Geometric analysis on Finsler manifolds

Shin-ichi Ohta

Osaka University

9/Sep/2021 (Oaxaca~Online)

Shin-ichi Ohta (Osaka University)

Geometric analysis on Finsler manifolds

§Outline of the talk

<u>Aim</u>: Geometric analysis on various curved spaces (*comparison theorems*).

Today

- Develop "nonlinear Γ-calculus" on Finsler mfds using the Bochner inequality (by O.–Sturm 2014).
- Show some functional inequalities.
- §1 Finsler manifolds
- §2 Weighted Ricci curvature
- §3 Nonlinear Γ-calculus

§1 Finsler manifolds

§1 Finsler manifolds

§1 Finsler manifolds

- §2 Weighted Ricci curvature
- §3 Nonlinear Γ -calculus

Finsler manifolds

A Finsler manifold will be an *n*-dimensional connected C^{∞} -manifold *M* equipped with $F : TM \longrightarrow [0, \infty)$ s.t.

(1)
$$F \in C^{\infty}(TM \setminus \{0\});$$

(2) $F(cv) = cF(v) \ \forall v \in TM, c > 0$ (positive homog.);
(3) $\forall v \in T_xM \setminus \{0\}$, the $n \times n$ -symmetric matrix
 $g_{ij}(v) := \frac{1}{2} \frac{\partial^2 [F^2]}{\partial v^i \partial v^j}(v), \quad \text{where } v = \sum_{i=1}^n v^i \frac{\partial}{\partial x^i}\Big|_x,$
is positive-definite (*strong convexity*).

<u>Note</u>: $F(-v) \neq F(v)$ is allowed.

Riemannian approximation g_{ν}

For each $v \in T_x M \setminus \{0\}$, $g_{ij}(v)$ defines an inner product g_v of $T_x M$ (fundamental tensor) by

$$g_{\nu}\left(\sum_{i=1}^{n}a_{i}\frac{\partial}{\partial x^{i}},\sum_{j=1}^{n}b_{j}\frac{\partial}{\partial x^{j}}\right):=\sum_{i,j=1}^{n}a_{i}b_{j}g_{ij}(\nu).$$

This is an approximation of $F|_{T_xM}$ in the direction v (up to the second order).

Ricci curvature

Instead of the precise definition, we explain a useful interpretation of the Ricci curvature (or Ricci scalar) Ric(v) of $v \in T_x M \setminus \{0\}$:

"Riemannian characterization"

- (1) Extend v to a C^{∞} -vector field V on a neighborhood U of x such that every integral curve is geodesic.
- (2) Consider the Riem. str. g_V on U induced from V.
- (3) Then $\operatorname{Ric}(v)$ coincides with the Ricci curvature of v w.r.t. g_V (indep. of the choice of V).

Measure?

To develop analysis on Finsler manifolds, we would like to equip a Finsler manifold with a measure. However, there is no unique canonical measure like the Riemannian volume measure.

Thus we start with an arbitrary measure m on M and modify the Ricci curvature according to m, inspired by the weighted Ricci curvature for Riemannian manifolds equipped with measures.

§2 Weighted Ricci curvature

- §1 Finsler manifolds
- §2 Weighted Ricci curvature
- §3 Nonlinear Γ-calculus

Weighted Ricci curvature

We fix an arbitrary positive C^{∞} -measure m on M and take $v \in T_x M \setminus \{0\}$ and V as above.

Decompose m as $m = e^{-\psi} \operatorname{vol}_{g_V}$ and let η be the geodesic with $\dot{\eta}(0) = v$.

For
$$N \in (-\infty, 0] \cup (n, \infty)$$
 $(n = \dim M)$, define
 $\operatorname{Ric}_{N}(v) := \operatorname{Ric}(v) + (\psi \circ \eta)''(0) - \frac{(\psi \circ \eta)'(0)^{2}}{N-n}$,
 $\operatorname{Ric}_{\infty}(v) := \operatorname{Ric}(v) + (\psi \circ \eta)''(0)$, $\operatorname{Ric}_{n}(v) := \lim_{N \downarrow n} \operatorname{Ric}_{N}(v)$.

Remarks

- Monotonicity: For $N \in (n, \infty)$ and $N' \leq 0$, Ric_n \leq Ric_N \leq Ric_m \leq Ric_{N'}.
- $\operatorname{Ric}_N \ge K$ (i.e., $\operatorname{Ric}_N(v) \ge KF^2(v) \ \forall v \in TM$) is equivalent to the curvature-dimension condition $\operatorname{CD}(K, N)$ à la Lott–Sturm–Villani (O. 2009, 2016).
- A typical example satisfying $Ric_{\infty} \ge 0$ is a normed space endowed with a log-concave measure.

We are interested in (M, F, \mathfrak{m}) with $\operatorname{Ric}_N \geq K$.

Three useful techniques

- The curvature-dimension condition CD(*K*, *N*) via the *L*²-optimal transport theory.
- The Γ-calculus based on the Bochner inequality (O.–Sturm 2014). → this talk
- The localization (a.k.a. needle decomposition) via the *L*¹- & *L*²-optimal transport theory (O. 2018).

§3 Nonlinear Γ-calculus

§3 Nonlinear Γ-calculus

- §1 Finsler manifolds
- §2 Weighted Ricci curvature
- §3 Nonlinear Γ-calculus

Nonlinear Laplacian

• For $u: M \longrightarrow \mathbb{R}$ differentiable at $x \in M$, define

 $\nabla u(x) :=$ the Legendre transform of du(x),

i.e.,
$$F^*(du) = F(\nabla u)$$
 and $du[\nabla u] = F^*(du)^2$.

<u>Note</u>: The Legendre transf. $T_x^*M \longrightarrow T_xM$ is linear only when $F|_{T_xM}$ comes from an inner product.

• For $u \in H^1_{loc}(M)$, define the nonlinear Laplacian $\Delta u := \operatorname{div}_{\mathfrak{m}}(\nabla u)$ in the weak sense that

$$\int_{M} \phi \Delta u \, d\mathfrak{m} = - \int_{M} d\phi(\nabla u) \, d\mathfrak{m} \quad \forall \phi \in C^{\infty}_{c}(M).$$

Nonlinear heat semigroup

 Δ is nonlinear but locally uniformly elliptic (by the strong convexity of *F*), this helps us to analyze the nonlinear heat equation $\partial_t u_t = \Delta u_t$ as follows.

Existence & regularity (Ge–Shen 2001, O.–Sturm 2009)

 $\forall f \in H_0^1(M)$, \exists a unique solution $(u_t)_{t\geq 0}$ to $\partial_t u_t = \Delta u_t$ with $u_0 = f$, which is H_{loc}^2 in x and $C^{1,\alpha}$ in t & x. And $\Delta u_t \in H_0^1(M)$ if M is compact (or *unif. smooth*).

<u>Note</u>: The $C^{1,\alpha}$ -regularity cannot be improved.

The heart of the Γ -calculus:

Bochner inequality (O.–Sturm 2014)

For $u \in C^{\infty}(M)$ and $N \in (-\infty, 0) \cup [n, \infty]$, we have

$$\Delta^{\nabla u} \left(\frac{F(\nabla u)^2}{2} \right) - d(\Delta u)(\nabla u) \ge \operatorname{Ric}_N(\nabla u) + \frac{(\Delta u)^2}{N}$$

point-wise on $\{\nabla u \neq 0\}$ and in the weak sense on *M*.

Here $\Delta^{\nabla u}$ is the linearized Laplacian (w.r.t. $g_{\nabla u}$):

$$\Delta^{\nabla u} f := \operatorname{div}_{\mathfrak{m}}(\nabla^{\nabla u} f), \quad \nabla^{\nabla u} f := \sum_{i,j=1}^{n} g^{ij}(\nabla u) \frac{\partial f}{\partial x^{i}} \frac{\partial}{\partial x^{j}}.$$

<u>Note</u>: This is *not* the Bochner inequality for $g_{\nabla u}$.

Applications under $\operatorname{Ric}_N \ge K$

Let *M* be compact for simplicity. $(u_t)_{t\geq 0}$: sol. to heat eq.

Gradient estimates (O.–Sturm 2014) • L^2 -gradient estimate ($N = \infty$): $F^2(\nabla u_t) \leq e^{-2Kt} P_t^{\nabla u}(F^2(\nabla u_0)) \quad \forall t > 0,$ where $f_t = P_t^{\nabla u}(f)$ is the solution to $\partial_t f_t = \Delta^{\nabla u_t} f_t$, $f_0 = f$. • Li–Yau gradient estimate ($K \le 0, N \in [n, \infty)$): $F^{2}(\nabla(\log u_{t})) - \theta \cdot \partial_{t}(\log u_{t}) \leq N\theta^{2}\left(\frac{1}{2t} - \frac{K}{4(\theta - 1)}\right) \quad \forall t > 0, \theta > 1.$ Poincaré–Lichnerowicz inequality (O. 2009, 2017) $\mathfrak{m}(M) = 1, K > 0, N \in (-\infty, 0) \cup [n, \infty]: \text{ For } f \in H^1(M),$ $\int_M f^2 d\mathfrak{m} - \left(\int_M f d\mathfrak{m}\right)^2 \leq \frac{2(N-1)}{KN} \mathcal{E}(f).$

Logarithmic Sobolev inequality (O. 2009, 2017) $\mathfrak{m}(M) = 1, K > 0, N \in [n, \infty]$: For nonnegative $f \in H^1(M)$ with $\int_M f \, d\mathfrak{m} = 1$, $\int_M f \log f \, d\mathfrak{m} \leq \frac{N-1}{2KN} \int_M \frac{F^2(\nabla f)}{f} \, d\mathfrak{m}$. Sobolev inequality (O. 2017)

 $\mathfrak{m}(M) = 1, K > 0, N \in [n, \infty), p \in [2, 2(N + 1)/N]$ (or $p \in [2, 2N/(N - 2)]$ if reversible F(-v) = F(v)): For $f \in H^1(M)$,

$$\frac{\|f\|_{L^p}^2 - \|f\|_{L^2}^2}{p-2} \le \frac{N-1}{KN} \int_M F^2(\nabla f) \, d\mathfrak{m}.$$

Beckner inequality (O. 2021; cf. Gentil–Zugmeyer 2021) $\mathfrak{m}(M) = 1, K > 0, N \in (-\infty, -2) \cup [n, \infty), p \in [1, 2]$ for $N \in [n, \infty)$ and $p \in \left[1, \frac{2N^2 + 1}{(N-1)^2}\right]$ for N < -2: For $f \in H^1(M)$, the same inequality as above holds.

Final remarks

The proofs essentially follow the lines of the Riemanninan case up to some technical differences.

- One can also generalize Bakry–Ledoux's Gaussian isoperimetric inequality.
- In some results, the *noncompact case* is yet to be fully understood, due to the lack of *higher order regularity* and the *Wasserstein contraction*.
- The localization is useful in the noncompact case, however, it does not give sharp estimates in the *non-reversible* case (at present).

If you are interested $\downarrow\downarrow$

Reference: "Comparison Finsler Geometry" (to appear in *Springer Monographs in Mathematics*).

Thank you for your attention!