Connecting Constructive Notions of Ordinals in Homotopy Type Theory

Nicolai Kraus Fredrik Nordvall Forsberg Chuangjie Xu

New Frontiers in Proofs and Computation September 13–17 2021, Hangzhou/online

What are ordinals?

One answer: Numbers for ranking/ordering

0, 1, 2, ...,
$$\omega$$
, $\omega + 1$, ..., $\omega \cdot 2$, $\omega \cdot 2 + 1$, ..., $\omega \cdot 3$, ...
 ω^2 , ..., $\omega^2 \cdot 3 + \omega \cdot 7 + 13$, ..., ω^{ω} , ..., $\varepsilon_0 = \omega^{\omega^{\omega^{\cdots}}}$, ..., ε_{17} , ...

Another answer: Sets with an order < which is

- ▶ transitive: $(a < b) \rightarrow (b < c) \rightarrow (a < c)$
- wellfounded: every sequence $a_0 > a_1 > a_2 > a_3 > \ldots$ terminates
- ▶ and trichotomous: $(a < b) \lor (a = b) \lor (b < a)$
- ... or **extensional** (instead of trichotomous):

$$(\forall a.a < b \leftrightarrow a < c) \rightarrow b = c$$

What are ordinals good for?

Some examples:

- ▶ Justifying recursive definitions, e.g., the Ackermann function
- Consistency proof e.g. of Peano's axioms [Gentzen 1936]
- Termination of processes, e.g., [Goodstein 1944], [Turing 1949], Hydra game [Kirby&Paris 1982]: All hydras eventually die.

Ordinals in constructive type theory

Problem/feature of a constructive setting: different definitions differ!

Consider the following constructive notions of "ordinals":

- Cantor normal forms
- Brouwer trees
- Wellfounded & extensional & transitive orders

Why can we call them "ordinals"? Pros and cons? What's the connection?

We study them in **homotopy type theory** (HoTT):

- (i) axiomatic framework for ordinals and ordinal arithmetic
- (ii) connections between the three notions and their arithmetic operations

What is HoTT? Why HoTT?

HoTT = MLTT + HITs + UA

Martin-Löf type theory (MLTT)

- ▶ Dependent functions $(x:A) \to B(x)$
- Dependent pairs $\Sigma(x:A).B(x)$
- ▶ Inductive types, e.g. \mathbb{N} , List, ...
- Universes $U_i: U_{i+1}$
- Identity type

► ...

- Propositions
- Sets

$$\begin{aligned} & a =_A b \\ & \mathsf{isProp}(A) := (x : A) \to (y : A) \to x =_A y \\ & \mathsf{isSet}(A) := (x : A) \to (y : A) \to \mathsf{isProp}(x =_A y) \end{aligned}$$

Proof assistants based on variants of MLTT: Agda, Coq, Nuprl, ...

What is HoTT? Why HoTT?

HoTT = MLTT + HITs + UA

Higher inductive types (HITs)

- Generalization of inductive types
- Constructors for elements (or points) and identity proofs (or paths)

• Example: propositional truncation ||A||

- Point constructor $|-|: A \rightarrow ||A||$
- ▶ Path constructor trunc : isProp(||A||)
- ▶ Recursion principle $(A \rightarrow P) \rightarrow ||A|| \rightarrow P$ for any proposition P
- Mere existence $\exists (x:A).B(x) := \|\Sigma(x:A).B(x)\|$

Circle, interval, quotient, Cauchy reals, patch theory (version control), ...

We define Brouwer trees as a quotient inductive-inductive type.

What is HoTT? Why HoTT?

HoTT = MLTT + HITs + UA

Univalence Axiom (UA)

▶ "Isomorphic structures are identical"; thus, $X \cong Y \to P(X) \to P(Y)$

- ▶ Independent from MLTT, but provable in cubical type theory (CTT)
- Not needed in this talk

 ${\bf Cubical \ Agda}$ is an extension of Agda support features of CTT, including HITs and UA.

Most results in this talk have been formalized in Cubical Agda.

What do we expect of "ordinals"?

When does $(\mathcal{O}, <)$ deserve to be called "ordinals"?

- (a) Wellfoundedness: Every decreasing sequence terminates / Can do transfinite induction.
- (b) Arithmetic: Can do addition, multiplication, exponentiation, ... (But what does that mean? Why are they correct?)
- (c) Trichotomy: $(a < b) \lor (a = b) \lor (b < a)$ Not necessary!!
- (d) Extensionality: $(\forall a.a < b \leftrightarrow a < c) \rightarrow b = c$
- (e) Suprema/limits: Can calculate the limit of any sequence. Not necessary!!
 (f) Classifiability: Any x : O is a zero, a successor, or a limit. Not necessary!!

Cantor normal forms

Motivation: $\alpha = \omega^{\beta_1} + \omega^{\beta_2} + \dots + \omega^{\beta_n}$ with $\beta_1 \ge \beta_2 \ge \dots \ge \beta_n$

Let \mathcal{T} be the type of *unlabeled binary trees*:

A tree is a Cantor normal form if $\beta_1 \ge \beta_2 \ge \cdots \ge \beta_n$ (lexicographical order). Cnf is just a subset of binary trees (i.e. Σ -type).

Equivalent implementations [NFXG20]: (i) hereditary descending lists, and (ii) finite hereditary multisets

Cantor normal forms

...

Theorem. Cnf cannot calculate limits of sequences, but everything else works.

- Cnf cannot have the limit of ω , ω^{ω} , $\omega^{\omega^{\omega}}$, $\omega^{\omega^{\omega^{\omega}}}$, ... which is ε_0 .
- ▶ If Cnf has limits of arbitrary *bounded* sequences, then WLPO holds.

- Every Cnf is a zero, a successor or a limit (of its fundamental sequence).
- Cnf has addition, multiplication and exponentiation (with base ω).

$$a + 0 = a$$

E.g., we show a + (b+1) = a + b + 1b is-lim-of $f \to c$ is-lim-of $(\lambda i.a + fi) \to a + b = c$

where the last one is proved by defining subtraction.

Brouwer trees (a.k.a. Brouwer ordinal trees)

How about this inductive type \mathcal{O} of Brouwer trees?

$$\mathsf{zero}:\mathcal{O}\qquad\mathsf{succ}:\mathcal{O}\rightarrow\mathcal{O}\qquad\mathsf{sup}:(\mathbb{N}\rightarrow\mathcal{O})\rightarrow\mathcal{O}$$

Problem:
$$sup(0, 1, 2, 3, ...) \neq sup(1, 2, 3, ...)$$

How to fix this without losing wellfoundedness, validity of arithmetic operations, and so on?

Brouwer trees quotient inductive-inductively

```
data Brw : Set where
   zero : Brw
   succ : Brw → Brw
   limit : (f : \mathbb{N} \rightarrow Brw) {f\uparrow : increasing f} \rightarrow Brw
   bisim : f \approx q \rightarrow \text{limit } f \equiv \text{limit } q
data \leq : Brw \rightarrow Brw \rightarrow Prop where
   \leq-zero : zero \leq x
   \leq-trans : x \leq y \rightarrow y \leq z \rightarrow x \leq z
   \leq-succ-mono : x \leq y \rightarrow succ x \leq succ y
   \leq-cocone : x \leq f k \rightarrow x \leq limit f
   \leq-limiting : (\forall k \rightarrow f k \leq x) \rightarrow limit f \leq x
```

Theorem. The order on Brw is not trichotomous, but everything else works.

 \blacktriangleright Wellfoundedness: encode-decode method to find n such that x < f(n) for $x < {\rm limit}\, f$

Extensional wellfounded orders

The type Ord consists of pairs (X, \prec) where X is a type and \prec is a transitive, extensional, wellfounded relation on X.

 $(X, \prec_X) \leq (Y, \prec_Y)$ is given by a *monotone* function $f : X \to Y$ such that if $y \prec_Y f x$, then there is $x_0 \prec_X x$ such that $f x_0 = y$.

Theorem.

- ▶ The order on Ord is extensional and wellfounded.
- Ord has addition (disjoint union) and multiplication (cartesian product).
 Exponentiation may be constructively problematic.
- ► Limits of increasing sequences of Ord can be calculated.
- Nothing is decidable.
 - E.g. deciding whether an Ord is a successor implies LEM.

Connections between the notions

- injective
- \bullet preserves and reflects <, \leq
- \bullet commutes with +, *, ω^x
- bounded (by ε_0)

- injective
- \bullet preserves <, \leq
- over-approximates +, *: BtoO $(x + y) \ge$ BtoO(x) + BtoO(y)
- commutes with limits (but not successors)
- $\bullet \mbox{ LEM} \Rightarrow \mbox{BtoO}$ is a simulation
- \bullet BtoO is a simulation \Rightarrow WLPO
- bounded (by Brw)