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WKL : Every infinite tree has a path
P+ : Every positive tree has a positive perfect subtree

P : Every positive tree has a perfect subtree
P− : Every positive tree has an infinite countable family of paths

WWKL : Every positive tree has a path

Table: Compactness principles derived by weakening weak König’s lemma

Our paper: http://arxiv.org/abs/2104.12066



3/13

References

▶ C. Chong, W. Li, W. Wang, and Y. Yang. On the computability of perfect
subsets of sets with positive measure. Proc. Amer. Math. Soc.,
147:4021–4028, 2019.

▶ N. Greenberg, J. S. Miller, and A. Nies. (2021). Highness properties close
to PA completeness. Arxiv:1912.03016.

▶ L. Liu. (2021). A computable analysis of majorizing martingales. Bull.
London Math. Soc.

▶ Hirschfeldt, C. G. Jockusch, and P. E. Schupp. (2021). Coarse
computability, the density metric, and Hausdorff distances between Turing
degrees.

▶ L. A. Levin. Forbidden information. J. ACM, 60(2):9:1–9:9, 2013.
▶ Barmpalias and Wang: http://arxiv.org/abs/2104.12066



4/13

WKL : Every infinite tree has a path
P+ : Every positive tree has a positive perfect subtree
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WWKL : Every positive tree has a path

Table: Compactness principles derived by weakening weak König’s lemma

Trees of random reals are ubiquitous in measure-theoretic constructions in
computability theory and, as recently suggested by Chong, Li, Wang, and
Yang., essential in study of compactness in reverse mathematics.

Our goal is:
▶ to establish essential computational properties of the pathwise-random

trees (formally defined below)
▶ to apply our analysis to the classification of compactness principles in

second order arithmetic.



5/13

WKL : Every infinite tree has a path
P+ : Every positive tree has a positive perfect subtree

P : Every positive tree has a perfect subtree
P− : Every positive tree has an infinite countable family of paths

WWKL : Every positive tree has a path

Table: Compactness principles derived by weakening weak König’s lemma

Provable in RCA0: WKL→ P+ → P→ P− →WWKL

Theorem (Models)
Each of the following extensions of RCA has an ω-model:
(a) WWKL + ¬P−: every positive tree has a path but some positive tree only

has finitely many paths.
(b) P + ¬P+: every positive tree has a perfect subtree but some positive tree

has no positive perfect subtree.
(c) P+ + ¬WKL: every positive tree has a positive perfect subtree but some

infinite tree has no path.
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De nition
The deficiency of σ is |σ| −K(σ);
the deficiency of a real x is the supremum of the deficiencies of x ↾n, n ∈N.
The deficiency of a set of reals is the supremum of the deficiencies of its
members.

De nition (Pathwise randomness)
A tree T is:
▶ pathwise-random if the deficiency of each σ ∈ T is bounded above by a

constant.
▶ weakly pathwise-random if all of its paths are random.
▶ proper if it has infinitely many paths.
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Theorem
If z is random and computes or enumerates a pathwise-random tree of
unbounded width, then z ≥T ∅′.

Hirschfeldt, Jockusch, and Schupp (2021) obtained a similar statement for
perfect trees and 2-randoms.

Corollary
The set of paths through the van Lambalgen array:

Ax := { x1n∗0 : n ∈N }

of any x ≱T ∅′ has infinite randomness deficiency.

Corollary
If F is a computable space of trees, for every computable measure ν on F the
class of proper pruned pathwise-random members of F is ν-null.
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Finitary consequences

• Effectively splitting a random source into k many random sources without
a significant increase in the randomness deficiency is about as hard as
computing the k-bit halting problem.

• Levin (2013): randomly guessing a completion of the k-bit segment of PA is
about as improbable as randomly guessing the k-bit halting problem.



9/13

Digression on the proof of WWKL ̸→ P− (algorithms)

Proof base:
Randomness cannot be used in order to produce infinitely many
random reals with a fixed upper bound on their deficiency.

We explore the finite version of this fact and its limits.

Theorem (Random production of incompressible strings I)
There exists no randomized algorithm and ϵ > 0, c ∈ N such that for each input k,
with probability > ϵ the output is a set of k strings ρ with K(ρ) > |ρ| − c of the same
length ℓk which depends only on k.

Theorem (Random production of incompressible strings II)
There exists a randomized algorithm which, almost surely and on almost all inputs
k, outputs a set of k strings ρ of equal length ℓk with K(ρ) > |ρ|, where ℓk ∈ (2k, 2k+1)

is a random variable.
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P ̸→ P+

Theorem
The following hold for each z:
(a) there exists a perfect pathwise-random tree T such that no T-c.e. positive

tree is pathwise-random.
(b) if no z-c.e. positive tree is pathwise-random, then there exists a perfect

pathwise-z-random tree T such that no (z ⊕T)-c.e. positive tree is
pathwise-random.

(c) the tree T of clause (b) can be found inside any given positive tree.

Forcing with sets of sets of positive measure.

Involving hitting sets and notions from Poisson point processes.
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P+ ̸→WKL

Patey has shown that every positive tree contains a perfect subtree which does
not compute any PA degree.

Theorem (Patey)
Every positive tree contains a perfect subtree which does not compute a
complete extension of PA.

Theorem
There exists a positive perfect pathwise-random tree which does not compute
any complete extension of Peano Arithmetic. In fact, given any non-computable
z, every positive tree has a positive perfect subtree T ≱T z which does not
compute any complete extension of Peano Arithmetic.

Independently obtained by Greenberg, Miller, Nies (2021).
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Open problems

▶ build a model for P− + ¬P
▶ build measures ν such that ν-randomness gives the above separations.
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Thanks for listening!


