Wilf-Zeilberger Theory and Its Applications

Shaoshi Chen

Key Laboratory of Mathematics Mechanization Academy of Mathematics and Systems Science Chinese Academy of Sciences

New Frontiers in Proofs and Computation
Hangzhou, China (online)
September 12-17, 2021

Wilf-Zeilberger theory

In the early 1990s, Wilf and Zeilberger developed an algorithmic theory for proving identities in combinatorics and special functions.

Wilf-Zeilberger theory

In the early 1990s, Wilf and Zeilberger developed an algorithmic theory for proving identities in combinatorics and special functions.

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

Wilf-Zeilberger theory

In the early 1990s, Wilf and Zeilberger developed an algorithmic theory for proving identities in combinatorics and special functions.

$$
\begin{gathered}
\sum_{k=0}^{n}\binom{n}{k}=2^{n} \\
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
\end{gathered}
$$

Wilf-Zeilberger theory

In the early 1990s, Wilf and Zeilberger developed an algorithmic theory for proving identities in combinatorics and special functions.

$$
\begin{gathered}
\sum_{k=0}^{n}\binom{n}{k}=2^{n} \\
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n} \\
\sum_{j=0}^{k}\binom{k}{j}^{2}\binom{n+2 k-j}{2 k}=\binom{n+k}{k}^{2}
\end{gathered}
$$

Wilf-Zeilberger theory

In the early 1990s, Wilf and Zeilberger developed an algorithmic theory for proving identities in combinatorics and special functions.

$$
\begin{gathered}
\sum_{k=0}^{n}\binom{n}{k}=2^{n} \\
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n} \\
\sum_{j=0}^{k}\binom{k}{j}^{2}\binom{n+2 k-j}{2 k}=\binom{n+k}{k}^{2} \\
\int_{0}^{\infty} x^{\alpha-1} L i_{n}(-x y) d x=\frac{\pi(-\alpha)^{n} y^{-\alpha}}{\sin (\alpha \pi)}
\end{gathered}
$$

Wilf-Zeilberger theory

In the early 1990s, Wilf and Zeilberger developed an algorithmic theory for proving identities in combinatorics and special functions.

$$
\begin{gathered}
\sum_{k=0}^{n}\binom{n}{k}=2^{n} \\
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n} \\
\sum_{j=0}^{k}\binom{k}{j}^{2}\binom{n+2 k-j}{2 k}=\binom{n+k}{k}^{2} \\
\int_{0}^{\infty} x^{\alpha-1} L i_{n}(-x y) d x=\frac{\pi(-\alpha)^{n} y^{-\alpha}}{\sin (\alpha \pi)} \\
\int_{-1}^{+1} \frac{e^{-p x} T_{n}(x)}{\sqrt{1-x^{2}}} d x=(-1)^{n} \pi I_{n}(p)
\end{gathered}
$$

Wilf-Zeilberger theory

In the early 1990s, Wilf and Zeilberger developed an algorithmic theory for proving identities in combinatorics and special functions.

$$
\begin{gathered}
\sum_{k=0}^{n}\binom{n}{k}=2^{n} \\
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n} \\
\sum_{j=0}^{k}\binom{k}{j}^{2}\binom{n+2 k-j}{2 k}=\binom{n+k}{k}^{2} \\
\int_{0}^{\infty} x^{\alpha-1} L i_{n}(-x y) d x=\frac{\pi(-\alpha)^{n} y^{-\alpha}}{\sin (\alpha \pi)} \\
\int_{-1}^{+1} \frac{e^{-p x} T_{n}(x)}{\sqrt{1-x^{2}}} d x=(-1)^{n} \pi I_{n}(p)
\end{gathered}
$$

Herbert Wilf

Telescoping

Problem. For a sequence $f(k)$ in some class $\mathfrak{S}(k)$, decide whether there exists $g(k) \in \mathfrak{S}(k)$ s.t.

$$
f(k)=g(k+1)-g(k)
$$

Telescoping

Problem. For a sequence $f(k)$ in some class $\mathfrak{S}(k)$, decide whether there exists $g(k) \in \mathfrak{S}(k)$ s.t.

$$
f(k)=g(k+1)-g(k)=\Delta_{k}(g)
$$

Telescoping

Problem. For a sequence $f(k)$ in some class $\mathfrak{S}(k)$, decide whether there exists $g(k) \in \mathfrak{S}(k)$ s.t.

$$
\begin{gathered}
f(k)=g(k+1)-g(k)=\Delta_{k}(g) \\
\Downarrow \\
\sum_{k=a}^{b} f(k)=g(b+1)-g(a)
\end{gathered}
$$

Telescoping

Problem. For a sequence $f(k)$ in some class $\mathfrak{S}(k)$, decide whether there exists $g(k) \in \mathfrak{S}(k)$ s.t.

$$
\begin{gathered}
f(k)=g(k+1)-g(k)=\Delta_{k}(g) \\
\Downarrow \\
\sum_{k=a}^{b} f(k)=g(b+1)-g(a)
\end{gathered}
$$

Examples.

Telescoping

Problem. For a sequence $f(k)$ in some class $\mathfrak{S}(k)$, decide whether there exists $g(k) \in \mathfrak{S}(k)$ s.t.

$$
\begin{gathered}
f(k)=g(k+1)-g(k)=\Delta_{k}(g) \\
\Downarrow \\
\sum_{k=a}^{b} f(k)=g(b+1)-g(a)
\end{gathered}
$$

Examples.

- Rational sums

$$
\sum_{k=1}^{n} \frac{1}{k(k+1)}=\sum_{k=1}^{n} \Delta_{k}\left(-\frac{1}{k}\right)=1-\frac{1}{n+1}
$$

Telescoping

Problem. For a sequence $f(k)$ in some class $\mathfrak{S}(k)$, decide whether there exists $g(k) \in \mathfrak{S}(k)$ s.t.

$$
\begin{gathered}
f(k)=g(k+1)-g(k)=\Delta_{k}(g) \\
\Downarrow \\
\sum_{k=a}^{b} f(k)=g(b+1)-g(a)
\end{gathered}
$$

Examples.

- Rational sums

$$
\sum_{k=1}^{n} \frac{1}{k(k+1)}=\sum_{k=1}^{n} \Delta_{k}\left(-\frac{1}{k}\right)=1-\frac{1}{n+1}
$$

- Hypergeometric sums

$$
\sum_{k=0}^{n} \frac{\binom{2 k}{k}^{2}}{(k+1) 4^{2 k}}=\sum_{k=0}^{n} \Delta_{k}\left(\frac{4 k\binom{2 k}{k}^{2}}{4^{2 k}}\right)=\frac{4(n+1)\binom{2 n+2}{n+1}^{2}}{4^{2 n+2}}
$$

Creative telescoping

Problem. For a sequence $f(n, k)$ in some class $\mathfrak{S}(n, k)$, find a linear recurrence operator $L \in \mathbb{F}\left[n, S_{n}\right]$ and $g \in \mathfrak{S}(n, k)$ s.t.

$$
\underbrace{L\left(n, S_{n}\right)}_{\text {Telescoper }}(f)=\Delta_{k}(g)
$$

Call g the certificate for L.

Creative telescoping

Problem. For a sequence $f(n, k)$ in some class $\mathfrak{S}(n, k)$, find a linear recurrence operator $L \in \mathbb{F}\left[n, S_{n}\right]$ and $g \in \mathfrak{S}(n, k)$ s.t.

$$
\underbrace{L\left(n, S_{n}\right)}_{\text {Telescoper }}(f)=\Delta_{k}(g)
$$

Call g the certificate for L.

Example. Let $f(n, k)=\binom{n}{k}^{2}$. Then a telescoper for f and its certificate are

Creative telescoping

Problem. For a sequence $f(n, k)$ in some class $\mathfrak{S}(n, k)$, find a linear recurrence operator $L \in \mathbb{F}\left[n, S_{n}\right]$ and $g \in \mathfrak{S}(n, k)$ s.t.

$$
\underbrace{L\left(n, S_{n}\right)}_{\text {Telescoper }}(f)=\Delta_{k}(g)
$$

Call g the certificate for L.

Example. Let $f(n, k)=\binom{n}{k}^{2}$. Then a telescoper for f and its certificate are

$$
L=(n+1) S_{n}-4 n-2 \quad \text { and } \quad g=\frac{(2 k-3 n-3) k^{2}\binom{n}{k}^{2}}{(k-n-1)^{2}}
$$

Proving identities

$$
F(n):=\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
$$

Proving identities

$$
F(n):=\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
$$

Creative telescoping for $f=\binom{n}{k}^{2}: L(f)=\Delta_{k}(g)$, where

$$
L=(n+1) S_{n}-4 n-2 \quad \text { and } \quad g=\frac{(2 k-3 n-3) k^{2}\binom{n}{k}^{2}}{(k-n-1)^{2}}
$$

Proving identities

$$
F(n):=\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
$$

Creative telescoping for $f=\binom{n}{k}^{2}: L(f)=\Delta_{k}(g)$, where

$$
L=(n+1) S_{n}-4 n-2 \quad \text { and } \quad g=\frac{(2 k-3 n-3) k^{2}\binom{n}{k}^{2}}{(k-n-1)^{2}}
$$

Since $f(n, k)=0$ when $k<0$ or $k>n$, we have

$$
\sum_{k=-\infty}^{+\infty}\binom{n}{k}^{2}=\sum_{k=0}^{n}\binom{n}{k}^{2}
$$

Proving identities

$$
F(n):=\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
$$

Creative telescoping for $f=\binom{n}{k}^{2}: L(f)=\Delta_{k}(g)$, where

$$
L=(n+1) S_{n}-4 n-2 \quad \text { and } \quad g=\frac{(2 k-3 n-3) k^{2}\binom{n}{k}^{2}}{(k-n-1)^{2}}
$$

Taking sums on both sides of $L(f)=\Delta_{k}(g)$:

$$
\sum_{k=-\infty}^{+\infty} L(f)=L\left(\sum_{k=-\infty}^{+\infty} f\right)=g(n,+\infty)-g(n,-\infty)=0
$$

Proving identities

$$
F(n):=\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
$$

Creative telescoping for $f=\binom{n}{k}^{2}: L(f)=\Delta_{k}(g)$, where

$$
L=(n+1) S_{n}-4 n-2 \quad \text { and } \quad g=\frac{(2 k-3 n-3) k^{2}\binom{n}{k}^{2}}{(k-n-1)^{2}}
$$

Taking sums on both sides of $L(f)=\Delta_{k}(g)$:

$$
L\left(\sum_{k=-\infty}^{+\infty} f\right)=0
$$

Proving identities

$$
F(n):=\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
$$

Creative telescoping for $f=\binom{n}{k}^{2}: L(f)=\Delta_{k}(g)$, where

$$
L=(n+1) S_{n}-4 n-2 \quad \text { and } \quad g=\frac{(2 k-3 n-3) k^{2}\binom{n}{k}^{2}}{(k-n-1)^{2}}
$$

Taking sums on both sides of $L(f)=\Delta_{k}(g)$:

$$
L(F(n))=0
$$

Proving identities

$$
F(n):=\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
$$

Creative telescoping for $f=\binom{n}{k}^{2}: L(f)=\Delta_{k}(g)$, where

$$
L=(n+1) S_{n}-4 n-2 \quad \text { and } \quad g=\frac{(2 k-3 n-3) k^{2}\binom{n}{k}^{2}}{(k-n-1)^{2}}
$$

The sequence $F(n)$ satisfies

$$
(n+1) F(n+1)-(4 n+2) F(n)=0
$$

Proving identities

$$
F(n):=\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
$$

Creative telescoping for $f=\binom{n}{k}^{2}: L(f)=\Delta_{k}(g)$, where

$$
L=(n+1) S_{n}-4 n-2 \quad \text { and } \quad g=\frac{(2 k-3 n-3) k^{2}\binom{n}{k}^{2}}{(k-n-1)^{2}}
$$

Verify the initial condition:

$$
F(1)=2=\binom{2}{1}
$$

Then the identity is proved!

Example: Dixon's Identity

$$
\sum_{k=-a}^{a} \underbrace{(-1)^{k}\binom{a+b}{a+k}\binom{b+c}{b+k}\binom{c+a}{c+k}}_{F(b, k)}=\underbrace{\frac{(a+b+c)!}{a!b!c!}}_{f(b)}
$$

1 Creative telescoping for $F(b, k)$ yields $L\left(b, S_{b}\right)(F)=\Delta_{k}(G)$ with

$$
L=(-b-1) S_{b}+(a+b+c+1) \quad \text { and } \quad G=\frac{(a+k)(c+k)}{2(b-k+1)} \cdot F .
$$

2 Summing both sides of $L(F)=\Delta_{k}(G)$ for k from $-a$ to a gets

$$
\begin{aligned}
\sum_{k=-a}^{a} L(F) & =L\left(\sum_{k=1}^{n} F\right)=\sum_{k=1}^{n} \Delta_{k}(G) \\
& =G(b, a+1)-G(b,-a)=0 \quad \Rightarrow \quad L\left(\sum_{k=-a}^{a} F\right)=0
\end{aligned}
$$

3 Note that $L(f(b))=0$ and the identity holds for $b=0$.

Example: Identity about Harmonic Numbers

$$
\sum_{k=1}^{n} \underbrace{(-1)^{k+1} \frac{1}{k}\binom{n}{k}}_{F(n, k)}=1+\frac{1}{2}+\cdots+\frac{1}{n} \triangleq H_{n} .
$$

1 Creative telescoping for $F(n, k)$ yields $L\left(n, S_{n}\right)(F)=\Delta_{k}(G)$ with

$$
L=S_{n}-1 \quad \text { and } \quad G=\frac{(-1)^{k}}{n+1}\binom{n}{k-1} .
$$

2 Summing both sides of $L(F)=\Delta_{k}(G)$ for k from 1 to n gets

$$
\begin{aligned}
\sum_{k=1}^{n} L(F) & =L\left(\sum_{k=1}^{n} F\right)-F(n+1, n+1)=\sum_{k=1}^{n} \Delta_{k}(G) \\
& =G(n, n+1)-G(n, 1) \Rightarrow L\left(\sum_{k=1}^{n} F\right)=\frac{1}{n+1}
\end{aligned}
$$

An Identity from Representation Theory

$\sum_{m=0}^{\min \{a, b\}} \sum_{n=0}^{\min \{c, d\}} F(m, n, a, b, c, d, t)=(-1)^{t} \frac{(a+c)!(a+d)!(b+c)!(b+d)!}{a!(b-t)!c!(d+t)!}$,
where

$$
F=(-1)^{m+n}(m+n)!(a+b+c+d-m-n)!\binom{a-t}{m-t}\binom{b}{m}\binom{c+t}{n+t}\binom{d}{n}
$$

An Identity from Representation Theory

$\sum_{m=0}^{\min \{a, b\}} \sum_{n=0}^{\min \{c, d\}} F(m, n, a, b, c, d, t)=(-1)^{t} \frac{(a+c)!(a+d)!(b+c)!(b+d)!}{a!(b-t)!c!(d+t)!}$,
where
$F=(-1)^{m+n}(m+n)!(a+b+c+d-m-n)!\binom{a-t}{m-t}\binom{b}{m}\binom{c+t}{n+t}\binom{d}{n}$.

Initial case: $t=0$

$$
\sum_{m=0}^{\min \{a, b\}} \sum_{n=0}^{\min \{c, d\}} F(m, n, a, b, c, d, 0)=\frac{(a+c)!(a+d)!(b+c)!(b+d)!}{a!b!c!d!}
$$

An Identity from Representation Theory

$\sum_{m=0}^{\min \{a, b\}} \sum_{n=0}^{\min \{c, d\}} F(m, n, a, b, c, d, t)=(-1)^{t} \frac{(a+c)!(a+d)!(b+c)!(b+d)!}{a!(b-t)!c!(d+t)!}$,
where

$$
F=(-1)^{m+n}(m+n)!(a+b+c+d-m-n)!\binom{a-t}{m-t}\binom{b}{m}\binom{c+t}{n+t}\binom{d}{n}
$$

An Identity from Representation Theory

$\sum_{m=0}^{\min \{a, b\}} \sum_{n=0}^{\min \{c, d\}} F(m, n, a, b, c, d, t)=(-1)^{t} \frac{(a+c)!(a+d)!(b+c)!(b+d)!}{a!(b-t)!c!(d+t)!}$,
where
$F=(-1)^{m+n}(m+n)!(a+b+c+d-m-n)!\binom{a-t}{m-t}\binom{b}{m}\binom{c+t}{n+t}\binom{d}{n}$.
Recurrence in t : creative telescoping for double summation

$$
L\left(t, S_{t}\right)(F)=\Delta_{m}(G)+\Delta_{n}(H),
$$

where $L=(d+t+1) S_{t}+(b-t)$ and $G=g F, \quad H=h F$ with

$$
g=\frac{-m-a m-b m-c m-d m-c d m+m^{2}-a m n-b m n+m^{2} n}{(1+n)(a-t)}
$$

$h=\frac{-a b n+a m n+b m n-m^{2} n-t-a t-b t-a b t-c t-d t-c m t-d m t+n t+m n t+t^{2}+a t^{2}+b t^{2}+c t^{2}+d t^{2}-m t^{2}-n t^{2}}{(a-t)(-1-m+t)}$

Example: Identity on T-shirt

Example: Identity on T-shirt

Handbooks of identities
Dixon's identity

$$
\sum_{k=-a}^{a}(-1)^{k}\binom{a+b}{a+k}\binom{b+c}{b+k}\binom{c+a}{c+k}=\frac{(a+b+c)!}{a!b!c!}
$$

Handbooks of identities

Dixon's identity

$$
\sum_{k=-a}^{a}(-1)^{k}\binom{a+b}{a+k}\binom{b+c}{b+k}\binom{c+a}{c+k}=\frac{(a+b+c)!}{a!b!c!}
$$

Hille-Hardy's identity

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \sum_{k_{1}} \sum_{k_{2}} \frac{u^{n} n!}{(a+1)_{n}}\binom{n+a}{n-k_{1}} \frac{(-x)^{k_{1}}}{k_{1}!}\binom{n+a}{n-k_{2}} \frac{(-y)^{k_{2}}}{k_{2}!} \\
&=(1-u)^{-a-1} \exp \left\{-\frac{(x+y)^{u}}{1-u}\right\} \sum_{n} \frac{1}{n!(a+1)_{n}}\left(\frac{x y u}{(1-u)^{2}}\right)^{n}
\end{aligned}
$$

Handbooks of identities

Dixon's identity

$$
\sum_{k=-a}^{a}(-1)^{k}\binom{a+b}{a+k}\binom{b+c}{b+k}\binom{c+a}{c+k}=\frac{(a+b+c)!}{a!b!c!}
$$

Hille-Hardy's identity

$$
\begin{aligned}
& \quad \sum_{n=0}^{\infty} \sum_{k_{1}} \sum_{k_{2}} \frac{u^{n} n!}{(a+1)_{n}}\binom{n+a}{n-k_{1}} \frac{(-x)^{k_{1}}}{k_{1}!}\binom{n+a}{n-k_{2}} \frac{(-y)^{k_{2}}}{k_{2}!} \\
& =(1-u)^{-a-1} \exp \left\{-\frac{(x+y)^{u}}{1-u}\right\} \sum_{n} \frac{1}{n!(a+1)_{n}}\left(\frac{x y u}{(1-u)^{2}}\right)^{n}
\end{aligned}
$$

$$
\sum_{2}^{\prime}=
$$

Solving conjectures in combinatorics

Proof of Ira Gessel's lattice path conjecture

Manuel Kauers ${ }^{3}$, Christoph Koutschan ${ }^{\text {a }}$, and Doron Zeilberger ${ }^{\text {b/ }}$,

Theorem. Let $f(n ; i, j)$ denote the number of Gessel walks going in n steps from $(0,0)$ to (i, j). Then $f(n ; 0,0)=0$ if n is odd and

$$
f(2 n ; 0,0)=16^{n} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(5 / 3)_{n}(2)_{n}} \quad(n \geq 0)
$$

Proof of George Andrews's and David Robbins's q-TSPP conjecture

Christoph Koutschan ${ }^{2{ }^{21},}$, Manuel Kauers ${ }^{62,}$, and Doron Zeilberger ${ }^{6}$
Theorem 1. Let π / S_{3} denote the set of orbits of a totally symmetric plane partition π under the action of the symmetric group S_{3}. Then the orbit-counting generating function (ref. 3, p. 200, and ref. 2, p. 106) is given by

$$
\sum_{\pi \in T(n)} q^{\left|\pi / S_{3}\right|}=\prod_{1 \leq i \leq j \leq k \leq n} \frac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}}
$$

where $T(n)$ denotes the set of totally symmetric plane partitions with largest part at most n.

Fundamental problems

Creative telescoping

Fundamental problems

Creative telescoping

$$
\underbrace{L\left(n, S_{n}\right)}_{\text {Telescoper }}(f(n, k))=\Delta_{k}(g(n, k))
$$

Fundamental problems

Creative telescoping

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
$$

Fundamental problems

Creative telescoping

$$
\underbrace{L\left(x, D_{x}\right)}_{\text {Telescoper }}(f(x, y))=D_{y}(g(x, y))
$$

Fundamental problems

Creative telescoping

$$
\int_{-\infty}^{+\infty} \exp \left(-x^{2} / y^{2}-y^{2}\right) d y=\sqrt{\pi} \exp (-2 x)
$$

Fundamental problems

Creative telescoping

$$
\underbrace{L\left(x, D_{x}\right)}_{\text {Telescoper }}(f(x, k))=\Delta_{k}(g(x, k))
$$

Fundamental problems

Creative telescoping

$$
\sum_{k=0}^{+\infty}\binom{2 k}{k} x^{k}=\frac{1}{\sqrt{1-4 x}}
$$

Fundamental problems

Creative telescoping

$$
\underbrace{L\left(x, \partial_{x}\right)}_{\text {Telescoper }}\left(f\left(x, y_{1}, \ldots, y_{m}\right)\right)=\sum_{i=1}^{m} \partial_{y_{i}}\left(g_{i}\left(x, y_{1}, \ldots, y_{m}\right)\right)
$$

Fundamental problems

Creative telescoping

$$
\underbrace{L\left(x, \partial_{x}\right)}_{\text {Telescoper }}\left(f\left(x, y_{1}, \ldots, y_{m}\right)\right)=\sum_{i=1}^{m} \partial_{y_{i}}\left(g_{i}\left(x, y_{1}, \ldots, y_{m}\right)\right)
$$

Existence problem.
For a function $f(n, k)$, decide whether telescopers exist?

Fundamental problems

Creative telescoping

$$
\underbrace{L\left(x, \partial_{x}\right)}_{\text {Telescoper }}\left(f\left(x, y_{1}, \ldots, y_{m}\right)\right)=\sum_{i=1}^{m} \partial_{y_{i}}\left(g_{i}\left(x, y_{1}, \ldots, y_{m}\right)\right)
$$

Existence problem.
For a function $f(n, k)$, decide whether telescopers exist?
Construction problem.
For a function $f(n, k)$, how to computer a telescoper if it exists?

Fundamental problems

Creative telescoping

$$
\underbrace{L\left(x, \partial_{x}\right)}_{\text {Telescoper }}\left(f\left(x, y_{1}, \ldots, y_{m}\right)\right)=\sum_{i=1}^{m} \partial_{y_{i}}\left(g_{i}\left(x, y_{1}, \ldots, y_{m}\right)\right)
$$

Existence problem.
For a function $f(n, k)$, decide whether telescopers exist?
Construction problem.
For a function $f(n, k)$, how to computer a telescoper if it exists?
Tools:

- Algebraic analysis (holonomic D-modules)
- Differential and difference algebra
- Non-commutative rings (Ore polynomials)
- Computational algebraic geometry

Existence of telescopers

Timeline of works on existence problem

Existence of telescopers

Timeline of works on existence problem

1990: Zeilberger proved that telescopers always exist for holonomic functions:

A holonomic systems approach to special functions identities *

Doron ZEILBERGER
Department of Mathematics, Temple University, Philadelphia, PA 19122, USA

Existence of telescopers

Timeline of works on existence problem

1992: Wilf and Zeilberger proved that telescopers always exist for proper hypergeometric terms:

[^0]
Existence of telescopers

Timeline of works on existence problem

2002: Abramov and Le solved the existence problem for rational functions in two discrete variables:

A criterion for the applicability of Zeilberger's
algorithm to rational functions
S.A. Abramov ${ }^{\text {a }}$, H.Q. Le ${ }^{\text {b,* }}$

Existence of telescopers

Timeline of works on existence problem

2003: Abramov solved the existence problem for bivariate hypergeometric terms:

When does Zeilberger's algorithm succeed?

$$
\text { S.A. Abramov }{ }^{1}
$$

Existence of telescopers

Timeline of works on existence problem

2005: W.Y.C. Chen, Hou and Mu solved the existence problem for bivariate q-hypergeometric terms:

Applicability of the q-analogue of Zeilberger's algorithm

William Y.C. Chen*, Qing-Hu Hou, Yan-Ping Mu
Center for Combinatorics, LPMC, Nankai University, Tlanjin 300071, PR China

Existence of telescopers

Timeline of works on existence problem

2012: S. Chen and Singer solved the existence problem for bivariate rational functions in the mixed cases:

Advances in Applied Mathematics 49 (2012) 111-133

Residues and telescopers for bivariate rational functions **
Shaoshi Chen, Michael F. Singer*
Department of Mathematics, North Carolina State University, Box 8205, Raleigh, NC 27695-8205, USA

Existence of telescopers

Timeline of works on existence problem

2015: Chen et al. solved the existence problem for bivariate mixed hypergeometric terms:

Journal of Symbolic Computation 68 (2015) 1-26

On the existence of telescopers for mixed hypergeometric terms

CrossMark

Shaoshi Chen ${ }^{\text {a }}$, Frédéric Chyzak ${ }^{\text {b }}$, Ruyong Feng ${ }^{\text {a }}$, Guofeng Fu ${ }^{\text {a }}$, Ziming Li ${ }^{\text {a }}$

Existence of telescopers

Timeline of works on existence problem

2016: Chen et al. solved the existence problem for rational functions in three discrete variables:

Existence Problem of Telescopers: Beyond the Bivariate Case*

Shaoshi Chen ${ }^{1,2}$, Qing-Hu Hou ${ }^{3}$, George Labahn², Rong-Hua Wang ${ }^{4}$

Existence of telescopers

Timeline of works on existence problem

2020: Chen et al. solved the existence problem for rational functions in three variables:

```
*) Journal of Symbolic Computation
    Available online 20 August 2020
        In Press, Corrected Proof (7)
```


On the existence of telescopers for rational functions in three variables

Mixed hypergeometric terms

Let \mathbb{F} be a field of char. zero and algebraically closed.

$$
\begin{array}{ll}
\mathbf{t}=\left(t_{1}, \ldots, t_{m}\right), & \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \\
D_{i}: \underbrace{\partial / \partial t_{i}}_{\text {derivations }}, & S_{j}: \underbrace{x_{j} \rightarrow x_{j}+1}_{\text {shifts }}
\end{array}
$$

Definition. $h(\mathbf{t}, \mathbf{x})$ is mixed hypergeometric over $\mathbb{F}(\mathbf{t}, \mathbf{x})$ if

$$
\text { all } \frac{D_{i}(h)}{h} \text { and } \frac{S_{j}(h)}{h} \text { are rational functions in } \mathbb{F}(\mathbf{t}, \mathbf{x}) .
$$

Remark. Mixed hypergeometric terms are solutions of systems of first-order homogeneous differential and difference equations.

Examples

- Rational functions:

$$
t_{1}+t_{2}+x_{1}, \quad \frac{1}{\left(t_{1}+t_{2}\right)}, \quad \frac{t_{1}+x_{1}+1}{t_{1}+t_{2}+x_{1}^{2}+3}, \quad \cdots
$$

Examples

- Rational functions:

$$
t_{1}+t_{2}+x_{1}, \quad \frac{1}{\left(t_{1}+t_{2}\right)}, \quad \frac{t_{1}+x_{1}+1}{t_{1}+t_{2}+x_{1}^{2}+3}, \quad \cdots
$$

- Hyperexponential functions:

$$
\exp \left(t_{1}+t_{2}^{2}\right), \quad\left(t_{1}^{2}+t_{2}+1\right)^{\sqrt{5}}, \quad \exp \left(\int \frac{1}{t_{1}+t_{2}}\right), \quad \ldots
$$

Examples

- Rational functions:

$$
t_{1}+t_{2}+x_{1}, \quad \frac{1}{\left(t_{1}+t_{2}\right)}, \quad \frac{t_{1}+x_{1}+1}{t_{1}+t_{2}+x_{1}^{2}+3}, \quad \cdots
$$

- Hyperexponential functions:

$$
\exp \left(t_{1}+t_{2}^{2}\right), \quad\left(t_{1}^{2}+t_{2}+1\right)^{\sqrt{5}}, \quad \exp \left(\int \frac{1}{t_{1}+t_{2}}\right), \quad \cdots
$$

- Symbolic powers:

$$
t_{1}^{x_{1}}, \quad\left(t_{1}+t_{2}\right)^{x_{1}} \cdot\left(t_{2}+t_{3}^{2}\right)^{x_{2}}, \quad \cdots
$$

Examples

- Rational functions:

$$
t_{1}+t_{2}+x_{1}, \quad \frac{1}{\left(t_{1}+t_{2}\right)}, \quad \frac{t_{1}+x_{1}+1}{t_{1}+t_{2}+x_{1}^{2}+3}, \quad \cdots
$$

- Hyperexponential functions:

$$
\exp \left(t_{1}+t_{2}^{2}\right), \quad\left(t_{1}^{2}+t_{2}+1\right)^{\sqrt{5}}, \quad \exp \left(\int \frac{1}{t_{1}+t_{2}}\right), \quad \cdots
$$

- Symbolic powers:

$$
t_{1}^{x_{1}}, \quad\left(t_{1}+t_{2}\right)^{x_{1}} \cdot\left(t_{2}+t_{3}^{2}\right)^{x_{2}}, \quad \cdots
$$

- Hypergeometric terms:

$$
2^{x_{1}}, \quad x_{1}!, \quad\left(x_{1}+2 x_{2}+\sqrt{3}\right)!
$$

Structure theorem

Theorem. Any mixed hypergeometric term $h(\mathbf{t}, \mathbf{x})$ is of the form

$$
f(\mathbf{t}, \mathbf{x}) \cdot \prod_{j=1}^{n} \beta_{j}(\mathbf{t})^{x_{j}} \cdot \exp \left(g_{0}(\mathbf{t})\right) \cdot \prod_{\ell=1}^{L} g_{\ell}(\mathbf{t})^{c_{\ell}} \cdot \prod_{\lambda}\left(\mathbf{v}_{\lambda} \cdot \mathbf{x}+p_{\lambda}\right)!^{e_{\lambda}}
$$

where f is a rational function in $\mathbb{F}(\mathbf{t}, \mathbf{x})$.

Structure theorem

Theorem. Any mixed hypergeometric term $h(\mathbf{t}, \mathbf{x})$ is of the form

$$
f(\mathbf{t}, \mathbf{x}) \cdot \prod_{j=1}^{n} \beta_{j}(\mathbf{t})^{x_{j}} \cdot \exp \left(g_{0}(\mathbf{t})\right) \cdot \prod_{\ell=1}^{L} g_{\ell}(\mathbf{t})^{c_{\ell}} \cdot \prod_{\lambda}\left(\mathbf{v}_{\lambda} \cdot \mathbf{x}+p_{\lambda}\right)!^{e_{\lambda}}
$$

where f is a rational function in $\mathbb{F}(\mathbf{t}, \mathbf{x})$.

Proper terms. A mixed hypergeometric term $h(\mathbf{t}, \mathbf{x})$ is proper if it is of the form

$$
P(\mathbf{t}, \mathbf{x}) \cdot \prod_{j=1}^{n} \beta_{j}(\mathbf{t})^{x_{j}} \cdot \exp \left(g_{0}(\mathbf{t})\right) \cdot \prod_{\ell=1}^{L} g_{\ell}(\mathbf{t})^{c_{\ell}} \cdot \prod_{\lambda}\left(\mathbf{v}_{\lambda} \cdot \mathbf{x}+p_{\lambda}\right)!^{e_{\lambda}}
$$

where P is a polynomial in $\mathbb{F}[\mathbf{t}, \mathbf{x}]$.

Holonomic terms

Let $H(\mathbf{z})$ be a function of continuous variables $\mathbf{z}=\left(z_{1}, \ldots, z_{s}\right)$.
Notation: $\mathscr{A}_{s}:=\mathbb{F}\left[z_{1}, \ldots, z_{s}\right]\left\langle D_{z_{1}}, \ldots, D_{z_{s}}\right\rangle$, and

$$
\operatorname{ann}_{\mathscr{A}_{s}}(H(\mathbf{z})):=\left\{L \in \mathscr{A}_{s} \mid L(H)=0\right\} .
$$

Holonomic terms

Let $H(\mathbf{z})$ be a function of continuous variables $\mathbf{z}=\left(z_{1}, \ldots, z_{s}\right)$.
Notation: $\mathscr{A}_{s}:=\mathbb{F}\left[z_{1}, \ldots, z_{s}\right]\left\langle D_{z_{1}}, \ldots, D_{z_{s}}\right\rangle$, and

$$
\operatorname{ann}_{\mathscr{A}_{s}}(H(\mathbf{z})):=\left\{L \in \mathscr{A}_{s} \mid L(H)=0\right\} .
$$

Definition.

- $H(\mathbf{z})$ is holonomic if the Hilbert dimension of $\operatorname{ann}_{\mathscr{A}_{s}}(H(\mathbf{z}))$ as a left ideal of \mathscr{A}_{s} is s.
- A function $h(\mathbf{t}, \mathbf{x})$ is holonomic if the generating function

$$
H(\mathbf{t}, \mathbf{z})=\sum_{x_{1}, \ldots, x_{n} \geq 0} h(\mathbf{t}, \mathbf{x}) z_{1}^{x_{1}} \cdots z_{n}^{x_{n}}
$$

is holonomic over $\mathscr{A}_{m+n}:=\mathbb{F}(\mathbf{t}, \mathbf{z})\left\langle D_{t_{1}}, \ldots, D_{t_{m}}, D_{z_{1}}, \ldots, D_{z_{n}}\right\rangle$.

Holonomic terms

Let $H(\mathbf{z})$ be a function of continuous variables $\mathbf{z}=\left(z_{1}, \ldots, z_{s}\right)$.
Notation: $\mathscr{A}_{s}:=\mathbb{F}\left[z_{1}, \ldots, z_{s}\right]\left\langle D_{z_{1}}, \ldots, D_{z_{s}}\right\rangle$, and

$$
\operatorname{ann}_{\mathscr{A}_{s}}(H(\mathbf{z})):=\left\{L \in \mathscr{A}_{s} \mid L(H)=0\right\} .
$$

Definition.

- $H(\mathbf{z})$ is holonomic if the Hilbert dimension of $\operatorname{ann}_{\mathscr{A}_{s}}(H(\mathbf{z}))$ as a left ideal of \mathscr{A}_{s} is s.
- A function $h(\mathbf{t}, \mathbf{x})$ is holonomic if the generating function

$$
H(\mathbf{t}, \mathbf{z})=\sum_{x_{1}, \ldots, x_{n} \geq 0} h(\mathbf{t}, \mathbf{x}) z_{1}^{x_{1}} \cdots z_{n}^{x_{n}}
$$

is holonomic over $\mathscr{A}_{m+n}:=\mathbb{F}(\mathbf{t}, \mathbf{z})\left\langle D_{t_{1}}, \ldots, D_{t_{m}}, D_{z_{1}}, \ldots, D_{z_{n}}\right\rangle$.
Remark. No algorithm for verifying holonomicity:-(

Wilf-Zeilberger conjecture: Holonomic \Leftrightarrow Proper

In the fundamental paper by Wilf and Zeilberger:

An algorithmic proof theory for hypergeometric (ordinary and " q ") multisum/integral identities

Herbert S. Wilf * and Doron Zeilberger ${ }^{\star \star}$
Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104, USA
Department of Mathematics, Temple University, Philadelphia, PA 19122, USA

Wilf-Zeilberger conjecture: Holonomic \Leftrightarrow Proper

In the fundamental paper by Wilf and Zeilberger:
$\overline{\text { Inventiones }}$
(C) Springer-Verlag 1992

An algorithmic proof theory for hypergeometric (ordinary and " q ") multisum/integral identities

Herbert S. Wilf * and Doron Zeilberger ${ }^{\star \star}$
Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104, USA
Department of Mathematics, Temple University, Philadelphia, PA 19122, USA

In Page 585, they said:

Our examples are all proper-hypergeometric. We conjecture that a hypergeometric term is proper-hypergeometric if and only if it is holonomic.

Wilf-Zeilberger conjecture: Holonomic \Leftrightarrow Proper

In the fundamental paper by Wilf and Zeilberger:
$\overline{\text { Inventiones }}$
(C) Springer-Verlag 1992

An algorithmic proof theory for hypergeometric (ordinary and " q ") multisum/integral identities

Herbert S. Wilf * and Doron Zeilberger ${ }^{\star \star}$
Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104, USA
Department of Mathematics, Temple University, Philadelphia, PA 19122, USA

Chen and Koutschan recently proved the conjecture:

Proof of the Wilf Zeilberger Conjecture for Mixed Hypergeometric Terms

Construction of telescopers

Four approaches:

Construction of telescopers

Four approaches:

1902-2012	1947-1998	1990--2010	2010-- 2016
Algebraic-Geometry Approach	Elimination-Based Approach	Gosper-Based Approach	Redution-Based Approach
- Picard 1902	- Fasenmyer 1947	- Zeilberger 1990	- BostanChenChyzakLi 2010
- Manin 1958	- Zeilberger 1990	- AlmkvistZeilberger 1990	- BoChChLiXin 2013
- Griffiths 1969	- Takayama 1992	- Chyzak 2000	- BoLairezSalvy 2013
ChKauersSinger 2012	ChyzakSalvy 1998 \qquad	Koutsehan 2010	ChHuangKaLi 2015 - ChenKaKoutschan 2016

1902: Picard proved the existence of Picard-Fuchs equations for parameterized integrals of algebraic functions:

Émile Picard

Sur les périodes des intégrales doubles dans la théorie des fonctions algébriques de deux variables

Construction of telescopers

Four approaches:

1902-2012	1947--1998	1990--2010	2010--2016
Algebraic-Geometry Approach	Elimination-Based Approach	Gosper-Based Approach	Redution-Based Approach
- Pieard 1902	- Fasenmyer 1947	- Zeilberger 1990	- BostanChenChyzakLi 2010
- Manin 1958	- Zeilberger 1990	- AlmkvistZeilberger 1990	- BoChChLiXin 2013
- Griffiths 1969	- Takayama 1992	- Chyzak 2000	- BoLairezSalvy 2013
ChKauersSinger 2012	ChyzakSalvy 1998	- Koutsehan 2010	ChHuangKaLi 2015 - ChenKaKoutschan 2016

1958: Manin gave a constructive method for finding Picard-Fuchs equations:

ALGEBRAIC CURVES OVER FIELDS WITH DIFFERENTIATION

Ju. I. Manin

A differential-algebraic homomorphism is constructed from the group of divisor classes of degree zero on a curve defined over a constant field with differentiation into the additive group of a finite-dimensional vector space over the constant field. A partial study of the kernel of this homomorphism is made.

Construction of telescopers

Four approaches:

1902-2012	1947-1998	1990--2010	2010--2016
Algebraic-Geometry Approach	Elimination-Based Approach	Gosper-Based Approach	Redution-Based Approach
- Pieard 1902	- Fasenmyer 1947	- Zeilberger 1990	- BostanChenChyzakLi 2010
- Manin 1958	- Zeilberger 1990	- AlmkvistZeilberger 1990	- BoChChLiXin 2013
- Griffiths 1969	- Takayama 1992	- Chyzak 2000	- BoLairezSalvy 2013
ChKauersSinger 2012	ChyzakSalvy 1998 \qquad	Koutsehan 2010 seaseas	ChHuangKaLi 2015 - ChenKaKoutschan 2016

1958: Manin gave a constructive method for finding Picard-Fuchs equations:
$\alpha(x)=\oint_{\Gamma} \frac{d y}{\sqrt{y(y-1)(y-x)}} \rightsquigarrow y^{\prime \prime}+\frac{2 x-1}{x(x-1)} y^{\prime}+\frac{1}{4 x(x-1)} y=0$

Construction of telescopers

Four approaches:

1902-2012	1947-1998	1990--2010	2010--2016
Algebraic-Geometry Approach	Elimination-Based Approach	Gosper-Based Approach	Redution-Based Approach
- Pieard 1902	- Fasenmyer 1947	- Zeilberger 1990	- BostanChenChyzakLi 2010
- Manin 1958	- Zeilberger 1990	- AlmkvistZeilberger 1990	- BoChChLiXin 2013
- Griffiths 1969	- Takayama 1992	- Chyzak 2000	- BoLairezSalvy 2013
ChKauersSinger 2012	ChyzakSalvy 1998 \qquad	Koutsehan 2010 seaseas	ChHuangKaLi 2015 - ChenKaKoutschan 2016

1969: Griffiths developed the Dwork-Griffiths reduction, which later is used to compute telescopers for multivariate rational functions:

Annals of Mathematics

On the Periods of Certain Rational Integrals: I
Author(s): Philip A. Griffiths
Source: Annals of Mathematics, Second Series, Vol. 90, No. 3 (Nov., 1969), pp. 460-495

Construction of telescopers

Four approaches:

1902-2012	1947--1998	1990--2010	2010--2016
Algebraic-Geometry Approach	Elimination-Based Approach	Gosper-Based Approach	Redution-Based Approach
- Picard 1902	- Fasenmyer 1947	- Zeilberger 1990	- BostanChenChyzakLi 2010
- Manin 1958	- Zeilberger 1990	- AlmkvistZeilberger 1990	- BoChChLiXin 2013
- Griffiths 1969	- Takayama 1992	- Chyzak 2000	- BoLairezSalvy 2013
ChKauersSinger 2012 eseses:	ChyzakSalvy 1998 \qquad	Koutsehan 2010 ces: 8 en:	ChHuangKaLi 2015 - ChenKaKoutschan 2016

2012: Chen, Kauers and Singer gave a method for computing telescopers for algebraic functions via residues:

> Telescopers for Rational and Algebraic Functions via Residues

Construction of telescopers

Four approaches:

1902--2012	1947×1998	1990--2010	2010--2016
Algebraic-Geometry Approach	Elimination-Based Approach	Gosper-Based Approach	Redution-Based Approach
- Picard 1902	- Fasenmyer 1947	- Zeilberger 1990	- BostanChenChyzakLi 2010
- Manin 1958	- Zeilberger 1990	- AlmkvistZeilberger 1990	- BoChChLiXin 2013
- Griffiths 1969	- Takayama 1992	- Chyzak 2000	- BoLairezSalvy 2013
ChKauersSinger 2012	ChyzakSalvy 1998	Koutsehan 2010	ChHuangKaLi 2015 - ChenKaKoutschan 2016

1947: Fasenmyer gave a method, so-called Sister Celine's method, to find recurrence relations satisfied by hypergeometric sums:

SOME GENERALIZED HYPERGEOMETRIC POLYNOMIALS

SISTER MARY CELINE FASENMYER

1. Introduction. We shall obtain some basic formal properties of the hypergeometric polynomials

$$
f_{n}\left(a_{i} ; b_{i} ; x\right) \equiv f_{n}\left(a_{1}, a_{2}, \cdots, a_{p} ; b_{1}, b_{2}, \cdots, b_{q} ; x\right)
$$

Construction of telescopers

Four approaches:

1902--2012	1947×1998	1990--2010	2010--2016
Algebraic-Geometry Approach	Elimination-Based Approach	Gosper-Based Approach	Redution-Based Approach
- Picard 1902	- Fasenmyer 1947	- Zeilberger 1990	- BostanChenChyzakLi 2010
- Manin 1958	- Zeilberger 1990	- AlmkvistZeilberger 1990	- BoChChLiXin 2013
- Griffiths 1969	- Takayama 1992	- Chyzak 2000	- BoLairezSalvy 2013
ChKauersSinger 2012	ChyzakSalvy 1998	Koutsehan 2010	ChHuangKaLi 2015 - ChenKaKoutschan 2016

1990: Zeilberger's algorithm for computing telescopers for holonomic functions via non-commutative elimination in Weyl algebra:

A holonomic systems approach to special functions identities *

Construction of telescopers

Four approaches:

1902--2012	1947 - 1998	1990--2010	2010--2016
Algebraic-Geometry Approach	Elimination-Based Approach	Gosper-Based Approach	Redution-Based Approach
- Picard 1902	- Fasenmyer 1947	- Zeilberger 1990	- BostanChenChyzakLi 2010
- Manin 1958	- Zeilberger 1990	- AlmkvistZeilberger 1990	- BoChChLiXin 2013
- Griffiths 1969	- Takayama 1992	- Chyzak 2000	- BoLairezSalvy 2013
ChKauersSinger 2012	ChyzakSalvy 1998 \qquad	Koutsehan 2010	ChHuangKaLi 2015 - ChenKaKoutschan 2016

1990: Zeilberger's algorithm for computing telescopers for holonomic functions via non-commutative elimination in Weyl algebra:
$\left\{\begin{array}{l}P\left(x, y, D_{x}\right)(h)=0 \\ Q\left(x, y, D_{y}\right)(h)=0\end{array} \rightsquigarrow A\left(x, D_{x}, D_{y}\right)(h)=0 \rightsquigarrow A\left(x, D_{x}, 0\right)\right.$ is telescoper

Construction of telescopers

Four approaches:

1902--2012	1947×1998	1990--2010	2010--2016
Algebraic-Geometry Approach	Elimination-Based Approach	Gosper-Based Approach	Redution-Based Approach
- Picard 1902	- Fasenmyer 1947	- Zeillberger 1990	- BostanChenChyzakLi 2010
- Manin 1958	- Zeilberger 1990	- AlmkvistZeilberger 1990	- BoChChLiXin 2013
- Griffiths 1969	- Takayama 1992	- Chyzak 2000	- BoLairezSalvy 2013
ChKauersSinger 2012	ChyzakSalvy 1998 \qquad	Koutsehan 2010	ChHuangKaLi 2015 - ChenKaKoutschan 2016

1992: Takayama improved the non-commutative elimination in Weyl algebra by Groebner bases computation:

Construction of telescopers

Four approaches:

1902--2012	1947 - 1998	1990--2010	2010--2016
Algebraic-Geometry Approach	Elimination-Based Approach	Gosper-Based Approach	Redution-Based Approach
- Picard 1902	- Fasenmyer 1947	- Zeilberger 1990	- BostanChenChyzakLi 2010
- Manin 1958	- Zeilberger 1990	- AlmkvistZeilberger 1990	- BoChChLiXin 2013
- Griffiths 1969	- Takayama 1992	- Chyzak 2000	- BoLairezSalvy 2013
ChKauersSinger 2012	ChyzakSalvy 1998 \qquad	Koutsehan 2010	ChHuangKaLi 2015 - ChenKaKoutschan 2016

1998: Chyzak and Salvy applied non-commutative elimination in Ore algebra to identities proofs :

Construction of telescopers

Four approaches:

1902--2012	1947--1998	1990 - 2010	2010--2016
Algebraic-Geometry Approach	Elimination-Based Approach	Gosper-Based Approach	Redution-Based Approach
- Picard 1902	- Fasenmyer 1947	- Zeillberger 1990	- BostanChenChyzakLi 2010
- Manin 1958	- Zeilberger 1990	- AlmkvistZeilberger 1990	- BoChChLiXin 2013
- Griffiths 1969	- Takayama 1992	- Chyzak 2000	- BoLairezSalvy 2013
ChKauersSinger 2012	- ChyzakSalvy 1998	- Koutsehan 2010	ChHuangKaLi 2015 - ChenKaKoutschan 2016

> 1990: Based on Gosper's algorithm, Zeilberger developed an algorithm for computing telescoping for bivariate hypergeometric terms:

Construction of telescopers

Four approaches:

1902--2012	1947-1998	1990- - 2010	2010-- 2016
Algebraic-Geometry Approach	Elimination-Based Approach	Gosper-Based Approach	Redution-Based Approach
- Pieard 1902	- Fasenmyer 1947	- Zeilberger 1990	- BostanChenChyzakLi 2010
- Manin 1958	- Zeilberger 1990	- AlmkvistZeilberger 1990	- BoChChLiXin 2013
- Griffiths 1969	- Takayama 1992	- Chyzak 2000	- BoLairezSalvy 2013
ChKauersSinger 2012 	ChyzakSalvy 1998 \qquad	- Koutsehan 2010	ChHuangKaLi 2015 - ChenKaKoutschan 2016

1990: Almkvist and Zeilberger extends Zeilberger's algorithm to the hyperexponential case:

The Method of Differentiating under the Integral Sign

Construction of telescopers

Four approaches:

1902--2012	1947-1998	1990- - 2010	2010-- 2016
Algebraic-Geometry Approach	Elimination-Based Approach	Gosper-Based Approach	Redution-Based Approach
- Pieard 1902	- Fasenmyer 1947	- Zeilberger 1990	- BostanChenChyzakLi 2010
- Manin 1958	- Zeilberger 1990	- AlmkvistZeilberger 1990	- BoChChLiXin 2013
- Griffiths 1969	- Takayama 1992	- Chyzak 2000	- BoLairezSalvy 2013
ChKauersSinger 2012 	ChyzakSalvy 1998 \qquad	- Koutsehan 2010	ChHuangKaLi 2015 - ChenKaKoutschan 2016

2000: Chyzak extends Zeilberger's algorithm to the high-order case:

	DISCRETE Discrete Mathematics 217 (2000) 115-134 MATHEMATICS
ww.esevier.com/locate/disc	

An extension of Zeilberger's fast algorithm to
general holonomic functions ${ }^{\text {T}}$

Construction of telescopers

Four approaches:

1902--2012	1947-1998	1990 - 2010	2010--2016
Algebraic-Geometry Approach	Elimination-Based Approach	Gosper-Based Approach	Redution-Based Approach
- Picard 1902	- Fasenmyer 1947	- Zeilberger 1990	- BostanChenChyzakLi 2010
- Manin 1958	- Zeilberger 1990	- AlmkvistZeilberger 1990	- BoChChLiXin 2013
- Griffiths 1969	- Takayama 1992	- Chyzak 2000	- BoLairezSalvy 2013
ChKauersSinger 2012	ChyzakSalvy 1998 \qquad	- Koutsehan 2010	ChHuangKaLi 2015 - ChenKaKoutschan 2016

2010: Koutschan improved Chyzak's algorithm via advanced ansatz and applied to solve many conjectures in combinatorics:

Construction of telescopers

Four approaches:

1902--2012	1947-1998	1990--2010	$20110-2016$
Algebraic-Geometry Approach	Elimination-Based Approach	Gosper-Based Approach	Redution-Based Approach
- Picard 1902	- Fasenmyer 1947	- Zeilberger 1990	- BostanChenChyzakLi 2010
- Manin 1958	- Zeilberger 1990	- AlmkvistZeilberger 1990	- BoChChLiXin 2013
- Griffiths 1969	- Takayama 1992	- Chyzak 2000	- BoLairezSalvy 2013
ChKauersSinger 2012	ChyzakSalvy 1998 eses:*	- Koutsehan 2010	ChHuangKaLi 2015 - ChenKaKoutschan 2016

2010: Bostan et al. design a fast algorithm for creative telescoping for bivariate rational functions using classical Hermite reduction:

Complexity of Creative Telescoping for Bivariate Rational Functions*

Construction of telescopers

Four approaches:

1902--2012	1947-1998	1990--2010	$20110-2016$
Algebraic-Geometry Approach	Elimination-Based Approach	Gosper-Based Approach	Redution-Based Approach
- Picard 1902	- Fasenmyer 1947	- Zeillberger 1990	- BostanChenChyzakLi 2010
- Manin 1958	- Zeilberger 1990	- AlmkvistZeilberger 1990	- BoChChLiXin 2013
- Griffiths 1969	- Takayama 1992	- Chyzak 2000	- BoLairezSalvy 2013
ChKauersSinger 2012	ChyzakSalvy 1998 \qquad	- Koutsehan 2010	ChHuangKaLi 2015 - ChenKaKoutschan 2016

2010: Bostan et al. design a fast algorithm for creative telescoping for bivariate rational functions using classical Hermite reduction:

$$
f(x)=D_{x}(g)+\frac{p}{q}
$$

where $p, q \in \mathbb{F}[x]$ with q squarefree and $\operatorname{deg}_{x}(p)<\operatorname{deg}_{x}(q)$.

Construction of telescopers

Four approaches:

1902--2012	1947-1998	1990--2010	2010 - 2016
Algebraic-Geometry Approach	Elimination-Based Approach	Gosper-Based Approach	Redution-Based Approach
- Picard 1902	- Fasenmyer 1947	- Zeilberger 1990	- BostanChenChyzakLi 2010
- Manin 1958	- Zeilberger 1990	- AlmkvistZeilberger 1990	- BoChChLiXin 2013
- Griffiths 1969	- Takayama 1992	- Chyzak 2000	- BoLairezSalvy 2013
ChKauersSinger 2012	ChyzakSalvy 1998 \qquad	Koutsehan 2010 seaseses	ChHuangKaLi 2015 - ChenKaKoutschan 2016

2010: Bostan et al. design a fast algorithm for creative telescoping for bivariate rational functions using classical Hermite reduction:

$$
\int f(x) d x=\text { rational part }+ \text { logarithmic part }
$$

Construction of telescopers

Four approaches:

1902--2012	1947-1998	1990--2010	2010 - 2016
Algebraic-Geometry Approach	Elimination-Based Approach	Gosper-Based Approach	Redution-Based Approach
- Picard 1902	- Fasenmyer 1947	- Zeillberger 1990	- BostanChenChyzakLi 2010
- Manin 1958	- Zeilberger 1990	- AlmkvistZeilberger 1990	- BoChChLiXin 2013
- Griffiths 1969	- Takayama 1992	- Chyzak 2000	- BoLairezSalvy 2013
ChKauersSinger 2012	ChyzakSalvy 1998 \qquad	Koutsehan 2010	ChHuangKaLi 2015 - ChenKaKoutschan 2016

2013: Bostan et al. generalize the Hermite reduction to hyperexponential case and design a reduction-based telescoping algorithm:

Hermite Reduction and Creative Telescoping for Hyperexponential Functions*

Alin Bostan ${ }^{1}$, Shaoshi Chen ${ }^{2}$, Frédéric Chyzak ${ }^{1}$, Ziming Li ${ }^{3}$, Guoce Xin ${ }^{4}$

Construction of telescopers

Four approaches:

1902--2012	1947-1998	1990--2010	2010 - 2016
Algebraic-Geometry Approach	Elimination-Based Approach	Gosper-Based Approach	Redution-Based Approach
- Picard 1902	- Fasenmyer 1947	- Zeilberger 1990	- BostanChenChyzakLi 2010
- Manin 1958	- Zeilberger 1990	- AlmkvistZeilberger 1990	- BoChChLiXin 2013
- Griffiths 1969	- Takayama 1992	- Chyzak 2000	- BoLairezSalvy 2013
ChKauersSinger 2012	ChyzakSalvy 1998 \qquad	- Koutsehan 2010	ChHuangKaLi 2015 - ChenKaKoutschan 2016

2013: Bostan, Lairez and Salvy design a telescoping algorithm for multivariate rational function based on Dwork-Griffiths reduction:

Creative Telescoping for Rational Functions Using the Griffiths-Dwork Method'

Alin Bostan
Inria (France)
alin.bostan@inria.fr
pierre.lairez@inria.fr
bruno.salvy@inria.fr

Construction of telescopers

Four approaches:

1902--2012	1947-1998	1990--2010	$20110-2016$
Algebraic-Geometry Approach	Elimination-Based Approach	Gosper-Based Approach	Redution-Based Approach
- Picard 1902	- Fasenmyer 1947	- Zeillberger 1990	- BostanChenChyzakLi 2010
- Manin 1958	- Zeilberger 1990	- AlmkvistZeilberger 1990	- BoChChLiXin 2013
- Griffiths 1969	- Takayama 1992	- Chyzak 2000	- BoLairezSalvy 2013
ChKauersSinger 2012	ChyzakSalvy 1998 \qquad	- Koutsehan 2010	ChHuangKaLi 2015 - ChenKaKoutschan 2016

2015: Chen et al. design a telescoping algorithm for bivariate hypergeometric terms based on modified Abramov-Petkovsek reduction:

> A Modified Abramov-Petkovšek Reduction and Creative Telescoping for Hypergeometric Terms*

Shaoshi Chen ${ }^{1}$, Hui Huang ${ }^{1,2}$, Manuel Kauers ${ }^{2}$, Ziming Li ${ }^{1}$

Construction of telescopers

Four approaches:

1902--2012	1947-1998	1990--2010	$20110-2016$
Algebraic-Geometry Approach	Elimination-Based Approach	Gosper-Based Approach	Redution-Based Approach
- Picard 1902	- Fasenmyer 1947	- Zeillberger 1990	- BostanChenChyzakLi 2010
- Manin 1958	- Zeilberger 1990	- AlmkvistZeilberger 1990	- BoChChLiXin 2013
- Griffiths 1969	- Takayama 1992	- Chyzak 2000	- BoLairezSalvy 2013
ChKauersSinger 2012	ChyzakSalvy 1998 \qquad	- Koutsehan 2010	ChHuangKaLi 2015 - ChenKaKoutschan 2016

2016: Chen, Kauers and Koutschan design a telescoping algorithm for bivariate algebraic functions based on Trager's reduction and polynomial reduction:

Reduction-Based Creative Telescoping for
Algebraic Functions*

Construction of telescopers

Four approaches:

1902--2012	1947-1998	1990--2010	$20110-2016$
Algebraic-Geometry Approach	Elimination-Based Approach	Gosper-Based Approach	Redution-Based Approach
- Picard 1902	- Fasenmyer 1947	- Zeillberger 1990	- BostanChenChyzakLi 2010
- Manin 1958	- Zeilberger 1990	- AlmkvistZeilberger 1990	- BoChChLiXin 2013
- Griffiths 1969	- Takayama 1992	- Chyzak 2000	- BoLairezSalvy 2013
ChKauersSinger 2012	ChyzakSalvy 1998 \qquad	- Koutsehan 2010	ChHuangKaLi 2015 - ChenKaKoutschan 2016

2017: Chen, Hoeij, Kauers and Koutschan design a telescoping algorithm for fuchsian D-finite functions:

```
Reduction-based Creative Telescoping for Fuchsian D-finite Functions.
with Mark van Hoei,, Manuel Kauers, Christoph Koutschan: [PDF]
To appear in Journal of Symbolic Computation.
```


Gosper's algorithm

In 1978, Gosper solved the telescoping problem for hypergeometric terms.

Proc. Natl. Acad. Sct. USA
Vol. 75, No. 1, pp. 40-42, January 1978
Mathematics
Decision procedure for indefinite hypergeometric summation
(algorithm/binomial coefficient identities/closed form/symbolic computation/linear recurrences)
R. William Gosper, Jr.

Gosper's algorithm

In 1978, Gosper solved the telescoping problem for hypergeometric terms.

Proc. Natl. Acad. Sct. USA
Proc. Natl. Acad. Sct. USA
Vol. 75, No. 1, pp. 40-42, January 1978
Mathematics
Decision procedure for indefinite hypergeometric summation
(algorithm/binomial coefficient identities/closed form/symbolic computation/linear recurrences)
R. WILliam Gosper, Jr.

Input: A hypergeometric term $H(k)$ Output: A hypergeometric term $G(k)$ if

$$
H=\Delta_{k}(G)
$$

Gosper's algorithm

In 1978, Gosper solved the telescoping problem for hypergeometric terms.

Proc. Natl. Acad. Sct. USA
Proc. Natl. Acad. Sct. USA
Vol. 75, No. 1, pp. 40-42, January 1978
Mathematics

Decision procedure for indefinite hypergeometric summation
(algorithm/binomial coefficient identities/closed form/symbolic computation/linear recurrences)
R. William Gosper, Jr.

Input: A hypergeometric term $H(k)$ Output: A hypergeometric term $G(k)$ if

$$
H=\Delta_{k}(G)
$$

Example. $k!=\Delta_{k}$ (No solution!)

Gosper's algorithm

In 1978, Gosper solved the telescoping problem for hypergeometric terms.

Proc. Natl. Acad. Sct, USA
Proc. Natl. Acad. Sct. USA
Vol. 75, No. 1, pp. 40-42, January 1978
Mathematics

Decision procedure for indefinite hypergeometric summation
(algorithm/binomial coefficient identities/closed form/symbolic computation/linear recurrences)
R. William Gosper, Jr.

Input: A hypergeometric term $H(k)$ Output: A hypergeometric term $G(k)$ if

$$
H=\Delta_{k}(G)
$$

Example. $k \cdot k!=\Delta_{k}(k!)$

Gosper's algorithm

In 1978, Gosper solved the telescoping problem for hypergeometric terms.

Proc. Natl. Acad. Sct. USA
Prol. 75, No. 1, pp. 40-42, January 1978
Mathematics

Decision procedure for indefinite hypergeometric summation

(algorithm/binomial coefficient identities/closed form/symbolic computation/linear recurrences)
R. William Gosper, Jr.

Input: A hypergeometric term $H(k)$ Output: A hypergeometric term $G(k)$ if

$$
H=\Delta_{k}(G)
$$

Example. $(-1)^{k} \frac{n!}{2^{n}\binom{n}{k}}=\Delta_{k}\left(\frac{(k-n-1)(-1)^{k} n!}{(n+2) 2^{n}\binom{n}{k}}\right)$

Gosper's algorithm

In 1978, Gosper solved the telescoping problem for hypergeometric terms.

Proc. Natl. Acad. Sct. USA
Vol. 75, No. 1, pp. 40-42, January 1978
Mathematics

Decision procedure for indefinite hypergeometric summation

(algorithm/binomial coefficient identities/closed form/symbolic computation/linear recurrences)
R. William Gosper, Jr.

Input: A hypergeometric term $H(k)$ Output: A hypergeometric term $G(k)$ if

$$
H=\Delta_{k}(G)
$$

Example. $(-1)^{k} \frac{n!}{2^{n}\binom{n}{k}}=\Delta_{k}\left(\frac{(k-n-1)(-1)^{k} n!}{(n+2) 2^{n}\binom{n}{k}}\right)$

B. Gosper

Gosper's algorithm

Let $f=S_{k}(H) / H \in \mathbb{E}(k)$. Find a rational solution of

$$
f \cdot S_{k}(u(k))-u(k)=1 .
$$

1 Compute Gosper's form

$$
f=\frac{S_{k}(p)}{p} \cdot \frac{q}{r}
$$

where $p, q, r \in \mathbb{E}[k]$ and q, r satisfies

$$
\operatorname{gcd}(q(k), r(k+j))=1 \quad \text { for all } j \in \mathbb{N} .
$$

2 Find a polynomial solution of

$$
p=q \cdot S_{k}(v(k))-S_{k}^{-1}(r) \cdot v(y)
$$

3 If $v \in \mathbb{E}[k]$ exists, return $u:=S_{k}^{-1}(r) v / p$.

Zeilberger's algorithm

Input: A proper hypergeometric term $H(n, k)$
Output: A telescoper $L \in \mathbb{F}\left[n, S_{n}\right]$ s.t.

$$
L\left(n, S_{n}\right)(H)=\Delta_{k}(G)
$$

Zeilberger's algorithm

Input: A proper hypergeometric term $H(n, k)$
Output: A telescoper $L \in \mathbb{F}\left[n, S_{n}\right]$ s.t.

$$
L\left(n, S_{n}\right)(H)=\Delta_{k}(G)
$$

- Pick some $r \in \mathbb{N}$ and set $L_{r}=\sum_{i=0}^{r} c_{i} S_{n}^{i}$

Zeilberger's algorithm

Input: A proper hypergeometric term $H(n, k)$ Output: A telescoper $L \in \mathbb{F}\left[n, S_{n}\right]$ s.t.

$$
L\left(n, S_{n}\right)(H)=\Delta_{k}(G)
$$

- Pick some $r \in \mathbb{N}$ and set $L_{r}=\sum_{i=0}^{r} c_{i} S_{n}^{i}$
- Consider the hypergeometric term

$$
L_{r}(H):=\sum_{i=0}^{r} c_{r} H(n+i, k)
$$

Zeilberger's algorithm

Input: A proper hypergeometric term $H(n, k)$
Output: A telescoper $L \in \mathbb{F}\left[n, S_{n}\right]$ s.t.

$$
L\left(n, S_{n}\right)(H)=\Delta_{k}(G)
$$

- Pick some $r \in \mathbb{N}$ and set $L_{r}=\sum_{i=0}^{r} c_{i} S_{n}^{i}$
- Consider the hypergeometric term

$$
L_{r}(H):=\sum_{i=0}^{r} c_{r} H(n+i, k)
$$

- Call Gosper's algorithm on $L_{r}(H)$ to check whether $\exists c_{0}, \ldots, c_{r} \in \mathbb{F}[n]$ s.t.

$$
L_{r}(H)=\Delta_{k}\left(G_{r}\right)
$$

Zeilberger's algorithm

Input: A proper hypergeometric term $H(n, k)$
Output: A telescoper $L \in \mathbb{F}\left[n, S_{n}\right]$ s.t.

$$
L\left(n, S_{n}\right)(H)=\Delta_{k}(G)
$$

- Pick some $r \in \mathbb{N}$ and set $L_{r}=\sum_{i=0}^{r} c_{i} S_{n}^{i}$
- Consider the hypergeometric term

$$
L_{r}(H):=\sum_{i=0}^{r} c_{r} H(n+i, k)
$$

- Call Gosper's algorithm on $L_{r}(H)$ to check whether $\exists c_{0}, \ldots, c_{r} \in \mathbb{F}[n]$ s.t.

$$
L_{r}(H)=\Delta_{k}\left(G_{r}\right)
$$

- If all c_{i} 's are zero, increase r and try again

Zeilberger's algorithm

Input: A proper hypergeometric term $H(n, k)$ Output: A telescoper $L \in \mathbb{F}\left[n, S_{n}\right]$ s.t.

$$
L\left(n, S_{n}\right)(H)=\Delta_{k}(G)
$$

- Pick some $r \in \mathbb{N}$ and set $L_{r}=\sum_{i=0}^{r} c_{i} S_{n}^{i}$
- Consider the hypergeometric term

$$
L_{r}(H):=\sum_{i=0}^{r} c_{r} H(n+i, k)
$$

- Call Gosper's algorithm on $L_{r}(H)$ to check whether $\exists c_{0}, \ldots, c_{r} \in \mathbb{F}[n]$ s.t.

$$
L_{r}(H)=\Delta_{k}\left(G_{r}\right)
$$

- If all c_{i} 's are zero, increase r and try again

Telescoper

Example.

$$
H=\frac{k^{10}}{n+k}
$$

The telescoper of minimal order L for H is

$$
L=n^{10} S_{n}-(n+1)^{10}
$$

Telescoper

Example.

$$
H=\frac{k^{10}}{n+k}
$$

The telescoper of minimal order L for H is

$$
L=n^{10} S_{n}-(n+1)^{10}
$$

Guess the certificate of L ?

Certificate

$$
\begin{aligned}
& \frac{1}{2520(n+k)}\left(2100 k^{8} n^{2}-84 n^{3}-68460 k^{6} n^{4}-840 n^{4}-3720 n^{5}+140700 k^{4} n^{6}-9480 n^{6}-\right. \\
& 15024 n^{7}-10500 k^{2} n^{8}-14808 n^{8}-8400 n^{9}-79590 n^{2} k^{7}+284235 n^{4} k^{5}-143640 n^{6} k^{3}+210 n k^{8}- \\
& 26250 n^{3} k^{6}+133035 n^{5} k^{4}-35700 n^{7} k^{2}+252 k^{11}+18900 k^{9} n-213780 k^{7} n^{3}+368340 k^{5} n^{5}- \\
& 110460 k^{3} n^{7}-2100 n^{10}+1890 k^{9}-1764 k^{7}+1260 k^{5}-378 k^{3}-1260 k^{10}-294 n k^{2}+700 n k^{4}- \\
& 588 n k^{6}+63504 k^{11} n^{5}+52920 k^{11} n^{4}+30240 k^{11} n^{3}+11340 k^{11} n^{2}-2940 n^{2} k^{2}-13080 n^{3} k^{2}- \\
& 33780 n^{4} k^{2}-55116 n^{5} k^{2}-57348 n^{6} k^{2}-17360 k^{3} n^{2}-48860 k^{3} n^{3}-94920 k^{3} n^{4}- \\
& 135156 k^{3} n^{5}-55440 k^{3} n^{8}-13860 k^{3} n^{9}-3780 k^{3} n+7000 n^{2} k^{4}+31185 n^{3} k^{4}+80850 n^{4} k^{4}+ \\
& 90090 n^{7} k^{4}+27720 n^{8} k^{4}+57141 k^{5} n^{2}+155610 k^{5} n^{3}+347886 k^{5} n^{6}+238392 k^{5} n^{7}+ \\
& 110880 k^{5} n^{8}+27720 k^{5} n^{9}+12600 k^{5} n-5880 n^{2} k^{6}-114114 n^{5} k^{6}-123816 n^{6} k^{6}- \\
& 83160 n^{7} k^{6}-27720 n^{8} k^{6}-379830 k^{7} n^{4}-469128 k^{7} n^{5}-411840 k^{7} n^{6}-257400 k^{7} n^{7}- \\
& 110880 k^{7} n^{8}-27720 k^{7} n^{9}-17640 k^{7} n+9405 n^{3} k^{8}+24750 n^{4} k^{8}+42075 n^{5} k^{8}+47520 n^{6} k^{8}+ \\
& 34650 n^{7} k^{8}+13860 n^{8} k^{8}+85085 k^{9} n^{2}+398475 k^{9} n^{4}+23100 k^{9} n^{9}+480480 k^{9} n^{5}+ \\
& 92400 k^{9} n^{8}+235620 k^{9} n^{7}+227150 k^{9} n^{3}+404250 k^{9} n^{6}-12628 k^{10} n-13860 k^{10} n^{9}- \\
& 152460 k^{10} n^{3}-60060 k^{10} n^{8}-267960 k^{10} n^{4}-157080 k^{10} n^{7}-271656 k^{10} n^{6}-56980 k^{10} n^{2}- \\
& \left.323400 k^{10} n^{5}+2520 k^{11} n+2520 k^{11} n^{9}+11340 k^{11} n^{8}+30240 k^{11} n^{7}+52920 k^{11} n^{6}\right)
\end{aligned}
$$

Certificate

$\frac{1}{2520(n+k)}\left(2100 k^{8} n^{2}-84 n^{3}-68460 k^{6} n^{4}-840 n^{4}-3720 n^{5}+140700 k^{4} n^{6}-9480 n^{6}-\right.$
$15024 n^{7}-10500 k^{2} n^{8}-14808 n^{8}-8400 n^{9}-79590 n^{2} k^{7}+284235 n^{4} k^{5}-143640 n^{6} k^{3}+210 n k^{8}-$ $26250 n^{3} k^{6}+133035 n^{5} k^{4}-35700 n^{7} k^{2}+252 k^{11}+18900 k^{9} n-213780 k^{7} n^{3}+368340 k^{5} n^{5}-$ $110460 k^{3} n^{7}-2100 n^{10}+1890 k^{9}-1764 k^{7}+1260 k^{5}-378 k^{3}-1260 k^{10}-294 n k^{2}+700 n k^{4}-$ $588 n k^{6}+63$ 人 k $^{11} y^{5} n^{5}$ oft $^{52920} k^{11} n^{4}+30240 k^{11} n^{3}+11340 k^{11} n^{2}-2940 n^{2} k^{2}-13080 n^{3} k^{2}-$
 $135156 k^{3} n^{5}-55440 k^{3} n^{8}-13860 k^{3} n^{\prime}$ if Cater \mathbf{S}^{3} ar $7000 n^{2} k^{4}+31185 n^{3} k^{4}+80850 n^{4} k^{4}+$
 $110880 k^{5} n^{8}+27720 k^{5} n^{9}+12600 k^{5} n-5880 n^{2} k^{6}-114114 n^{5} k^{6}-1238$ edo $n^{6} k^{6}-$ $83160 n^{7} k^{6}-27720 n^{8} k^{6}-379830 k^{7} n^{4}-469128 k^{7} n^{5}-411840 k^{7} n^{6}-257400 k^{7} n^{7}-$ $110880 k^{7} n^{8}-27720 k^{7} n^{9}-17640 k^{7} n+9405 n^{3} k^{8}+24750 n^{4} k^{8}+42075 n^{5} k^{8}+47520 n^{6} k^{8}+$ $34650 n^{7} k^{8}+13860 n^{8} k^{8}+85085 k^{9} n^{2}+398475 k^{9} n^{4}+23100 k^{9} n^{9}+480480 k^{9} n^{5}+$ $92400 k^{9} n^{8}+235620 k^{9} n^{7}+227150 k^{9} n^{3}+404250 k^{9} n^{6}-12628 k^{10} n-13860 k^{10} n^{9}-$ $152460 k^{10} n^{3}-60060 k^{10} n^{8}-267960 k^{10} n^{4}-157080 k^{10} n^{7}-271656 k^{10} n^{6}-56980 k^{10} n^{2}-$ $\left.323400 k^{10} n^{5}+2520 k^{11} n+2520 k^{11} n^{9}+11340 k^{11} n^{8}+30240 k^{11} n^{7}+52920 k^{11} n^{6}\right)$

Telescoping without certificates

Problem. Can we compute the telescopers without also computing the certifiates?

Telescoping without certificates

Problem. Can we compute the telescopers without also computing the certifiates?

Algorithms: $L\left(x, \partial_{x}\right)(f)=\partial_{y_{1}}\left(g_{1}\right)+\cdots+\partial_{y_{m}}\left(g_{m}\right)$

Telescoping without certificates

Problem. Can we compute the telescopers without also computing the certifiates?

Algorithms: $L\left(x, \partial_{x}\right)(f)=\partial_{y_{1}}\left(g_{1}\right)+\cdots+\partial_{y_{m}}\left(g_{m}\right)$

- Bivariate rational case: Hermite reduction

Telescoping without certificates

Problem. Can we compute the telescopers without also computing the certifiates?

Algorithms: $L\left(x, \partial_{x}\right)(f)=\partial_{y_{1}}\left(g_{1}\right)+\cdots+\partial_{y_{m}}\left(g_{m}\right)$

- Bivariate rational case: Hermite reduction
- Multivariate rational case: Dwork-Griffiths reduction

Telescoping without certificates

Problem. Can we compute the telescopers without also computing the certifiates?

Algorithms: $L\left(x, \partial_{x}\right)(f)=\partial_{y_{1}}\left(g_{1}\right)+\cdots+\partial_{y_{m}}\left(g_{m}\right)$

- Bivariate rational case: Hermite reduction
- Multivariate rational case: Dwork-Griffiths reduction
- Bivariate hyperexponential case:

Hermite reduction + polynomial reduction

Telescoping without certificates

Problem. Can we compute the telescopers without also computing the certifiates?

Algorithms: $L\left(x, \partial_{x}\right)(f)=\partial_{y_{1}}\left(g_{1}\right)+\cdots+\partial_{y_{m}}\left(g_{m}\right)$

- Bivariate rational case: Hermite reduction
- Multivariate rational case: Dwork-Griffiths reduction
- Bivariate hyperexponential case:

Hermite reduction + polynomial reduction

- Bivariate hypergeometric case:

Abramov-Petkovsek reduction + polynomial reduction

Telescoping without certificates

Problem. Can we compute the telescopers without also computing the certifiates?

Algorithms: $L\left(x, \partial_{x}\right)(f)=\partial_{y_{1}}\left(g_{1}\right)+\cdots+\partial_{y_{m}}\left(g_{m}\right)$

- Bivariate rational case: Hermite reduction
- Multivariate rational case: Dwork-Griffiths reduction
- Bivariate hyperexponential case:

Hermite reduction + polynomial reduction

- Bivariate hypergeometric case:

Abramov-Petkovsek reduction + polynomial reduction

- Bivariate algebraic case:

Trager's reduction + polynomial reduction

Softwares

Softwares

- MAPLE:

1 EKHAD by Zeilberger
2 DEtools:-Zeilberger by Le
3 SumTools [Hypergeometric]:-Zeilberger by Le
4 Mgfun:-creative_telescoping by Chyzak
5 HermiteCT:-Telescoper by S.C.
$6 \ldots$

Softwares

- MAPLE:

1 EKHAD by Zeilberger
2 DEtools:-Zeilberger by Le
3 SumTools[Hypergeometric]:-Zeilberger by Le
4 Mgfun:-creative_telescoping by Chyzak
5 HermiteCT:-Telescoper by S.C.
6 ...

- MATHEMATICA:

1 fastZeil: Zb by Paule and Schorn
2 HolonomicFunctions: CreativeTelescoping by Koutschan

Softwares

- MAPLE:

1 EKHAD by Zeilberger
2 DEtools:-Zeilberger by Le
3 SumTools[Hypergeometric]:-Zeilberger by Le
4 Mgfun:-creative_telescoping by Chyzak
5 HermiteCT:-Telescoper by S.C.
6 ...

- MATHEMATICA:

1 fastZeil: Zb by Paule and Schorn
2 HolonomicFunctions: CreativeTelescoping by Koutschan

- Maxima: Zeilberger by Fabrizio Caruso
- Reduce: zeilberg by Wolfram Koepf
- Kan: sm1 by Nobuki Takayama
- . .

Summary

Summary

- Existence problem of telescopers

Summary

- Existence problem of telescopers
- Construction problem of telescopers

Summary

- Existence problem of telescopers
- Construction problem of telescopers
- Open Problem: Bivariate Extension of Gosper's Algorithm Given hypergeometric $F(n, k)$, find hypergeometric $G(n, k)$ and $H(n, k)$ s.t.

$$
F=\Delta_{n}(G)+\Delta_{k}(H)
$$

Summary

- Existence problem of telescopers
- Construction problem of telescopers
- Open Problem: Bivariate Extension of Gosper's Algorithm Given hypergeometric $F(n, k)$, find hypergeometric $G(n, k)$ and $H(n, k)$ s.t.

$$
F=\Delta_{n}(G)+\Delta_{k}(H)
$$

Thank you!

[^0]: An algorithmic proof theory for hypergeometric (ordinary and " q ") multisum/integral identities

 Herbert S. Wilf * and Doron Zeilberger **
 Department of Mathematics, University of Pennsyivania, Philadelphia, PA 19104, USA
 Department of Mathematics, Temple University, Philadelphia, PA 19122, USA

