Compactness and measure in second order arithmetic

by George Barmpalias and Wang Wei Institute of Software, Chinese Academy of Sciences, Beijing

New Frontiers in Proofs and Computation 2021

WKL :	Every infinite tree has a path
\mathbf{P}^+ :	Every positive tree has a positive perfect subtree
P :	Every positive tree has a perfect subtree
P^- :	Every positive tree has an infinite countable family of paths
WWKL :	Every positive tree has a path

Table: Compactness principles derived by weakening weak König's lemma

Our paper: http://arxiv.org/abs/2104.12066

References

- C. Chong, W. Li, W. Wang, and Y. Yang. On the computability of perfect subsets of sets with positive measure. Proc. Amer. Math. Soc., 147:4021–4028, 2019.
- N. Greenberg, J. S. Miller, and A. Nies. (2021). Highness properties close to PA completeness. Arxiv:1912.03016.
- L. Liu. (2021). A computable analysis of majorizing martingales. Bull. London Math. Soc.
- ▶ Hirschfeldt, C. G. Jockusch, and P. E. Schupp. (2021). Coarse computability, the density metric, and Hausdorff distances between Turing degrees.
- ▶ L. A. Levin. Forbidden information. J. ACM, 60(2):9:1–9:9, 2013.
- ▶ Barmpalias and Wang: http://arxiv.org/abs/2104.12066

WKL :	Every infinite tree has a path
\mathbf{P}^+ :	Every positive tree has a positive perfect subtree
P :	Every positive tree has a perfect subtree
P^- :	Every positive tree has an infinite countable family of paths
WWKL :	Every positive tree has a path

Table: Compactness principles derived by weakening weak König's lemma

Trees of random reals are ubiquitous in measure-theoretic constructions in computability theory and, as recently suggested by Chong, Li, Wang, and Yang., essential in study of compactness in reverse mathematics.

Our goal is:

- ► to establish essential computational properties of the pathwise-random trees (formally defined below)
- ▶ to apply our analysis to the classification of compactness principles in second order arithmetic.

WKL :	Every infinite tree has a path
\mathbf{P}^+ :	Every positive tree has a positive perfect subtree
P :	Every positive tree has a perfect subtree
P^- :	Every positive tree has an infinite countable family of paths
WWKL :	Every positive tree has a path

Table: Compactness principles derived by weakening weak König's lemma

Provable in RCA₀: WKL \rightarrow P⁺ \rightarrow P \rightarrow P⁻ \rightarrow WWKL

Theorem (Models)

Each of the following extensions of RCA has an ω -model:

- (a) WWKL + $\neg P^-$: every positive tree has a path but some positive tree only has finitely many paths.
- (b) P + ¬P⁺: every positive tree has a perfect subtree but some positive tree has no positive perfect subtree.
- (c) $P^+ + \neg WKL$: every positive tree has a positive perfect subtree but some infinite tree has no path.

Definition

The deficiency of σ is $|\sigma| - K(\sigma)$;

the deficiency of a real x is the supremum of the deficiencies of $x \upharpoonright_n, n \in \mathbb{N}$. The deficiency of a set of reals is the supremum of the deficiencies of its members.

Definition (Pathwise randomness)

A tree T is:

- ▶ pathwise-random if the deficiency of each $\sigma \in T$ is bounded above by a constant.
- ▶ weakly pathwise-random if all of its paths are random.
- ▶ proper if it has infinitely many paths.

Theorem

If z is random and computes or enumerates a pathwise-random tree of unbounded width, then $z \ge_T \emptyset'$.

Hirschfeldt, Jockusch, and Schupp (2021) obtained a similar statement for perfect trees and 2-randoms.

Corollary

The set of paths through the van Lambalgen array:

$$A_x := \{ x_{1^n * 0} : n \in \mathbb{N} \}$$

of any $x \not\geq_{\mathrm{T}} \emptyset'$ has infinite randomness deficiency.

Corollary

If F is a computable space of trees, for every computable measure ν on F the class of proper pruned pathwise-random members of F is $\nu\text{-null}.$

Finitary consequences

- Effectively splitting a random source into k many random sources without a significant increase in the randomness deficiency is about as hard as computing the k-bit halting problem.
- Levin (2013): randomly guessing a completion of the k-bit segment of PA is about as improbable as randomly guessing the k-bit halting problem.

Digression on the proof of WWKL $\not\rightarrow$ P⁻ (algorithms)

Proof base: Randomness cannot be used in order to produce infinitely many random reals with a fixed upper bound on their deficiency. We explore the finite version of this fact and its limits.

Theorem (Random production of incompressible strings I)

There exists no randomized algorithm and $\epsilon > 0, c \in \mathbb{N}$ such that for each input k, with probability $> \epsilon$ the output is a set of k strings ρ with $K(\rho) > |\rho| - c$ of the same length ℓ_k which depends only on k.

Theorem (Random production of incompressible strings II)

There exists a randomized algorithm which, almost surely and on almost all inputs k, outputs a set of k strings ρ of equal length ℓ_k with $K(\rho) > |\rho|$, where $\ell_k \in (2^k, 2^{k+1})$ is a random variable.

$\mathbf{P}\not\rightarrow\mathbf{P}^+$

Theorem

The following hold for each z:

- (a) there exists a perfect pathwise-random tree T such that no T-c.e. positive tree is pathwise-random.
- (b) if no z-c.e. positive tree is pathwise-random, then there exists a perfect pathwise-z-random tree T such that no $(z \oplus T)$ -c.e. positive tree is pathwise-random.
- (c) the tree T of clause (b) can be found inside any given positive tree.

Forcing with sets of sets of positive measure.

Involving hitting sets and notions from Poisson point processes.

$\mathbf{P^+}\not\rightarrow\mathbf{WKL}$

Patey has shown that every positive tree contains a perfect subtree which does not compute any PA degree.

Theorem (Patey)

Every positive tree contains a perfect subtree which does not compute a complete extension of PA.

Theorem

There exists a positive perfect pathwise-random tree which does not compute any complete extension of Peano Arithmetic. In fact, given any non-computable z, every positive tree has a positive perfect subtree $T \ngeq_T z$ which does not compute any complete extension of Peano Arithmetic.

Independently obtained by Greenberg, Miller, Nies (2021).

Open problems

- ▶ build a model for $P^- + \neg P$
- \blacktriangleright build measures ν such that $\nu\text{-randomness}$ gives the above separations.

Thanks for listening!