Resemblance and Collapsing

Anton Freund, TU Darmstadt

Workshop on "New Frontiers in Proofs and Computation" IASM Hangzhou / Banff International Research Station 14 September 2021 Idea. Statements of the form "the ordinal α resembles some $\beta > \alpha$ " are strong and force α to be large (note that $\alpha \cong \beta$ is impossible).

Some **large cardinal properties** can be seen as manifestations of this idea. In this talk, we explore two manifestations in the context of computable ordinals / ordinal analysis / second order arithmetic:

___ patterns of resemblance (due to Timothy Carlson),

— ordinal collapsing functions, as used to describe, e.g., the Bachmann-Howard ordinal (Feferman, Buchholz, Rathjen, ...). We consider the language $\{\leq, \leq_1\}$ and focus on structures with universe $M \subseteq$ Ord and \leq interpreted as the usual inequality. Define

$$\alpha \leqslant_1 \beta \quad :\Leftrightarrow \quad (\alpha,\leqslant,\leqslant_1) \preceq_{\Sigma_1} (\beta,\leqslant,\leqslant_1)$$

by recursion on $\beta \ge \alpha$, where \le_{Σ_1} refers to Σ_1 -elementarity.

Equivalently, $\alpha \leq_1 \beta$ holds if all finite $X \subseteq \alpha$ and $Y \subseteq \beta \setminus \alpha$ admit an $\{\leq, \leq_1\}$ -isomorphism $f : X \cup Y \to X \cup \widetilde{Y}$ with $\widetilde{Y} \subseteq \alpha$.

Characterizing ε_0

Recall the ordinal $\varepsilon_0 = \min\{\beta \mid \omega^\beta = \beta\}$, recursively generated by

 $\alpha \quad ::= \quad \mathbf{0} \quad | \quad \omega^{\alpha_0} + \ldots + \omega^{\alpha_n} \quad (\alpha_0 \ge \ldots \ge \alpha_n).$

Theorem (Gentzen). Peano arithmetic has proof-theoretic ordinal ε_0 .

For a detailed appraisal of proof-theoretic ordinals, see, e.g., Michael Rathien's "The Realm of Ordinal Analysis" (LC '97).

Theorem (Carlson). $\varepsilon_0 = \min\{\alpha \mid \alpha \leq \beta \text{ for all } \beta > \alpha\}$

Far beyond ε_0 , we find the proof-theoretic ordinal of Π_1^1 -CA₀ (the strongest of the "big five" systems from reverse mathematics). It can be characterized via either of the following modifications, as shown by Carlson and Gunnar Wilken:

- (1) replace the language $\{\leqslant,\leqslant_1\}$ by $\{0,+,\leqslant,\leqslant_1\},$ or
- (2) consider $\{\leqslant,\leqslant_1,\leqslant_2\}$ and simultaneously for i=1,2 declare

$$\alpha \leqslant_i \beta \quad :\Leftrightarrow \quad (\alpha,\leqslant,\leqslant_1,\leqslant_2) \preceq_{\Sigma_i} (\beta,\leqslant,\leqslant_1,\leqslant_2).$$

Carlson conjectures that we obtain the proof-theoretic ordinal of full second-order arithmetic by extending (2) to all $i \in \mathbb{N}$.

Characterizing ε_0 , again

Consider $\alpha \mapsto D(\alpha) := 1 + \alpha^2$ and $\operatorname{supp}_{\alpha} : D(\alpha) \to \mathcal{P}_{fin}(\alpha)$ with $\operatorname{supp}_{\alpha}(0) = \emptyset$ and $\operatorname{supp}_{\alpha}(1 + \alpha \cdot \beta + \beta') = \{\beta, \beta'\}.$ Call $\vartheta : D(\alpha) \to \alpha$ a Bachmann-Howard collapse if

(1) $\gamma < \delta < D(\alpha)$ implies $\vartheta(\gamma) < \vartheta(\delta)$, under the side condition that we have $\operatorname{supp}_{\alpha}(\gamma) \subseteq \vartheta(\delta)$, and

(2) we have
$$\operatorname{supp}_{\alpha}(\gamma) \subseteq \vartheta(\gamma)$$
.

Theorem. For $D(\alpha) = 1 + \alpha^2$ we have $\varepsilon_0 = \min\{\alpha \mid \text{there is a Bachmann-Howard collapse } \vartheta : D(\alpha) \to \alpha\}.$

The definition of a Bachmann-Howard collapse $\vartheta : D(\alpha) \to \alpha$ makes sense whenever D is a dilator in the sense of Girard (i.e., an endofunctor of ordinals that preserves pullbacks and direct limits).

Theorem (F). The following are equivalent over RCA₀:

- (1) for every dilator D there is an ordinal Ω that admits a Bachmann-Howard collapse $\vartheta: D(\Omega) \to \Omega$,
- (2) Π_1^1 -comprehension (the strongest of the "big five" principles from reverse mathematics).

Relativizing patterns to dilators

Consider a dilator D that satisfies a certain normality condition. Each ordinal $\gamma < D(\alpha)$ has a unique representation

$$\gamma = (\sigma; \gamma_0, \dots, \gamma_{n-1})_D \tag{(\star)}$$

for a "constructor" $\sigma \in D(n)$ and "arguments" $\gamma_0, \ldots, \gamma_{n-1} < \alpha$. Let \mathcal{L}_D be the extension of $\{\leqslant, \leqslant_1\}$ by an (n+1)-ary relation (*) for each constructor σ . Define \leqslant_1^D as \leqslant_1 , with \mathcal{L}_D replacing $\{\leqslant, \leqslant_1\}$.

Theorem (F). The following are equivalent over ATR_0^{set} : (1) for every normal dilator D there is an ordinal $\Omega \leq_1^D D(\Omega + 1)$, (2) Π_1^1 -comprehension.

Proof sketch 1/3: towards resemblance

Use Π_1^1 -comprehension to get an admissible Ω closed under D.

For
$$\gamma = (\sigma; \gamma_0, \dots, \gamma_{n-1}, \Omega)_D$$
 between $D(\Omega)$ and $D(\Omega + 1)$, put
 $\gamma[\eta] := (\sigma; \gamma_0, \dots, \gamma_{n-1}, \eta)_D$ for $\eta \ge \gamma^* := \sup\{\gamma_i + 1 \mid i < n\}.$

By induction on γ as above, show that

$$\mathcal{C}_{\mathcal{D}}(\gamma) := \{ \eta < \Omega \, | \, \eta \geqslant \gamma^* \text{ and } \eta \leqslant^{\mathcal{D}}_{1} \gamma[\eta] \}$$

is Ω -club (admissibles support diagonal intersections etc.).

Conclude
$$\Omega \leq_1^D \gamma[\Omega] = \gamma$$
 for all $\gamma < D(\Omega + 1)$.

Proof sketch 2/3: defining a collapse

By the theorem before, Π^1_1 -comprehension reduces to the statement that any dilator D has a collapse $\vartheta : D(\Omega) \to \Omega$.

Define a normal ΣD and embedding $\xi : D(\Omega) \rightarrow \Sigma D(\Omega + 1)$ by

$$\Sigma D(\gamma) := \Sigma_{\beta < \gamma} 1 + D(\beta), \quad \xi(\alpha) := \Sigma D(\Omega) + 1 + \alpha.$$

Given $\Omega \leq_1^D \Sigma D(\Omega + 1)$, we have $\Omega \leq_1^D \xi(\alpha)[\Omega] < \Sigma D(\Omega + 1)$. By Σ_1 -elementarity, we get an $\eta < \Omega$ as in

$$\begin{split} \vartheta(\alpha) &:= \min\{\eta < \Omega \,|\, \eta \ge \xi(\alpha)^* \text{ and } \eta \le_1^D \xi(\alpha)[\eta] \} \\ (\text{think } X = \text{supp}_{\Omega}(\alpha), \ Y = \{\Omega, \xi(\alpha[\Omega])\} \text{ and } \tilde{Y} = \{\eta, \xi(\alpha)[\eta] \}). \end{split}$$

Consider $\alpha < \beta < D(\Omega)$ with

 $\operatorname{supp}_{\Omega}(\alpha) \subseteq \vartheta(\beta) = \min\{\eta < \Omega \,|\, \eta \ge \xi(\beta)^* \text{ and } \eta \leqslant_1^D \xi(\beta)[\eta]\}.$

For $\eta := \vartheta(\beta)$ we get $\eta \leq_1^D \xi(\alpha)[\eta] < \xi(\beta)[\eta]$. We now invoke Σ_1 -elementarity, to find an $\eta_0 < \eta$ with

$$\eta^{\mathbf{0}} \geqslant \xi(\alpha)^* \quad \text{and} \quad \eta_{\mathbf{0}} \leqslant^{D}_{1} \xi(\alpha)[\eta_{\mathbf{0}}].$$

This yields $\vartheta(\alpha) \leq \eta_0 < \vartheta(\beta)$, as required by the definition of Bachmann-Howard collapse.

Short of paradox, we obtain strong principles if we declare that α resembles $\beta > \alpha$, in the sense that

- (1) we have $\alpha \leq_1 \beta$ (Carlson's patterns of resemblance),
- (2) there is an ordinal collapsing function $\vartheta : \beta \to \alpha$.

Statements (1) and (2) are intimately linked (Carlson & Wilken). The link becomes particularly elegant on a general level, where (1) and (2) are relativized to dilators. For details and references, see

— A. Freund, Patterns of resemblance and Bachmann-Howard fixed points, arXiv:2012.10292.