!c!(d+ t)!

,

where

F =(−1)m+n(m+n)!(a+b+c+d−m−n)!
(

a− t
m− t

)(
b
m

)(
c+ t
n+ t

)(
d
n

)
.
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Initial case: t = 0

min{a,b}∑
m=0

min{c,d}∑
n=0

F(m,n,a,b,c,d,0) =
(a+ c)!(a+d)!(b+ c)!(b+d)!

a!b!c!d!
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d
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Recurrence in t: creative telescoping for double summation

L(t,St)(F) = ∆m(G)+∆n(H),

where L = (d+ t+1)St +(b− t) and G = gF, H = hF with

g =
−m−am−bm− cm−dm− cdm+m2 −amn−bmn+m2n

(1+n)(a− t)

h=
−abn+amn+bmn−m2n− t−at−bt−abt− ct−dt− cmt−dmt+nt+mnt+ t2 +at2 +bt2 + ct2 +dt2 −mt2 −nt2

(a− t)(−1−m+ t)
, 8/28



Example: Identity on T-shirt
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Handbooks of identities

Dixon’s identity
a∑

k=−a

(−1)k
(

a+b
a+ k

)(
b+ c
b+ k

)(
c+a
c+ k

)
=

(a+b+ c)!
a!b!c!

Hille-Hardy’s identity∞∑
n=0

∑
k1

∑
k2

unn!
(a+1)n

(
n+a
n− k1

)
(−x)k1

k1!

(
n+a
n− k2

)
(−y)k2

k2!

= (1−u)−a−1 exp
{
−
(x+ y)u

1−u

}∑
n

1
n!(a+1)n

(
xyu

(1−u)2

)n

. . .
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Solving conjectures in combinatorics
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Fundamental problems

Creative telescoping

Existence problem.
For a function f (n,k), decide whether telescopers exist?

Construction problem.
For a function f (n,k), how to computer a telescoper if it exists?

Tools:
Algebraic analysis (holonomic D-modules)
Differential and difference algebra
Non-commutative rings (Ore polynomials)
Computational algebraic geometry
. . .
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Timeline of works on existence problem

, 14/28



Existence of telescopers

Timeline of works on existence problem

1990: Zeilberger proved that telescopers always exist for holonomic
functions:
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Existence of telescopers

Timeline of works on existence problem

1992: Wilf and Zeilberger proved that telescopers always exist for
proper hypergeometric terms:
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Existence of telescopers

Timeline of works on existence problem

2002: Abramov and Le solved the existence problem for rational
functions in two discrete variables:
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Existence of telescopers

Timeline of works on existence problem

2003: Abramov solved the existence problem for bivariate hyperge-
ometric terms:
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Existence of telescopers

Timeline of works on existence problem

2005: W.Y.C. Chen, Hou and Mu solved the existence problem for
bivariate q-hypergeometric terms:
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Existence of telescopers

Timeline of works on existence problem

2012: S. Chen and Singer solved the existence problem for bivariate
rational functions in the mixed cases:
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Existence of telescopers

Timeline of works on existence problem

2015: Chen et al. solved the existence problem for bivariate mixed
hypergeometric terms:
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Existence of telescopers

Timeline of works on existence problem

2016: Chen et al. solved the existence problem for rational functions
in three discrete variables:
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Existence of telescopers

Timeline of works on existence problem

2020: Chen et al. solved the existence problem for rational functions
in three variables:

, 14/28



Mixed hypergeometric terms

Let F be a field of char. zero and algebraically closed.

t = (t1, . . . , tm), x = (x1, . . . ,xn)

Di : ∂/∂ ti︸ ︷︷ ︸
derivations

, Sj : xj→ xj +1︸ ︷︷ ︸
shifts

Definition. h(t,x) is mixed hypergeometric over F(t,x) if

all
Di(h)

h
and

Sj(h)
h

are rational functions in F(t,x).

Remark. Mixed hypergeometric terms are solutions of systems of
first-order homogeneous differential and difference equations.
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Examples

Rational functions:

t1 + t2 + x1,
1

(t1 + t2)
,

t1 + x1 +1
t1 + t2 + x2

1 +3
, . . .

Hyperexponential functions:

exp(t1 + t2
2), (t2

1 + t2 +1)
√

5
, exp

(∫
1

t1 + t2

)
, . . .

Symbolic powers:

tx1
1 , (t1 + t2)x1 · (t2 + t2

3)
x2 , . . .

Hypergeometric terms:

2x1 , x1!, (x1 +2x2 +
√

3)!, . . .
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Structure theorem

Theorem. Any mixed hypergeometric term h(t,x) is of the form

f (t,x) ·
n∏

j=1

βj(t)xj · exp(g0(t)) ·
L∏

`=1

g`(t)c` ·
∏

λ

(vλ ·x+pλ )!
eλ

where f is a rational function in F(t,x).

Proper terms. A mixed hypergeometric term h(t,x) is proper if it is
of the form

P(t,x) ·
n∏

j=1

βj(t)xj · exp(g0(t)) ·
L∏

`=1

g`(t)c` ·
∏

λ

(vλ ·x+pλ )!
eλ

where P is a polynomial in F[t,x].
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Holonomic terms

Let H(z) be a function of continuous variables z = (z1, . . . ,zs).
Notation: As := F[z1, . . . ,zs]〈Dz1 , . . . ,Dzs〉, and

annAs(H(z)) := {L ∈As | L(H) = 0}.

Definition.
H(z) is holonomic if the Hilbert dimension of annAs(H(z)) as
a left ideal of As is s.
A function h(t,x) is holonomic if the generating function

H(t,z) =
∑

x1,...,xn≥0

h(t,x)zx1
1 · · ·z

xn
n

is holonomic over Am+n := F(t,z)〈Dt1 , . . . ,Dtm ,Dz1 , . . . ,Dzn〉.
Remark. No algorithm for verifying holonomicity:-(
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Wilf–Zeilberger conjecture: Holonomic ⇔ Proper

In the fundamental paper by Wilf and Zeilberger:
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Wilf–Zeilberger conjecture: Holonomic ⇔ Proper

In the fundamental paper by Wilf and Zeilberger:

In Page 585, they said:
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Wilf–Zeilberger conjecture: Holonomic ⇔ Proper

In the fundamental paper by Wilf and Zeilberger:

Chen and Koutschan recently proved the conjecture:

, 19/28



Construction of telescopers

Four approaches:
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Construction of telescopers

Four approaches:

1902: Picard proved the existence of Picard-Fuchs equations for
parameterized integrals of algebraic functions:
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Construction of telescopers

Four approaches:

1958: Manin gave a constructive method for finding Picard-Fuchs
equations:
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Construction of telescopers

Four approaches:

1958: Manin gave a constructive method for finding Picard-Fuchs
equations:

α(x) =
∮

Γ

dy√
y(y−1)(y− x)

 y ′′+
2x−1

x(x−1)
y ′+

1
4x(x−1)

y = 0

, 20/28



Construction of telescopers

Four approaches:

1969: Griffiths developed the Dwork-Griffiths reduction, which later
is used to compute telescopers for multivariate rational functions:
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Construction of telescopers

Four approaches:

2012: Chen, Kauers and Singer gave a method for computing tele-
scopers for algebraic functions via residues:
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Construction of telescopers

Four approaches:

1947: Fasenmyer gave a method, so-called Sister Celine’s method,
to find recurrence relations satisfied by hypergeometric sums:

, 20/28



Construction of telescopers

Four approaches:

1990: Zeilberger’s algorithm for computing telescopers for holo-
nomic functions via non-commutative elimination in Weyl algebra:
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Construction of telescopers

Four approaches:

1990: Zeilberger’s algorithm for computing telescopers for holo-
nomic functions via non-commutative elimination in Weyl algebra:{

P(x,y,Dx)(h) = 0
Q(x,y,Dy)(h) = 0

 A(x,Dx,Dy)(h)= 0  A(x,Dx,0) is telescoper

, 20/28



Construction of telescopers

Four approaches:

1992: Takayama improved the non-commutative elimination in Weyl
algebra by Groebner bases computation:
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Construction of telescopers

Four approaches:

1998: Chyzak and Salvy applied non-commutative elimination in
Ore algebra to identities proofs :

, 20/28



Construction of telescopers

Four approaches:

1990: Based on Gosper’s algorithm, Zeilberger developed an algo-
rithm for computing telescoping for bivariate hypergeometric terms:
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Construction of telescopers

Four approaches:

1990: Almkvist and Zeilberger extends Zeilberger’s algorithm to the
hyperexponential case:
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Construction of telescopers

Four approaches:

2000: Chyzak extends Zeilberger’s algorithm to the high-order case:

, 20/28



Construction of telescopers

Four approaches:

2010: Koutschan improved Chyzak’s algorithm via advanced ansatz
and applied to solve many conjectures in combinatorics:
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Construction of telescopers

Four approaches:

2010: Bostan et al. design a fast algorithm for creative telescoping
for bivariate rational functions using classical Hermite reduction:
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Construction of telescopers

Four approaches:

2010: Bostan et al. design a fast algorithm for creative telescoping
for bivariate rational functions using classical Hermite reduction:

f (x) = Dx(g)+
p
q

where p,q ∈ F[x] with q squarefree and degx(p)< degx(q).
, 20/28



Construction of telescopers

Four approaches:

2010: Bostan et al. design a fast algorithm for creative telescoping
for bivariate rational functions using classical Hermite reduction:∫

f (x)dx = rational part + logarithmic part

, 20/28



Construction of telescopers

Four approaches:

2013: Bostan et al. generalize the Hermite reduction to hyperexpo-
nential case and design a reduction-based telescoping algorithm:

, 20/28



Construction of telescopers

Four approaches:

2013: Bostan, Lairez and Salvy design a telescoping algorithm for
multivariate rational function based on Dwork-Griffiths reduction:

, 20/28



Construction of telescopers

Four approaches:

2015: Chen et al. design a telescoping algorithm for bivariate hyper-
geometric terms based on modified Abramov-Petkovsek reduction:
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Construction of telescopers

Four approaches:

2016: Chen, Kauers and Koutschan design a telescoping algorithm
for bivariate algebraic functions based on Trager’s reduction and
polynomial reduction:

, 20/28



Construction of telescopers

Four approaches:

2017: Chen, Hoeij, Kauers and Koutschan design a telescoping al-
gorithm for fuchsian D-finite functions:

, 20/28



Gosper’s algorithm

In 1978, Gosper solved the telescoping problem
for hypergeometric terms.

Input: A hypergeometric term H(k)
Output: A hypergeometric term G(k) if

H = ∆k(G)

Example.
B. Gosper
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Gosper’s algorithm

In 1978, Gosper solved the telescoping problem
for hypergeometric terms.

Input: A hypergeometric term H(k)
Output: A hypergeometric term G(k) if

H = ∆k(G)

Example. k! = ∆k(No solution!)

B. Gosper
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Gosper’s algorithm

In 1978, Gosper solved the telescoping problem
for hypergeometric terms.

Input: A hypergeometric term H(k)
Output: A hypergeometric term G(k) if

H = ∆k(G)

Example. (−1)k n!
2n
(n

k

) = ∆k

(
(k−n−1)(−1)kn!

(n+2)2n
(n

k

) )

B. Gosper
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B. Gosper
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Gosper’s algorithm

Let f = Sk(H)/H ∈ E(k). Find a rational solution of

f ·Sk(u(k))−u(k) = 1.

1 Compute Gosper’s form

f =
Sk(p)

p
· q

r
,

where p,q,r ∈ E[k] and q,r satisfies

gcd(q(k),r(k+ j)) = 1 for all j ∈ N.

2 Find a polynomial solution of

p = q ·Sk(v(k))−S−1
k (r) · v(y)

3 If v ∈ E[k] exists, return u := S−1
k (r)v/p.

, 22/28



Zeilberger’s algorithm

Input: A proper hypergeometric term H(n,k)
Output: A telescoper L ∈ F[n,Sn] s.t.

L(n,Sn)(H) = ∆k(G)

Pick some r ∈ N and set Lr =
∑r

i=0 ciSi
n

Consider the hypergeometric term

Lr(H) :=

r∑
i=0

crH(n+ i,k)

Call Gosper’s algorithm on Lr(H) to check
whether ∃ c0, . . . ,cr ∈ F[n] s.t.

Lr(H) = ∆k(Gr)

If all ci’s are zero, increase r and try again

Petkovsek, Wilf & Zeilberger

, 23/28
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Telescoper

Example.

H =
k10

n+ k

The telescoper of minimal order L for H is

L = n10Sn −(n+1)10

Guess the certificate of L?
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Certificate

1
2520(n+ k)

(2100k8n2 −84n3 −68460k6n4 −840n4 −3720n5 +140700k4n6 −9480n6 −

15024n7−10500k2n8−14808n8−8400n9−79590n2k7+284235n4k5−143640n6k3+210nk8−

26250n3k6 +133035n5k4 −35700n7k2 +252k11 +18900k9n−213780k7n3 +368340k5n5 −

110460k3n7 −2100n10 +1890k9 −1764k7 +1260k5 −378k3 −1260k10 −294nk2 +700nk4 −

588nk6 +63504k11n5 +52920k11n4 +30240k11n3 +11340k11n2 −2940n2k2 −13080n3k2 −

33780n4k2 −55116n5k2 −57348n6k2 −17360k3n2 −48860k3n3 −94920k3n4 −

135156k3n5 −55440k3n8 −13860k3n9 −3780k3n+7000n2k4 +31185n3k4 +80850n4k4 +

90090n7k4 +27720n8k4 +57141k5n2 +155610k5n3 +347886k5n6 +238392k5n7 +

110880k5n8 +27720k5n9 +12600k5n−5880n2k6 −114114n5k6 −123816n6k6 −

83160n7k6 −27720n8k6 −379830k7n4 −469128k7n5 −411840k7n6 −257400k7n7 −
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323400k10n5 +2520k11n+2520k11n9 +11340k11n8 +30240k11n7 +52920k11n6)
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Telescoping without certificates

Problem. Can we compute the telescopers without also computing
the certifiates?

Algorithms: L(x,∂x)(f ) = ∂y1(g1)+ · · ·+∂ym(gm)

Bivariate rational case: Hermite reduction

Multivariate rational case: Dwork-Griffiths reduction

Bivariate hyperexponential case:

Hermite reduction + polynomial reduction

Bivariate hypergeometric case:

Abramov-Petkovsek reduction + polynomial reduction

Bivariate algebraic case:

Trager’s reduction + polynomial reduction
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Softwares

MAPLE:
1 EKHAD by Zeilberger

2 DEtools:-Zeilberger by Le

3 SumTools[Hypergeometric]:-Zeilberger by Le

4 Mgfun:-creative_telescoping by Chyzak

5 HermiteCT:-Telescoper by S.C.
6 . . .

MATHEMATICA:
1 fastZeil: Zb by Paule and Schorn
2 HolonomicFunctions: CreativeTelescoping by

Koutschan
Maxima: Zeilberger by Fabrizio Caruso

Reduce: zeilberg by Wolfram Koepf

Kan: sm1 by Nobuki Takayama
. . .
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Summary

Existence problem of telescopers

Construction problem of telescopers

Open Problem: Bivariate Extension of Gosper’s Algorithm

Given hypergeometric F(n,k), find hypergeometric G(n,k)
and H(n,k) s.t.

F = ∆n(G)+∆k(H).

Thank you!
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