Spectral stability of monotone traveling fronts for reaction diffusion-degenerate Nagumo equations

Ramón G. Plaza Institute of Applied Mathematics Universidad Nacional Autónoma de México September 9, 2021.

BIRS Workshop 21w5127: New Trends in Nonlinear Diffusion: a Bridge between PDEs, Analysis and Geometry. Casa Matemática Oaxaca, Banff International Research Station.

Joint work with:

- J. Francisco Leyva (BUAP)
- Luis Fernando López-RíÂos (IIMAS)

Sponsors:

- DGAPA Project PAPIIT-IN100318.
- CONACyT, Grant 220865,

- 1. Diffusion-degenerate traveling fronts
- 2. The spectral problem and main results
- 3. Method of proof (overview)

Diffusion-degenerate traveling fronts

Simplest model: scalar reaction-diffusion equation with degenerate diffusion coefficient:

$$u_t = (D(u)u_x)_x + f(u),$$

$$u = u(x,t) \in \mathbb{R}, x \in \mathbb{R}, t > 0.$$

- D = D(u) density-dependent, degenerate, nonlinear diffusion coefficient;
- f = f(u) nonlinear reaction function

• Fisher-KPP, monostable, logistic type, $f \in C^2([0,1];\mathbb{R})$ has one stable (u = 1) and one unstable (u = 0) equilibrium points in [0,1],

$$\begin{split} f(0) &= f(1) = 0, \qquad \qquad f'(0) > 0, \ f'(1) < 0, \\ f(u) > 0, \ \text{for all} \ u \in (0, 1). \end{split}$$

Typical example:

• Logistic function (dynamics of a population with limited resources):

f(u) = u(1-u)

Reaction functions (ii)

Nagumo (a.k.a. Bistable, Allen-Cahn, Chafee-Infante) type:
 f ∈ C²([0,1]; ℝ) has two stable equilibria (u = 1,0) and one unstable (u = α) equilibrium point in [0,1]

$$\begin{split} f(0) &= f(\alpha) = f(1) = 0, \qquad f'(0), f'(1) < 0, \quad f'(\alpha) > 0, \\ f(u) > 0 \text{ for all } u \in (\alpha, 1), \qquad f(u) < 0 \text{ for all } u \in (0, \alpha), \end{split}$$

for some $\alpha \in (0,1)$.

Typical example:

• Cubic reaction (dynamics of a population with limited resources and cooperation, Allee effect):

$$f(u) = u(1-u)(u-\alpha)$$

In physics and engineering:

- Mullins diffusion for thermal grooving (surface groove profiles on a heated polycrystal by the mechanism of evaporation-condensation);
 Mullins (1957), Broabridge (1989) (non-degenerate).
- Matano boundary methods in the Allen-Cahn equation for metal binary alloys; Wagner (1952), Allen, Cahn (1972) (non-degenerate).
- Porous medium equation, $u_t = \Delta(u^m)$ (with $D(u) = mu^{m-1}$) Vazquez (2007) (degenerate)
- Anisotropic diffusivities in binary alloys; Elliot, Garcke (1996), Taylor, Cahn (1994) (degenerate).

In biology:

- Populations' dynamics models, 'motility' depends on density:
 - mammals, Myers, Krebs (1974), Shigesada et al. (1979).
 - ecology, Gurtin, McCamy (1977)
 - eukaryotic cell biology, Sengers et al. (2007)
- Degenerate diffusions (D = 0 in some regions) appear in bacterial aggregation models; Kawasaki et al. (1997), Leyva et al. (2013)
- Degenerate diffusions to model sharp tumor invasion fronts: McGillen et al. (2014).

Density-dependent and degenerate diffusion coefficient:

- $D \in C^2([0,1];\mathbb{R})$
- D(0) = 0
- D(u) > 0 for all $u \in (0,1]$,
- D'(u) > 0 for all $u \in [0,1]$ (*)

Examples:

- D(u) = u² + bu, b > 0; Shigesada et al. (1979). Models dispersive effects of mutual interference between individuals of a population.
- Porous medium type of diffusion, $D(u) = mu^{m-1}$

Rich mathematical consequences:

- Degenerate diffusion equations may possess finite speed of propagation of initial disturbances; Gilding, Kersner (1996).
- Existence of traveling fronts of sharp type; Sánchez-Garduño, Maini (1995, 1997).
- Loss of hyperbolicity of the associated ODE at degenerate point.

Traveling wave solution:

$$u(x,t) = \varphi(x-ct), \quad \varphi: \mathbb{R} \to \mathbb{R},$$

 $c \in \mathbb{R}$ - wave speed. Upon substitution:

$$(D(\varphi)\varphi_{\xi})_{\xi}+c\varphi_{\xi}+f(\varphi)=0,$$

where $\xi = x - ct$ denotes the translation (Galilean) variable. Asymptotic limits:

$$u_{\pm}:= arphi(\pm\infty) = \lim_{\xi o \pm \omega} arphi(\xi), \qquad \omega = \xi_0, \infty$$

 u_{\pm} is an equilibrium point of the reaction: $u_{\pm} \in \{0,1\}$ (Fisher-KPP), $u_{\pm} \in \{0,1,\alpha\}$ (bistable).

Some references:

- Aronson (1980): Fisher-KPP with diffusion of porous medium type.
- Sanchez-Garduño, Maini, (1994, 1995): Fisher-KPP fronts.
- Sanchez-Garduño, Maini, (1997): Nagumo (bistable) fronts.
- Sanchez-Garduño, Maini, Kappos (1996), El-Adnani, Talibi-Alaoui (2010) (Conley index techniques).
- Gilding, Kersner (2005) $(D(u) = au^k)$.
- Malaguti, Marcelli (2003) (doubly degenerate diffusions D(u) = u(1-u)).
- (Abridged list...)

In the Fisher-KPP case, the theory predicts the existence of sharp fronts with critical speed $c = c_*$, and monotone smooth fronts for $c > c_*$.

Examples (ii)

In the Nagumo case, there are many fronts. Sharp fronts connecting to degenerate equilibria with (unique) critical speed $c = c_* \in (0, \overline{c}(\alpha))$, $\overline{c}(\alpha) := 2\sqrt{D(\alpha)f'(\alpha)}$; smooth monotone fronts for $c > \overline{c}(\alpha)$ or c = 0, and even oscillatory profiles.

Figure 2: Profile $\varphi = \varphi(\xi)$ for (a) c = 0; (b) $c > c(\alpha)$.

Works on long-time behaviour of solutions to reaction-diffusion degenerate equations:

- Sherratt-Marchant (1996): Fisher-KPP case, numerical study with D(u) = u.
- Biró (2002), Medvedev et al. (2003): Fisher-KPP, diffusion porous medium type, compactly supported initial data evolve towards sharp front with $c = c_*$.
- Kamin, Rosenau (2004): Extension to f(u) = u(1 u^m), same porous medium type diff., fast decaying initial data.
- (Abridged list...)

Figure 3: (a) initial condition $u_0(x) \in C_0^{\infty}(\mathbb{R})$; (b) *u* evolves into the sharp front.

Figure 4: Perturbation of the smooth profile $\varphi = \varphi(x)$: (a) initial condition $u_0(x) = \varphi(x) + v_0(x)$; (b) $u(x,t) \rightarrow \varphi(x + \delta(t) - ct)$.

Works on stability of diffusion-degenerate fronts:

- Hosono (1986): Nagumo reaction, diffusion of porous medium type: D(u) = mu^{m-1}. Comparison principle techniques: initial data close to sharp front, then asymptotic convergence to a translated (sharp) front.
- Dalibard, Lopez-Ruiz, Perrin (2021): Preprint, arXiv:2108.10563. Porous medium with generalized Fisher-KPP reaction. Nonlinear stability in L² weighted energy spaces of smooth fronts.

References:

- Leyva, P. (2020), J. Dynam. Differ. Equ. 32. Fisher-KPP reaction, smooth fronts.
- Leyva, López-Ríos, P. (2021), Indiana Univ. Math. J., in press. Nagumo reaction, smooth fronts.

Features:

- Analysis focuses on spectral stability of smooth fronts.
- Techniques related to spectral theory of operators (Kato).
- Follows general program (a) spectral ⇒ (b) linear ⇒. (c) non-linear stability analyses. Main references: Alexander, Gardner, Jones (1990), Sandstede (2002), Kapitula, Promislow (2013).
- Some ideas could be extrapolated to the case of systems.

The spectral problem and main results

Abuse of notation $x \rightarrow x - ct$. Linearizing around the front yields,

$$u_t = (D(\varphi)u)_{xx} + cu_x + f'(\varphi)u.$$

Specialize to solutions of form $e^{\lambda t}u(x)$, with $\lambda \in \mathbb{C}$, $u \in X$, Banach space. Spectral problem:

$$\begin{aligned} \mathscr{L} u &= \lambda u, \\ \mathscr{L} : \mathscr{D}(\mathscr{L}) \subset X \to X, \\ \mathscr{L} u &= (D(\varphi)u)_{xx} + cu_x + f'(\varphi)u. \end{aligned}$$

 $\mathscr{D}(\mathscr{L})$ is dense in X; \mathscr{L} is the closed, densely defined, linearized operator around the front. (e.g. $X = L^2$, $\mathscr{D} = H^2$, localized perturbations)

Definition

Let $\mathscr{L} \in \mathscr{C}(X, Y)$ be a closed, densely defined operator from X to Y, Banach. Its resolvent $\rho(\mathscr{L})$ is defined as the set of all complex numbers $\lambda \in \mathbb{C}$ such that $\mathscr{L} - \lambda$ is injective, $\mathscr{R}(\mathscr{L} - \lambda) = Y$ and $(\mathscr{L} - \lambda)^{-1}$ is bounded. Its spectrum is defined as $\sigma(\mathscr{L}) = \mathbb{C} \setminus \rho(\mathscr{L})$.

Definition

We say the traveling front φ is X-spectrally stable if

$$\sigma(\mathscr{L}) \subset \{\lambda \in \mathbb{C} : \operatorname{\mathsf{Re}} \lambda \leq 0\}.$$

Lemma

For any closed, densely defined linear operator $\mathscr{L}: \mathscr{D} \subset X \to Y$,

$$\sigma(\mathscr{L}) = \sigma_{\mathrm{pt}}(\mathscr{L}) \cup \sigma_{\delta}(\mathscr{L}) \cup \sigma_{\pi}(\mathscr{L}),$$

where

$$\begin{split} \sigma_{\text{pt}}(\mathscr{L}) &:= \{\lambda \in \mathbb{C} : \mathscr{L} - \lambda \text{ is not injective}\},\\ \sigma_{\delta}(\mathscr{L}) &:= \{\lambda \in \mathbb{C} : \mathscr{L} - \lambda \text{ is injective, } \mathscr{R}(\mathscr{L} - \lambda) \text{ is closed},\\ &\text{ and } \mathscr{R}(\mathscr{L} - \lambda) \neq Y\},\\ \sigma_{\pi}(\mathscr{L}) &:= \{\lambda \in \mathbb{C} : \mathscr{L} - \lambda \text{ is injective, and } \mathscr{R}(\mathscr{L} - \lambda)\\ &\text{ is not closed}\}. \end{split}$$

Observations (i)

• In the theory of stability of waves, cf. Kapitula, Promislow (2013), the standard partition is Weyl's partition:

 $\sigma_{\mathrm{ess}}(\mathscr{L}):=\{\lambda\in\mathbb{C}:\mathscr{L}-\lambda \text{ is either not Fredholm,}$

or has index different from zero}.,

 $\widetilde{\sigma}_{\mathsf{pt}}(\mathscr{L}) := \{ \lambda \in \mathbb{C} : \mathscr{L} - \lambda \text{ is Fredholm with index zero} \\ \text{and has a non-trivial kernel} \}.$

Notice that $\widetilde{\sigma}_{pt} \subset \sigma_{pt}$. $\widetilde{\sigma}_{pt}$ is the set of isolated eigenvalues with finite multiplicity.

- $\sigma_{\text{pt}}(\mathscr{L})$ is called the extended point spectrum; its elements, eigenvalues. $\lambda \in \sigma_{\text{pt}}(\mathscr{L})$ if and only if there exists $u \in \mathscr{D}(\mathscr{L})$, $u \neq 0$, such that $\mathscr{L}u = \lambda u$
- $\lambda = 0$ always belongs to the L^2 $\sigma_{\rm pt}(\mathscr{L})$ (translation eigenvalue), as

$$\mathscr{L}\varphi_{x} = \partial_{x}\big((D(\varphi)\varphi_{x})_{x} + c\varphi_{x} + f(\varphi)\big) = 0$$

in view of the profile equation and $\varphi_x \in H^2(\mathbb{R};\mathbb{C})$ (eigenfunction).

• $\sigma_{\pi}(\mathscr{L})$ is contained in the approximate spectrum, defined as

$$\sigma_{\pi}(\mathscr{L}) \subset \sigma_{\mathsf{app}}(\mathscr{L}) := \{ \lambda \in \mathbb{C} : \mathsf{there exists} \ u_n \in \mathscr{D}(\mathscr{L}) \ \mathsf{with} \ \|u_n\| = 1$$

such that $(\mathscr{L} - \lambda)u_n \to 0 \ \mathsf{in} \ Y \ \mathsf{as} \ n \to \infty \}.$

This holds because $\mathscr{R}(\mathscr{L} - \lambda)$ not closed \Rightarrow there exists a Weyl's sequence: $u_n \in \mathscr{D}(\mathscr{L}), ||u_n|| = 1$ such that $(\mathscr{L} - \lambda)u_n \to 0$, which contains no convergent subsequence.

• $\sigma_{\delta}(\mathcal{L})$ is clearly contained in what is often called the compression spectrum:

$$\sigma_{\delta}(\mathscr{L}) \subset \sigma_{\mathsf{com}}(\mathscr{L}) := \{ \lambda \in \mathbb{C} \, : \, \mathscr{L} - \lambda \; \text{ is injective, and } \overline{\mathscr{R}(\mathscr{L} - \lambda)} \neq Y \}.$$

- Designed to overcome difficulties associated to degeneracy at $\varphi = 0$.
- Spectral problem recast as first order system, w_x = A(x,λ)w, w = (u, u_x) (cf. Alexander, Gardner, Jones (1990)).
- In the strictly parabolic setting, D ≥ δ > 0, and λ ∈ Ω ⊂ C, large connected set, A_±(λ) are strictly hyperbolic, their spectral equations determine Fredholm curves that bound Weyl's essential spectrum. In the degenerate case, hyperbolicity is lost.

Constant diffusion problem, $D(u) \equiv D > 0$. Spectral problem reads

$$\lambda u = Du_{xx} + cu_x + f'(\varphi)u.$$

Recast as a first order system:

$$W_x = \mathbf{A}(x,\lambda)W,$$
 $W = \begin{pmatrix} u \\ u_x \end{pmatrix} \in H^1(\mathbb{R};\mathbb{C}^2)$
 $\mathbf{A}(x,\lambda) = \begin{pmatrix} 0 & 1 \\ (\lambda - f'(\varphi))/D & -c/D \end{pmatrix}.$

Asymptotic limits:

$$\mathbf{A}_{\pm}(\lambda) = \lim_{x \to \pm \infty} \mathbf{A}(x,\lambda) = \begin{pmatrix} 0 & 1 \\ (\lambda - f'(u_{\pm}))/D & -c/D \end{pmatrix}.$$

Fact of life: The Fredholm properties of $\mathscr{L} - \lambda$ are the same as the operators $\mathscr{T}(\lambda) := d/dx - \mathbf{A}(x,\lambda)$. (There is a one-to-one and onto correspondence between the kernels and Jordan chains, with same srtucture and length.) (cf. **Kapitula, Promislow (2013)**.)

How to locate $\sigma_{ess}(\mathcal{L})$? The Fredholm curves $\lambda^{\pm} = \lambda^{\pm}(k)$, $k \in \mathbb{R}$ (solutions to det $(\mathbf{A}_{\pm}(\lambda) - ikI) = 0$, dispersion relation) determine the boundaries of the open regions in the complex plane on which the operator $\mathcal{T}(\lambda)$ (or $\mathcal{L} - \lambda$) is Fredholm.

- Idea: take a parabolic regularization (add $\varepsilon d^2/dx^2$), compute σ_{ess} and take the limit as $\varepsilon \rightarrow 0$.
- As a consequence, we control some component of the essential spectrum, σ_{δ} , precluding the behaviour of approximate spectra.
- The set σ_{π} is controlled with the use of Weyl sequences.
- The stability analysis of the point spectrum is based on weighted energy estimates.

Exponentially weighted spaces

For any $m \in \mathbb{Z}$, $m \ge 0$, $a \in \mathbb{R}$,

 $H^m_a(\mathbb{R};\mathbb{C}) = \{ v : e^{ax} v(x) \in H^m(\mathbb{R};\mathbb{C}) \},\$

Hilbert spaces with inner product and norm,

 $\langle u, v \rangle_{H^m_a} := \langle e^{ax} u, e^{ax} v \rangle_{H^m}, \qquad \|v\|_{H^m_a}^2 := \|e^{ax} v\|_{H^m}^2 = \langle v, v \rangle_{H^m_a}.$ Custom: $L^2_a(\mathbb{R};\mathbb{C}) = H^0_a(\mathbb{R};\mathbb{C}).$

Facts of life: (cf. Kapitula, Promislow (2013))

The spectrum of L ∈ C(L²_a; L²_a) is equivalent to the spectrum of a conjugated operator, L_a ∈ C(L²; L²):

$$\mathscr{L}_{a} := e^{ax} \mathscr{L} e^{-ax} : \mathscr{D} = H^{2}(\mathbb{R}; \mathbb{C}) \subset L^{2}(\mathbb{R}; \mathbb{C}) \to L^{2}(\mathbb{R}; \mathbb{C}),$$

• The point spectrum is invariant under conjugation $\sigma_{\rm pt}(\mathscr{L}_{\rm a})_{|L^2} = \sigma_{\rm pt}(\mathscr{L})_{|L^2_{\rm a}}.$

Theorem (Leyva, P. (2020))

For any monotone traveling front for Fisher-KPP reaction diffusion-degenerate equations, under hypotheses for $D = D(\cdot)$ and f, and traveling with speed $c \in \mathbb{R}$ satisfying the condition

$$c>\max\Big\{c_*,\ rac{f'(0)\sqrt{D(1)}}{\sqrt{f'(0)-f'(1)}}\Big\}>0,$$

there exists an exponentially weighted space $L^2_a(\mathbb{R})$, with $a \in \mathbb{R}$, such that the front is L^2_a -spectrally stable. $c_* > 0$ is the minimum threshold speed (the velocity of the sharp wave).

Theorem (Leyva, López-Ríos, P. (2021))

Under our hypotheses, the family of all monotone diffusion-degenerate Nagumo fronts connecting the equilibrium states $u = \alpha$ with u = 0 and traveling with speed $c > \overline{c}(\alpha) = 2\sqrt{D(\alpha)}f'(\alpha)$ are spectrally stable in an exponentially weighted energy space $L_a^2 = \{e^{ax} u \in L^2\}$. More precisely, there exists a > 0 such that

$$\sigma(\mathscr{L})_{|L^2_a} \subset \{\lambda \in \mathbb{C} \, : \, \operatorname{\textit{Re}} \lambda \leq 0\},$$

where $\mathscr{L}: L^2_a \to L^2_a$ denotes the linearized operator around the traveling front and $\sigma(\mathscr{L})_{|L^2_a}$ denotes its spectrum computed with respect to the energy space L^2_a .

Method of proof (overview)

- (A) Calculation of σ_{δ} (parabolic regularization technique; choice of the weight $a \in \mathbb{R}$).
- **(B)** Control of σ_{π} (use of Weyl sequences).
- (C) Control of σ_{pt} (weighted energy estimates; trick to overcome degeneracy).

(A) Parabolic regularization technique

• For any $\varepsilon > 0$, let

$$D^{\varepsilon}(\varphi) := D(\varphi) + \varepsilon.$$

 $D^{\varepsilon}(\phi) > 0$ for all $x \in \mathbb{R}$.

• Regularized conjugated operator:

$$\begin{aligned} \mathscr{L}_{a}^{\varepsilon} : \mathscr{D} &= H^{2} \subset L^{2} \to L^{2}, \\ \mathscr{L}_{a}^{\varepsilon} u := e^{ax} \mathscr{L}^{\varepsilon} e^{-ax} = D^{\varepsilon}(\varphi) u_{xx} + \left(2D^{\varepsilon}(\varphi)_{x} - 2aD^{\varepsilon}(\varphi) + c\right) u_{x} + \\ &+ \left(a^{2}D^{\varepsilon}(\varphi) - 2aD^{\varepsilon}(\varphi)_{x} - ac + D^{\varepsilon}(\varphi)_{xx} + f'(\varphi)\right) u \end{aligned}$$

 $a \in \mathbb{R}$ is to be chosen.

• Region of consistent splitting:

$$\Omega(a, \mathcal{E}) := \left\{ \lambda \in \mathbb{C} : \operatorname{Re} \lambda > \max\left\{ D^{\varepsilon}(u_{+})a^{2} - ac + f'(u_{+}), D^{\varepsilon}(u_{-})a^{2} - ac + f'(u_{-}) \right\} \right\}$$

- Lemma 1: For all ε > 0, a ∈ ℝ, and for each λ ∈ Ω(a,ε), the operator L^ε_a λ is Fredholm with index zero.
 (Note: hyperbolicity of end points is fundamental: Weyl's essential spectrum theorem + exponential dichotomies).
- Lemma 2: For each fixed λ ∈ C, the operators L^ε − λ converge in generalized sense to L − λ as ε → 0⁺ (d(G(L^ε − λ), G(L − λ)) → 0).
- Apply Kato's stability theorem (Kato, 1980) to locate σ_δ(ℒ_a).
 Lemma 3: Suppose that ℒ_a λ is semi-Fredholm, for a ∈ ℝ, λ ∈ ℂ. Then for each 0 < ε ≪ 1 sufficiently small ℒ_a^ε λ is semi-Fredholm and ind (ℒ_a^ε λ) = ind (ℒ_a λ).

- Corollary: $\sigma_{\delta}(\mathscr{L}_a) \subset \mathbb{C} \setminus \Omega(a, 0)$.
- Choose a ∈ ℝ appropriately to stabilize σ_δ: C\Ω(a,0) ⊂ {Re λ < 0}.
- Example: in the Fisher-KPP case it suffices to set

$$0 < \frac{f'(0)}{c} < a < (2D(1))^{-1} (c + \sqrt{c^2 - 4D(1)f'(1)}).$$

• Consequence: $\sigma_{\delta}(\mathscr{L}_{a})_{|L^{2}} = \sigma_{\delta}(\mathscr{L})_{|L^{2}_{a}} \subset \{\lambda \in \mathbb{C} : \operatorname{Re} \lambda < 0\}.$

- Conjugated operator $\mathscr{L}_a = b_2(x)\partial_x^2 + b_1(x)\partial_x + b_0(x)$ ld.
- Fix $\lambda \in \sigma_{\pi}(\mathscr{L}_a)_{|L^2}$. Then $\mathscr{R}(\mathscr{L}_a \lambda)$ is not closed and there exists a singular sequence $u_n \in \mathscr{D}(\mathscr{L}_a) = H^2$ with $||u_n||_{L^2} = 1$, for all $n \in \mathbb{N}$, such that $(\mathscr{L}_a \lambda)u_n \to 0$ in L^2 as $n \to \infty$ and which has no convergent subsequence.
- L^2 is a reflexive space $\Rightarrow u_n \rightarrow 0$ in L^2 .
- Lemma 4: There exists a subsequence, u_n , such that $u_n \to 0$ in L^2_{loc} as $n \to \infty$.

• For each $\varepsilon > 0$ we can choose R > 0 sufficiently large such that

$$|b_0(x)-rac{1}{2}\partial_x b_1(x)-(a^2D(u_\pm)-ac+f'(u_\pm))|$$

• From
$$b_2(x) = D(\phi) \ge 0$$
:

$$\operatorname{Re} \lambda \leq |\langle f_n, u_n \rangle_{L^2}| + \int_{-R}^{R} (b_0(x) - \frac{1}{2} \partial_x b_1(x)) |u_n|^2 dx + \int_{|x| \geq R} (b_0(x) - \frac{1}{2} \partial_x b_1(x)) |u_n|^2 dx \\ \leq ||(\mathscr{L} - \lambda) u_n||_{L^2} + C_1 ||u_n||_{L^2(-R,R)} + C_2 \varepsilon ||u_n||^2_{L^2(|x| \geq R)} + (a^2 D(u_{\pm}) - ac + f'(u_{\pm})) ||u_n||^2_{L^2(R)} \\ = \underbrace{||(\mathscr{L} - \lambda) u_n||_{L^2} + C_1 ||u_n||_{L^2(-R,R)}}_{\to 0, \operatorname{as} n \to \infty} + C_2 \varepsilon + a^2 D(u_{\pm}) - ac + f'(u_{\pm}).$$

• Thus,
$$\operatorname{Re} \lambda \leq a^2 D(u_{\pm}) - ac + f'(u_{\pm})$$
, or

 $\sigma_{\pi}(\mathscr{L}_{a})_{|L^{2}} = \sigma_{\pi}(\mathscr{L})_{|L^{2}_{a}} \subset \mathbb{C} \setminus \Omega(a,0) \subset \{\operatorname{Re} \lambda < 0\}.$

(C) Point spectral stability

• For fixed $\lambda \in \sigma_{\text{pt}}(\mathscr{L}_a)$, there is solution $u \in \mathscr{D}(\mathscr{L}_a) = H^2$ to $(\mathscr{L}_a - \lambda)u = 0$ (eigenfunction).

• Spectral transformation: $w = \Theta(x)u$, with

$$\Theta(x) = \exp\left(\frac{c}{2}\int_{x_0}^x \frac{ds}{D(\varphi(s))} - a(x - x_0)\right).$$

 Lemma 5: For the appropriate a ∈ ℝ and for any λ ∈ Ω(a,0), if u ∈ H² solves (ℒ_a − λ)u = 0 then w ∈ H² and solves

$$(D(\varphi)^2 w_x)_x + D(\varphi)G(x)w - \lambda D(\varphi)w = 0.$$

 Note: one needs detailed information about the decay structure of eigenfunctions and of the traveling fronts. • Lemma applies also to the translation eigenvalue, $\lambda = 0 \in \sigma_{pt}(\mathscr{L}_a) \cap \Omega(a, 0)$: eigenfunction $e^{ax} \varphi_x$ is transformed into $\psi = \Theta(x)e^{ax}\varphi_x$, which solves

$$(D(\varphi)^2 \psi_x)_x + D(\varphi)G(x)\psi = 0.$$

• Combine energy estimates on both equations and use monotonicity of the front:

$$\lambda \langle D(\varphi)w,w \rangle_{L^2} = - \|D(\varphi)(w/\psi)_{\times}\psi\|_{L^2}^2.$$

- If λσ_{pt}(ℒ_a) ∩ Ω(a,0) then Re λ ≤ 0. If λ ∈ σ_{pt}(ℒ_a) and λ ∉ Ω(a,0) the automatically Re λ < 0. We conclude point spectral stability.
- Note: the weighted L² norm ||u|| = ||√D(φ)u||_{L²} encodes the degeneracy of the front (see also Dalibard et al. (2021)).

Thanks...!