Conservation theorems on semi-classical arithmetic

Makoto Fujiwara (joint work with Taishi Kurahashi)

JSPS Research Fellow (PD), Meiji University

New Frontiers in Proofs and Computation, Online (virtual alternative of Hangzhou), 15 September 2021

This work is supported by JSPS KAKENHI Grant Numbers JP19K14586, 19J01239 and JP20K14354.

Introduction	Friedman's method	lshihara's method	Optimality
●000	00000000	0000000000	000
Abstract			

Fact.

PA is Π_2 -conservative over HA.

There are several ways to prove this fact:

- The negative translation + the Dialectica interpretation (essentially, Gödel 1958);
- The negative translation + the Friedman A-translation (H. Friedman 1978);
- 3 A generalized Gödel-Gentzen negative translation with substitution (Ishihara 2000 and 2012).

In this talk, we generalize this result in the context of semi-classical arithmetic (arithmetic in-between PA and HA), by extending the second and third methods.

Framework

- We work with a standard formulation of HA, which has function symbols for all primitive recursive functions.
- We work in the language containing all the logical constants ∀, ∃, →, ∧, ∨, ⊥. Note ¬φ :≡ φ →⊥.
- $\blacksquare \mathsf{PA} := \mathsf{HA} + \mathrm{LEM}.$

The classes Σ_k and Π_k of formulas of HA are defines as follows:

- Σ_0 , as well as Π_0 , is the class of quantifier-free formulas;
- Π_{k+1} is the class of formulas of form $Q_1 \overline{x_1} \cdots Q_{k+1} \overline{x_{k+1}} \varphi_{qf}$;
- Σ_{k+1} is the class of formulas of form $Q'_1 \overline{x_1} \cdots Q'_{k+1} \overline{x_{k+1}} \varphi_{qf}$;

where Q_i represents \forall for odd *i* and \exists for even *i* and Q'_i represents \exists for odd *i* and \forall for even *i*. A formula φ is of **prenex normal** form if $\varphi \in \Sigma_k \cup \Pi_k$ for some *k*.

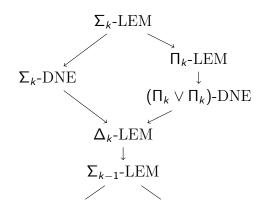
Definition

■
$$\Gamma$$
-LEM : $\forall x (\varphi(x) \lor \neg \varphi(x))$ where $\varphi(x) \in \Gamma(x)$.

• Γ -DNE : $\forall x (\neg \neg \varphi(x) \rightarrow \varphi(x))$ where $\varphi(x) \in \Gamma(x)$.

Fact. Σ_k -LEM $\longrightarrow \Sigma_k$ -DNE $\longrightarrow \Sigma_{k-1}$ -LEM.

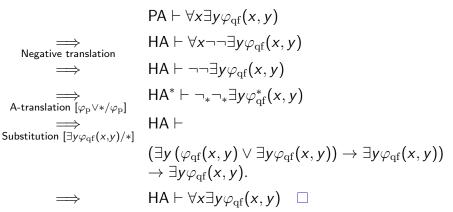
Introduction
occoFriedman's method
occooccoIshihara's method
occooccoccoOptimality
occArithmetical Hierarchy of Logical Principles
(Akama-Berardi-Hayashi-Kohlenbach 2004)



For a logical principle P, HA + P forms "semi-classical" arithmetic.

Friedman's	s Method		
0000	●0000000	Ishihara's method	Optimality 000

Let HA^* denote HA in the extended language where a predicate symbol * of arity 0, which behaves as a "place holder", is added.



Ishihara's method

Substitution Lemma

Lemma

Let X be a set of HA-sentences and φ be a HA*-formula. If HA* + X $\vdash \varphi$, then HA + X $\vdash \varphi[\psi/*]$ for any HA-formula ψ such that the free variables of ψ are not bounded in φ , where $\varphi[\psi/*]$ is the HA-formula obtained from φ by replacing all the occurrences of * in φ with ψ .

Gentzen's negative translation

Definition (cf. Troelstra 1973)

For each formula φ , its negative translation φ^N is defined inductively be the following clauses:

• For φ_{p} prime such that $\varphi_{p} \not\equiv \bot$, $(\varphi_{p})^{N} :\equiv \neg \neg \varphi_{p}$; • $\bot^{N} :\equiv \bot$; • $(\varphi_{1} \circ \varphi_{2})^{N} :\equiv \varphi_{1}^{N} \circ \varphi_{2}^{N}$ for $\circ \in \{\land, \rightarrow\}$; • $(\varphi_{1} \lor \varphi_{2})^{N} :\equiv \neg \neg (\varphi_{1}^{N} \lor \varphi_{2}^{N})$; • $(\forall x \varphi)^{N} :\equiv \forall x \varphi^{N}$; • $(\exists x \varphi)^{N} :\equiv \neg \neg \exists x \varphi^{N}$.

Remark. By induction on the structure of formulas, one can show $FV(\varphi) = FV(\varphi^N)$ for all formulas φ .

lshihara's method 00000000000

Proposition

For any HA-formula φ , if PA $\vdash \varphi$, then HA $\vdash \varphi^N$.

Proof. By induction on the length of the derivations.

lshihara's method 00000000000

Proposition

For any HA-formula φ , if PA $\vdash \varphi$, then HA $\vdash \varphi^N$.

Proof. By induction on the length of the derivations.

Lemma

1 For any HA-formula $\varphi \in \Sigma_k$, HA + Σ_k -DNE $\vdash \varphi^N \leftrightarrow \varphi$.

2 For any HA-formula
$$\varphi \in \Pi_k$$
,
HA + Σ_{k-1} -DNE $\vdash \varphi^N \leftrightarrow \varphi$.

Proof. By simultaneous induction on *k*.

lshihara's method 00000000000

Proposition

For any HA-formula φ , if PA $\vdash \varphi$, then HA $\vdash \varphi^N$.

Proof. By induction on the length of the derivations.

Lemma

1 For any HA-formula $\varphi \in \Sigma_k$, HA + Σ_k -DNE $\vdash \varphi^N \leftrightarrow \varphi$.

2 For any HA-formula
$$\varphi \in \Pi_k$$
,
HA + Σ_{k-1} -DNE $\vdash \varphi^N \leftrightarrow \varphi$.

Proof. By simultaneous induction on *k*.

By the second clause of the above lemma, if $\mathsf{PA} \vdash \forall x \exists y \varphi(x, y)$ where $\varphi(x, y) \in \Pi_k$, then $\mathsf{HA} + \Sigma_{k-1}$ -LEM $\vdash \forall x \neg \neg \exists y \varphi(x, y)$.

Ishihara's method

The Friedman A-translation

Definition

For a HA-formula φ , we define φ^* as a formula obtained from φ by replacing all the prime formulas φ_p in φ with $\varphi_p \lor *$. In particular, $\bot^* :\equiv (\bot \lor *)$, which is equivalent to * over HA^{*}. In what follows, $\neg_* \varphi$ denotes $\varphi \to *$.

Remark. By induction on the structure of formulas, one can show $FV(\varphi) = FV(\varphi^*)$ for all HA-formulas φ .

A Key Lemma for our Relativization

In what follows, let $HA^* + \Sigma_k\text{-}\mathrm{LEM}$ denote HA^* augmented with $\Sigma_k\text{-}\mathrm{LEM}$ for "HA-formulas".

Lemma

1 For any HA-formula $\varphi \in \Sigma_k$, HA* + Σ_{k-1} -LEM $\vdash \varphi^* \leftrightarrow \varphi \lor *$.

2 For any HA-formula
$$\varphi \in \Pi_k$$
,
HA* + Σ_k -LEM $\vdash \varphi^* \leftrightarrow \varphi \lor *$

Proof. By simultaneous induction on *k*.

A Relativized Soundness of the A-translation

Theorem

For any HA-formula φ , if HA + Σ_k -LEM $\vdash \varphi$, then HA* + Σ_k -LEM $\vdash \varphi^*$.

Proof. It suffices to show $HA^* + \Sigma_k$ -LEM $\vdash \varphi^*$ for $\varphi \in \Sigma_k$. Fix $\varphi :\equiv \exists x \varphi_1 \lor \neg \exists x \varphi_1$ with $\varphi_1 \in \Pi_{k-1}$. Since φ^* is (equivalent to) $\exists x (\varphi_1^*) \lor \neg_* \exists x (\varphi_1^*)$, by the previous lemma, $HA^* + \Sigma_{k-1}$ -LEM proves

$$\exists x (\varphi_1 \lor *) \lor \neg_* \exists x (\varphi_1 \lor *),$$

which is equivalent to

$$\exists x (\varphi_1 \lor *) \lor \neg_* \exists x \varphi_1,$$

which is derived from $\exists x \varphi_1 \lor \neg \exists x \varphi_1$ over HA^{*}. Thus HA^{*} + Σ_k -LEM proves φ^* .

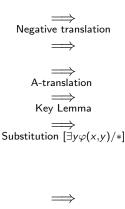
Ishihara's method

Relativizing Friedman's Proof

Theorem

PA is Π_{k+2} -conservative over HA + Σ_k -LEM.

Proof.



 $\mathsf{PA} \vdash \forall x \exists y \varphi(x, y) \text{ where } \varphi(x, y) \in \Pi_k$ $\mathsf{HA} + \Sigma_{k-1} - \mathrm{LEM} \vdash \forall x \neg \neg \exists y \varphi(x, y)$ $\mathsf{HA} + \Sigma_{k-1} \text{-LEM} \vdash \neg \neg \exists y \varphi(x, y)$ $\mathsf{HA}^* + \Sigma_{k-1} \text{-LEM} \vdash \neg_* \neg_* \exists y \varphi^*(x, y)$ $\mathsf{HA}^* + \Sigma_k \text{-LEM} \vdash \neg_* \neg_* \exists y (\varphi(x, y) \lor *)$ $HA + \Sigma_{k}$ -LEM \vdash $(\exists y (\varphi(x, y) \lor \exists y \varphi(x, y)) \to \exists y \varphi(x, y))$ $\rightarrow \exists y \varphi(x, y).$ $\mathsf{HA} + \Sigma_k \text{-} \mathrm{LEM} \vdash \forall x \exists y \varphi(x, y)$

Ishihara's	method		
Introduction	Friedman's method	lshihara's method	Optimality
0000	0000000	●0000000000	000

- Ishihara 2000 defined classes $Q, \mathcal{R}, \mathcal{J}, \mathcal{K}$ of formulas of IQC, and by using the generalized negative translation and the substitution lemma, showed that if $\varphi \in \mathcal{K}$ and Γ is a set of formulas closed under \$, then $\Gamma \vdash_c \varphi \Rightarrow \Gamma \vdash_i \varphi$.
- Since Π₂ ⊆ K, applying the result in the language of arithmetic, one can obtain the fact that PA is Π₂-conservative over HA (Ishihara 2012).
- In what follows, by extending Ishihara's arguments in the context of semi-classical arithmetic, we show a relativized conservation theorem.

The Generalized Negative Translation

Definition (Ishihara 2000)

Let $\neg_{\$}\varphi$ denote $\varphi \rightarrow \$$. For each formula φ , its \$-negative translation $\varphi^{\$}$ is defined inductively be the following clauses: ■ For φ_{p} prime such that $\varphi_{p} \not\equiv \bot$, $(\varphi_{p})^{\$} :\equiv \neg_{\$} \neg_{\$} \varphi_{p}$; ■ $\bot^{\$} :\equiv \$$; ■ $(\varphi_{1} \circ \varphi_{2})^{\$} :\equiv \varphi_{1}^{\$} \circ \varphi_{2}^{\$}$ for $\circ \in \{\land, \rightarrow\}$; ■ $(\varphi_{1} \lor \varphi_{2})^{\$} :\equiv \neg_{\$} \neg_{\$} (\varphi_{1}^{\$} \lor \varphi_{2}^{\$})$; ■ $(\forall x \varphi)^{\$} :\equiv \forall x \varphi^{\$}$; ■ $(\exists x \varphi)^{\$} :\equiv \neg_{\$} \neg_{\$} \exists x \varphi^{\$}$.

Remark. $\vdash_i (\varphi^G)^* \leftrightarrow \varphi^{\$}[*/\$]$ since $\vdash_i (\bot \lor *) \leftrightarrow *$. In particular, $\varphi^{\$}[\bot/\$]$ is Gentzen's negative translation φ^N of φ .

Introduction	Friedman's method	lshihara's method	Optimality
0000	00000000	oo€oooooooo	000

Proposition

- **I** For any HA-formula φ , HA^{\$} $\vdash \neg_{\$}\neg_{\$}\varphi^{\$} \leftrightarrow \varphi^{\$}$;
- **2** For any HA-formula φ , if PA $\vdash \varphi$, then HA^{\$} $\vdash \varphi$ ^{\$}.

Proof. Same as for Gentzen's negative translation.

		2000	
0000	0000000	000000000	000
Introduction	Friedman's method	Ishihara's method	Optimality

What is done in Ishihara 2000

Definition 6. We define simultaneously classes \mathcal{Q} , \mathcal{R} and \mathcal{J} of formulas as follows. Let P range over prime formulas distinct from \perp , Q and Q' over \mathcal{Q} , R and R' over \mathcal{R} , and J and J' over \mathcal{J} , respectively. Then \mathcal{Q} , \mathcal{R} and \mathcal{J} are simultaneously inductively generated by the clauses

- 1. \bot , P, Q \land Q', Q \lor Q', $\forall xQ$, $\exists xQ$, $J \rightarrow Q \in \mathcal{Q}$;
- 2. \bot , $R \land R'$, $R \lor R'$, $\forall xR$, $J \rightarrow R \in \mathcal{R}$;
- 3. \bot , P, J \land J', J \lor J', $\exists x J, R \rightarrow J \in \mathcal{J}$.

Proposition 7.

- 1. If A is in \mathcal{Q} , then $\vdash_i A \to A^{\$}$.
- 2. If A is in \mathcal{R} , then $\vdash_i \neg_{\$} \neg A \rightarrow A^{\$}$.
- 3. If A is in \mathcal{J} , then $\vdash_{i} A^{\$} \rightarrow \neg_{\$} \neg_{\$} A$.

Source: H. Ishihara, A note on the Gödel-Gentzen translation, Mathematical Logic Quarterly, 46(1), p. 136, 2000.

Introduction	Friedman's method	Ishihara's method	Optimality
		000000000	

To extend these arguments in the context of semi-classical arithmetic, we first define relativized classes \mathcal{R}_k and \mathcal{J}_k as follows:

Definition

Define $\mathcal{R}_0 := \mathcal{J}_0 := \Sigma_0 (= \Pi_0)$. For each k, we define simultaneously classes \mathcal{R}_{k+1} and \mathcal{J}_{k+1} as follows. Let F range over formulas in Σ_k , F' over Π_k , R and R' over those in \mathcal{R}_{k+1} , and J and J' over those in \mathcal{J}_{k+1} . Then \mathcal{R}_{k+1} and \mathcal{J}_{k+1} are inductively generated by the clauses

 $I F, R \land R', R \lor R', \forall xR, J \to R \in \mathcal{R}_{k+1};$

 $2 F', J \land J', J \lor J', \exists x J, R \to J \in \mathcal{J}_{k+1}.$

Introduction	Friedman's method	lshihara's method	Optimality
0000	00000000	00000€00000	000
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$_{\mathrm{f}}\leftrightarrow arphi_{\mathrm{qf}}\vee$ \$.		

Proof. By induction on the structure of quantifier-free formulas of HA.

0000	0000000	00000000000	000
Lemma			
$HA^{\$}\vdash \varphi^{\$}_{\mathrm{qf}}$	$\leftrightarrow \varphi_{\rm qf} \lor \$.$		
Proof. By	induction on the stru	cture of quantifier-free	2
formulas of	FHA.		

Lemma

Proof. By simultaneous induction on *k*.

0000	00000000	00000000000	000
Lemma			
$HA^{\$} \vdash \varphi^{\$}_{\mathrm{qf}}$	$\leftrightarrow \varphi_{\rm qf} \lor \$.$		
Proof. By formulas o		ucture of quantifier-free	·

Ishihara's method

Lemma

Proof. By simultaneous induction on *k*.

Lemma

Introd	

Define $Q_0 := \Sigma_0 (= \Pi_0)$. For each k, we define a class Q_{k+1} as follows. Let P range over prime formulas, Q and Q' over those in Q_{k+1} , and J over those in \mathcal{J}_{k+1} . Then Q_{k+1} is inductively generated by the clause

$$P, Q \land Q', Q \lor Q', \forall xQ, \exists xQ, J \rightarrow Q \in \mathcal{Q}_{k+1}.$$

Lemma

Let k be a natural number and φ be a HA-formula. If $\varphi \in \mathcal{Q}_{k+1}$, then $HA^{\$} + \Sigma_k$ -LEM $\vdash \varphi \rightarrow \varphi^{\$}$.

For each k, we define a class \mathcal{V}_k as follows. Let J range over formulas in \mathcal{J}_k , V and V' over those in \mathcal{V}_k . Then \mathcal{V}_k is inductively generated by the clause

 $J, V \wedge V', \forall x V \in \mathcal{V}_k.$

Theorem

For any HA-formulas $\varphi \in \mathcal{V}_{k+1}$ and $\psi \in \mathcal{Q}_{k+1}$, if $\mathsf{PA} \vdash \psi \rightarrow \varphi$, then $\mathsf{HA} + \Sigma_k \text{-} \mathrm{LEM} \vdash \psi \rightarrow \varphi$.

For each k, we define a class \mathcal{V}_k as follows. Let J range over formulas in \mathcal{J}_k , V and V' over those in \mathcal{V}_k . Then \mathcal{V}_k is inductively generated by the clause

 $J, V \wedge V', \forall x V \in \mathcal{V}_k.$

Theorem

For any HA-formulas $\varphi \in \mathcal{V}_{k+1}$ and $\psi \in \mathcal{Q}_{k+1}$, if $\mathsf{PA} \vdash \psi \rightarrow \varphi$, then $\mathsf{HA} + \Sigma_k \text{-} \mathrm{LEM} \vdash \psi \rightarrow \varphi$.

Corollary

For any formulas $\varphi \in \Pi_{k+2}$ and ψ of prenex normal form, if $PA \vdash \psi \rightarrow \varphi$, then $HA + \Sigma_k$ -LEM $\vdash \psi \rightarrow \varphi$.

Ishihara's method Optimality Friedman's method 000000000000

Proof of Theorem (1/2)

It suffices to show the assertion for $\varphi \in \mathcal{V}_{k+1}$ and $\psi \in \mathcal{Q}_{k+1}$ such that the free variables of φ is not bounded in ψ . We show this by induction on the structure of formulas in \mathcal{V}_{k+1} .

Case of $\varphi \in \mathcal{J}_{k+1}$: Fix $\psi \in \mathcal{Q}_{k+1}$ s.t. the free variables of φ is not bounded in ψ . Suppose $\mathsf{PA} \vdash \psi \rightarrow \varphi$. Applying the \$-negative translation, we have $HA^{\$} \vdash \psi^{\$} \rightarrow \varphi^{\$}$. Since $\varphi \in \mathcal{J}_{k+1}$ and $\psi \in \mathcal{Q}_{k+1}$, we have

$$\mathsf{HA}^{\$} + \Sigma_k \text{-LEM} \vdash \psi \to \neg_{\$} \neg_{\$} \varphi.$$

By the substitution lemma, we have that $HA + \Sigma_k$ -LEM proves $\psi \to ((\varphi \to \varphi) \to \varphi)$, equivalently, $\psi \to \varphi$.

Introduction 0000 Friedman's method

lshihara's method 00000000000000

Proof of Theorem (2/2)

Case of $\varphi :\equiv \varphi_1 \land \varphi_2 \in \mathcal{V}_{k+1}$: Then $\varphi_1, \varphi_2 \in \mathcal{V}_{k+1}$. Fix $\psi \in \mathcal{Q}_{k+1}$ s.t. the free variables of φ is not bounded in ψ . Suppose PA $\vdash \psi \rightarrow \varphi_1 \land \varphi_2$. Then PA $\vdash \psi \rightarrow \varphi_1$ and PA $\vdash \psi \rightarrow \varphi_2$. By I.H., we have HA + Σ_k -LEM proves $\psi \rightarrow \varphi_1$ and $\psi \rightarrow \varphi_2$, and hence, $\psi \rightarrow \varphi_1 \land \varphi_2$.

Case of $\varphi :\equiv \forall x \varphi_1 \in \mathcal{V}_{k+1}$:

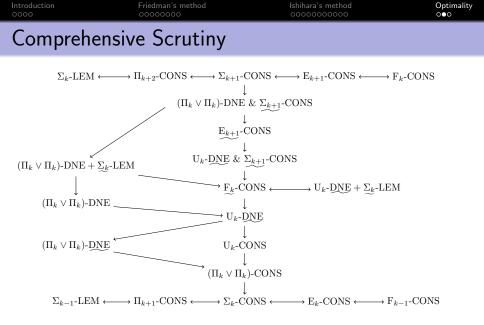
Then $\varphi_1 \in \mathcal{V}_{k+1}$. Fix $\psi \in \mathcal{Q}_{k+1}$ s.t. the free variables of φ is not bounded in ψ . In addition, assume $x \notin FV(\psi)$ without loss of generality. Suppose PA $\vdash \psi \rightarrow \forall x \varphi_1$. Then PA $\vdash \psi \rightarrow \varphi_1$. By I.H., we have that HA + Σ_k -LEM proves $\psi \rightarrow \varphi_1$, and hence, $\forall x(\psi \rightarrow \varphi_1)$. Since $x \notin FV(\psi)$, we have HA + Σ_k -LEM $\vdash \psi \rightarrow \forall x \varphi_1$.

23 / 27

Questions

- Not only Gentzen's negative translation, but there are also other well-known negative translations which are equivalent to the former over intuitionistic logic but not so over minimal logic. Can we obtain interesting conservation results by using their generalized variants combined with the substitution lemma?
- 2 How is the entire structure of the relation between the second and third method? How can we study it?

Friedman's method Ishihara's method Optimality 000 Our relativized conservation theorem is optimal: Proposition Let T be an extension of HA. If PA is Π_{k+2} -conservative over T, then $T \vdash \Sigma_k$ -LEM. **Proof.** By induction on k. The base case is trivial. For the ind. step, assume the assertion for k to show that for k+1. Suppose that PA is Π_{k+3} -conservative over T. By I.H., we have $T \vdash \Sigma_{k}$ -LEM. Fix an instance of Σ_{k+1} -LEM $\varphi :\equiv \forall x(\varphi_1(x) \lor \neg \varphi_1(x))$, where $\varphi_1(x) \in \Sigma_{k+1}(x)$. Let $\psi_1(x) \in \prod_{k+1}(x)$ satisfy $HA + \sum_k DNE \vdash \neg \varphi_1(x) \leftrightarrow \psi_1(x)$. There exists $\xi(x) \in \Sigma_{k+2}(x)$ s.t. $HA \vdash \xi(x) \leftrightarrow \varphi_1(x) \lor \psi_1(x)$. Thus $HA + \Sigma_k$ -DNE $\vdash \varphi \leftrightarrow \forall x \xi(x) \ (\in \Pi_{k+3})$. Since $\mathsf{PA} \vdash \varphi$, we have $\mathsf{PA} \vdash \forall x \xi(x)$. By our assumption, we have $T \vdash \forall x \xi(x)$. Since Σ_k -LEM derives Σ_k -DNE, we have $T \vdash \varphi$. 25/27



where Γ -CONS is the assertion "PA is Γ -conservative over T" and Γ denotes the class of sentences in Γ .

References			
Introduction	Friedman's method	Ishihara's method	Optimality
0000	0000000	0000000000	000

- H. Friedman, Classically and intuitionistically provably recursive functions. In G. Müller and D. S. Scott, editors, Higher Set Theory, pp. 21–27, 1978.
- H. Ishihara, A note on the Gödel-Gentzen translation, MLQ 46(1):135–137, 2000.
- H. Ishihara, Some conservative extension results on classical and intuitionistic sequent calculi, In U. Berger, H. Diener, P. Schuster, and M. Seisenberger, editors, Logic, Construction, Computation, pp. 289–304, 2012.
- M. Fujiwara and T. Kurahashi, Prenex normal form theorems in semi-classical arithmetic, The Journal of Symbolic Logic, to appear.
- **5** M. Fujiwara and T. Kurahashi, Conservation theorems on semi-classical arithmetic, arXiv:2107.11356.