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Diffusion-degenerate traveling

fronts



Reaction diffusion-degenerate equations

Simplest model: scalar reaction-diffusion equation with degenerate

diffusion coefficient:

ut = (D(u)ux )x + f (u),

u = u(x , t) ∈ R, x ∈ R, t > 0.

• D = D(u) - density-dependent, degenerate, nonlinear diffusion

coefficient;

• f = f (u) - nonlinear reaction function
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Reaction functions (i)

• Fisher-KPP, monostable, logistic type, f ∈ C 2([0,1];R) has one

stable (u = 1) and one unstable (u = 0) equilibrium points in [0,1],

f (0) = f (1) = 0, f ′(0) > 0, f ′(1) < 0,

f (u) > 0, for all u ∈ (0,1).

Typical example:

• Logistic function (dynamics of a population with limited resources):

f (u) = u(1−u)
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Reaction functions (ii)

• Nagumo (a.k.a. Bistable, Allen-Cahn, Chafee-Infante) type:

f ∈ C 2([0,1];R) has two stable equilibria (u = 1,0) and one unstable

(u = α) equilibrium point in [0,1]

f (0) = f (α) = f (1) = 0, f ′(0), f ′(1) < 0, f ′(α) > 0,

f (u) > 0 for all u ∈ (α,1), f (u) < 0 for all u ∈ (0,α),

for some α ∈ (0,1).

Typical example:

• Cubic reaction (dynamics of a population with limited resources and

cooperation, Allee effect):

f (u) = u(1−u)(u−α)
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Density-dependent degenerate diffusions (i)

In physics and engineering:

• Mullins diffusion for thermal grooving (surface groove profiles on a

heated polycrystal by the mechanism of evaporation-condensation);

Mullins (1957), Broabridge (1989) (non-degenerate).

• Matano boundary methods in the Allen-Cahn equation for metal

binary alloys; Wagner (1952), Allen, Cahn (1972)

(non-degenerate).

• Porous medium equation, ut = ∆(um) (with D(u) = mum−1)

Vazquez (2007) (degenerate)

• Anisotropic diffusivities in binary alloys; Elliot, Garcke (1996),

Taylor, Cahn (1994) (degenerate).
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Density-dependent degenerate diffusions (ii)

In biology:

• Populations’ dynamics models, ‘motility’ depends on density:

• mammals, Myers, Krebs (1974), Shigesada et al. (1979).

• ecology, Gurtin, McCamy (1977)

• eukaryotic cell biology, Sengers et al. (2007)

• Degenerate diffusions (D = 0 in some regions) appear in bacterial

aggregation models; Kawasaki et al. (1997), Leyva et al. (2013)

• Degenerate diffusions to model sharp tumor invasion fronts:

McGillen et al. (2014).
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Degenerate diffusion

Density-dependent and degenerate diffusion coefficient:

• D ∈ C 2([0,1];R)

• D(0) = 0

• D(u) > 0 for all u ∈ (0,1],

• D ′(u) > 0 for all u ∈ [0,1] (∗)

Examples:

• D(u) = u2 +bu, b > 0; Shigesada et al. (1979). Models

dispersive effects of mutual interference between individuals of a

population.

• Porous medium type of diffusion, D(u) = mum−1
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Mathematical features

Rich mathematical consequences:

• Degenerate diffusion equations may possess finite speed of

propagation of initial disturbances; Gilding, Kersner (1996).

• Existence of traveling fronts of sharp type; Sánchez-Garduño,

Maini (1995, 1997).

• Loss of hyperbolicity of the associated ODE at degenerate point.
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Traveling fronts

Traveling wave solution:

u(x , t) = ϕ(x− ct), ϕ : R→ R,

c ∈ R - wave speed. Upon substitution:

(D(ϕ)ϕξ )ξ + cϕξ + f (ϕ) = 0,

where ξ = x− ct denotes the translation (Galilean) variable. Asymptotic

limits:

u± := ϕ(±∞) = lim
ξ→±ω

ϕ(ξ ), ω = ξ0,∞

u± is an equilibrium point of the reaction: u± ∈ {0,1} (Fisher-KPP),

u± ∈ {0,1,α} (bistable).
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Existence theory of degenerate traveling fronts

Some references:

• Aronson (1980): Fisher-KPP with diffusion of porous medium type.

• Sanchez-Garduño, Maini, (1994, 1995): Fisher-KPP fronts.

• Sanchez-Garduño, Maini, (1997): Nagumo (bistable) fronts.

• Sanchez-Garduño, Maini, Kappos (1996), El-Adnani,

Talibi-Alaoui (2010) (Conley index techniques).

• Gilding, Kersner (2005) (D(u) = auk).

• Malaguti, Marcelli (2003) (doubly degenerate diffusions

D(u) = u(1−u)).

• (Abridged list...)
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Examples (i)

In the Fisher-KPP case, the theory predicts the existence of sharp fronts

with critical speed c = c∗, and monotone smooth fronts for c > c∗.

(a) c = c∗ (sharp) (b) c > c∗ (smooth)

Figure 1: Profile ϕ = ϕ(ξ ) for (a) c = c∗; (b) c > c∗.
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Examples (ii)

In the Nagumo case, there are many fronts. Sharp fronts connecting to

degenerate equilibria with (unique) critical speed c = c∗ ∈ (0,c(α)),

c(α) := 2
√

D(α)f ′(α); smooth monotone fronts for c > c(α) or c = 0,

and even oscillatory profiles.
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(b) c > c(α) (smooth)

Figure 2: Profile ϕ = ϕ(ξ ) for (a) c = 0; (b) c > c(α).
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Previous work (i)

Works on long-time behaviour of solutions to reaction-diffusion

degenerate equations:

• Sherratt-Marchant (1996): Fisher-KPP case, numerical study

with D(u) = u.

• Biró (2002), Medvedev et al. (2003): Fisher-KPP, diffusion

porous medium type, compactly supported initial data evolve

towards sharp front with c = c∗.

• Kamin, Rosenau (2004): Extension to f (u) = u(1−um), same

porous medium type diff., fast decaying initial data.

• (Abridged list...)
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(a) t = 0 (b) t→ ∞

Figure 3: (a) initial condition u0(x) ∈ C∞
0 (R); (b) u evolves into the sharp

front.
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(a) perturbation, t = 0 (b) translated, t→ ∞

Figure 4: Perturbation of the smooth profile ϕ = ϕ(x): (a) initial condition

u0(x) = ϕ(x) +v0(x); (b) u(x ,t)→ ϕ(x + δ (t)− ct).
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Previous work (ii)

Works on stability of diffusion-degenerate fronts:

• Hosono (1986): Nagumo reaction, diffusion of porous medium

type: D(u) = mum−1. Comparison principle techniques: initial data

close to sharp front, then asymptotic convergence to a translated

(sharp) front.

• Dalibard, Lopez-Ruiz, Perrin (2021): Preprint, arXiv:2108.10563.

Porous medium with generalized Fisher-KPP reaction. Nonlinear

stability in L2 weighted energy spaces of smooth fronts.
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Spectral stability of reaction diffusion-degenerate fronts

References:

• Leyva, P. (2020), J. Dynam. Differ. Equ. 32. Fisher-KPP

reaction, smooth fronts.

• Leyva, López-Ŕıos, P. (2021), Indiana Univ. Math. J., in press.

Nagumo reaction, smooth fronts.

Features:

• Analysis focuses on spectral stability of smooth fronts.

• Techniques related to spectral theory of operators (Kato).

• Follows general program (a) spectral ⇒ (b) linear ⇒. (c) non-linear

stability analyses. Main references: Alexander, Gardner, Jones

(1990), Sandstede (2002), Kapitula, Promislow (2013).

• Some ideas could be extrapolated to the case of systems.
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results



Linearized operator around the front

Abuse of notation x → x− ct. Linearizing around the front yields,

ut = (D(ϕ)u)xx + cux + f ′(ϕ)u.

Specialize to solutions of form eλ tu(x), with λ ∈ C, u ∈ X , Banach

space. Spectral problem:

L u = λu,

L : D(L )⊂ X → X ,

L u = (D(ϕ)u)xx + cux + f ′(ϕ)u.

D(L ) is dense in X ; L is the closed, densely defined, linearized operator

around the front. (e.g. X = L2, D = H2, localized perturbations)
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Resolvent and spectra

Definition

Let L ∈ C (X ,Y ) be a closed, densely defined operator from X to Y ,

Banach. Its resolvent ρ(L ) is defined as the set of all complex numbers

λ ∈ C such that L −λ is injective, R(L −λ ) = Y and (L −λ )−1 is

bounded. Its spectrum is defined as σ(L ) = C\ρ(L ).

Definition

We say the traveling front ϕ is X -spectrally stable if

σ(L )⊂ {λ ∈ C : Re λ ≤ 0}.
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Partition of spectrum

Lemma

For any closed, densely defined linear operator L : D ⊂ X → Y ,

σ(L ) = σpt(L )∪σδ (L )∪σπ (L ),

where

σpt(L ) :={λ ∈ C : L −λ is not injective},
σδ (L ) :={λ ∈ C : L −λ is injective, R(L −λ ) is closed,

and R(L −λ ) 6= Y },
σπ (L ) :={λ ∈ C : L −λ is injective, and R(L −λ )

is not closed}.
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Observations (i)

• In the theory of stability of waves, cf. Kapitula, Promislow

(2013), the standard partition is Weyl’s partition:

σess(L ) := {λ ∈ C : L −λ is either not Fredholm,

or has index different from zero} .,
σ̃pt(L ) := {λ ∈ C : L −λ is Fredholm with index zero

and has a non-trivial kernel} .

Notice that σ̃pt ⊂ σpt. σ̃pt is the set of isolated eigenvalues with

finite multiplicity.

• σpt(L ) is called the extended point spectrum; its elements,

eigenvalues. λ ∈ σpt(L ) if and only if there exists u ∈D(L ), u 6= 0,

such that L u = λu

• λ = 0 always belongs to the L2 - σpt(L ) (translation eigenvalue), as

L ϕx = ∂x

(
(D(ϕ)ϕx )x + cϕx + f (ϕ)

)
= 0

in view of the profile equation and ϕx ∈ H2(R;C) (eigenfunction).
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• σπ (L ) is contained in the approximate spectrum, defined as

σπ (L )⊂ σapp(L ) :={λ ∈ C : there exists un ∈D(L ) with ‖un‖= 1

such that (L −λ )un→ 0 in Y as n→ ∞}.

This holds because R(L −λ ) not closed ⇒ there exists a Weyl’s

sequence: un ∈D(L ), ‖un‖= 1 such that (L −λ )un→ 0, which

contains no convergent subsequence.

• σδ (L ) is clearly contained in what is often called the compression

spectrum:

σδ (L )⊂ σcom(L ) :={λ ∈ C : L −λ is injective, and R(L −λ ) 6= Y }.

23



Why this partition?

• Designed to overcome difficulties associated to degeneracy at ϕ = 0.

• Spectral problem recast as first order system, wx = A(x ,λ )w,

w = (u,ux ) (cf. Alexander, Gardner, Jones (1990)).

• In the strictly parabolic setting, D ≥ δ > 0, and λ ∈ Ω⊂ C, large

connected set, A±(λ ) are strictly hyperbolic, their spectral equations

determine Fredholm curves that bound Weyl’s essential spectrum. In

the degenerate case, hyperbolicity is lost.
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Example: constant diffusivity

Constant diffusion problem, D(u)≡ D > 0. Spectral problem reads

λu = Duxx + cux + f ′(ϕ)u.

Recast as a first order system:

Wx = A(x ,λ )W ,

W =

(
u

ux

)
∈ H1(R;C2)

A(x ,λ ) =

(
0 1

(λ − f ′(ϕ))/D −c/D

)
.
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Asymptotic limits:

A±(λ ) = lim
x→±∞

A(x ,λ ) =

(
0 1

(λ − f ′(u±))/D −c/D

)
.

Fact of life: The Fredholm properties of L −λ are the same as the

operators T (λ ) := d/dx−A(x ,λ ). (There is a one-to-one and onto

correspondence between the kernels and Jordan chains, with same

srtucture and length.) (cf. Kapitula, Promislow (2013).)

How to locate σess(L )? The Fredholm curves λ± = λ±(k), k ∈ R
(solutions to det(A±(λ )− ikI ) = 0, dispersion relation) determine the

boundaries of the open regions in the complex plane on which the

operator T (λ ) (or L −λ ) is Fredholm.
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• Idea: take a parabolic regularization (add εd2/dx2), compute σess

and take the limit as ε → 0.

• As a consequence, we control some component of the essential

spectrum, σδ , precluding the behaviour of approximate spectra.

• The set σπ is controlled with the use of Weyl sequences.

• The stability analysis of the point spectrum is based on weighted

energy estimates.
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Exponentially weighted spaces

For any m ∈ Z, m ≥ 0, a ∈ R,

Hm
a (R;C) = {v : eaxv(x) ∈ Hm(R;C)},

Hilbert spaces with inner product and norm,

〈u,v〉Hm
a

:= 〈eaxu,eaxv〉Hm , ‖v‖2
Hm
a

:= ‖eaxv‖2
Hm = 〈v ,v〉Hm

a
.

Custom: L2
a(R;C) = H0

a (R;C).

Facts of life: (cf. Kapitula, Promislow (2013))

• The spectrum of L ∈ C (L2
a;L2

a) is equivalent to the spectrum of a

conjugated operator, La ∈ C (L2;L2):

La := eaxL e−ax : D = H2(R;C)⊂ L2(R;C)→ L2(R;C),

• The point spectrum is invariant under conjugation

σpt(La)|L2 = σpt(L )|L2
a
.
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Main results (i)

Theorem (Leyva, P. (2020))

For any monotone traveling front for Fisher-KPP reaction

diffusion-degenerate equations, under hypotheses for D = D(·) and f ,

and traveling with speed c ∈ R satisfying the condition

c > max
{
c∗,

f ′(0)
√
D(1)√

f ′(0)− f ′(1)

}
> 0,

there exists an exponentially weighted space L2
a(R), with a ∈R, such that

the front is L2
a-spectrally stable. c∗ > 0 is the minimum threshold speed

(the velocity of the sharp wave).
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Main results (ii)

Theorem (Leyva, López-Ŕıos, P. (2021))

Under our hypotheses, the family of all monotone diffusion-degenerate

Nagumo fronts connecting the equilibrium states u = α with u = 0 and

traveling with speed c > c(α) = 2
√
D(α)f ′(α) are spectrally stable in an

exponentially weighted energy space L2
a = {eaxu ∈ L2}. More precisely,

there exists a> 0 such that

σ(L )|L2
a
⊂ {λ ∈ C : Re λ ≤ 0},

where L : L2
a→ L2

a denotes the linearized operator around the traveling

front and σ(L )|L2
a

denotes its spectrum computed with respect to the

energy space L2
a.
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Method of proof (overview)



Strategy of proof

(A) Calculation of σδ (parabolic regularization technique; choice of the

weight a ∈ R).

(B) Control of σπ (use of Weyl sequences).

(C) Control of σpt (weighted energy estimates; trick to overcome

degeneracy).
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(A) Parabolic regularization technique

• For any ε > 0, let

Dε (ϕ) := D(ϕ) + ε.

Dε (ϕ) > 0 for all x ∈ R.

• Regularized conjugated operator:

L ε
a : D = H2 ⊂ L2 → L2,

L ε
a u := eaxL εe−ax = Dε (ϕ)uxx +

(
2Dε (ϕ)x −2aDε (ϕ) + c

)
ux+

+
(
a2Dε (ϕ)−2aDε (ϕ)x −ac +Dε (ϕ)xx + f ′(ϕ)

)
u

a ∈ R is to be chosen.

• Region of consistent splitting:

Ω(a,ε) :={λ∈C :Re λ >max {Dε (u+)a2−ac+f ′(u+),Dε (u−)a2−ac+f ′(u−)}}
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• Lemma 1: For all ε > 0, a ∈ R, and for each λ ∈ Ω(a,ε), the

operator L ε
a −λ is Fredholm with index zero.

(Note: hyperbolicity of end points is fundamental: Weyl’s essential

spectrum theorem + exponential dichotomies).

• Lemma 2: For each fixed λ ∈ C, the operators L ε −λ converge in

generalized sense to L −λ as ε → 0+

(d(G (L ε −λ ),G (L −λ ))→ 0).

• Apply Kato’s stability theorem (Kato, 1980) to locate σδ (La).

Lemma 3: Suppose that La−λ is semi-Fredholm, for a ∈ R,

λ ∈ C. Then for each 0 < ε � 1 sufficiently small L ε
a −λ is

semi-Fredholm and ind(L ε
a −λ ) = ind(La−λ ).
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• Corollary: σδ (La)⊂ C\Ω(a,0).

• Choose a ∈ R appropriately to stabilize σδ : C\Ω(a,0)⊂ {Re λ < 0}.
• Example: in the Fisher-KPP case it suffices to set

0 <
f ′(0)

c
< a< (2D(1))−1

(
c +
√
c2−4D(1)f ′(1)

)
.

• Consequence: σδ (La)|L2 = σδ (L )|L2
a
⊂ {λ ∈ C : Re λ < 0}.
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(B) Location of σπ : Weyl sequences

• Conjugated operator La = b2(x)∂ 2
x +b1(x)∂x +b0(x)Id.

• Fix λ ∈ σπ (La)|L2 . Then R(La−λ ) is not closed and there exists a

singular sequence un ∈D(La) = H2 with ‖un‖L2 = 1, for all n ∈ N,

such that (La−λ )un→ 0 in L2 as n→ ∞ and which has no

convergent subsequence.

• L2 is a reflexive space ⇒ un ⇀ 0 in L2.

• Lemma 4: There exists a subsequence, un, such that un→ 0 in L2
loc

as n→ ∞.
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• For each ε > 0 we can choose R > 0 sufficiently large such that

|b0(x)− 1
2 ∂xb1(x)− (a2D(u±)−ac + f ′(u±))|< ε, for |x | ≥ R.

• From b2(x) = D(ϕ)≥ 0:

Re λ ≤ |〈fn,un〉L2 |+
∫ R

−R
(b0(x)− 1

2 ∂xb1(x))|un|2 dx +
∫
|x |≥R

(b0(x)− 1
2 ∂xb1(x))|un|2 dx

≤ ‖(L −λ )un‖L2 +C1‖un‖L2(−R,R) +C2ε‖un‖2
L2(|x |≥R)

+ (a2D(u±)−ac + f ′(u±))‖un‖2
L2(|x |≥R)

= ‖(L −λ )un‖L2 +C1‖un‖L2(−R,R)︸ ︷︷ ︸
→0,asn→∞

+C2ε +a2D(u±)−ac + f ′(u±).

• Thus, Re λ ≤ a2D(u±)−ac + f ′(u±), or

σπ (La)|L2 = σπ (L )|L2
a
⊂ C\Ω(a,0)⊂ {Re λ < 0}.
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(C) Point spectral stability

• For fixed λ ∈ σpt(La), there is solution u ∈D(La) = H2 to

(La−λ )u = 0 (eigenfunction).

• Spectral transformation: w = Θ(x)u, with

Θ(x) = exp

(
c

2

∫ x

x0

ds

D(ϕ(s))
−a(x−x0)

)
.

• Lemma 5: For the appropriate a ∈ R and for any λ ∈ Ω(a,0), if

u ∈ H2 solves (La−λ )u = 0 then w ∈ H2 and solves

(D(ϕ)2wx )x +D(ϕ)G (x)w −λD(ϕ)w = 0.

• Note: one needs detailed information about the decay structure of

eigenfunctions and of the traveling fronts.
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• Lemma applies also to the translation eigenvalue,

λ = 0 ∈ σpt(La)∩Ω(a,0): eigenfunction eaxϕx is transformed into

ψ = Θ(x)eaxϕx , which solves

(D(ϕ)2
ψx )x +D(ϕ)G (x)ψ = 0.

• Combine energy estimates on both equations and use monotonicity

of the front:

λ 〈D(ϕ)w ,w〉L2 =−‖D(ϕ)(w/ψ)xψ‖2
L2 .

• If λσpt(La)∩Ω(a,0) then Re λ ≤ 0. If λ ∈ σpt(La) and λ /∈ Ω(a,0)

the automatically Re λ < 0. We conclude point spectral stability.

• Note: the weighted L2 norm ‖u‖= ‖
√
D(ϕ)u‖L2 encodes the

degeneracy of the front (see also Dalibard et al. (2021)).
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Thanks...!
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