Rates of convergence to non-degenerate asymptotic profiles for fast diffusion equations via an energy method

Goro Akagi (Tohoku University)

BIRS-CMO Workshop "New Trends in Nonlinear Diffusion:
a Bridge between PDEs, Analysis and Geometry" (21w5127)
Sep 06, 2021 - Sep 10, 2021 (Zoom)

Cauchy-Dirichlet problem for the FDE

We shall consider the Cauchy-Dirichlet problem (FDE) $=\{(1)-(3)\}$ for the Fast Diffusion Equation,

$$
\begin{align*}
\partial_{t}\left(|u|^{q-2} u\right) & =\Delta u & & \text { in } \Omega \times(0, \infty), \tag{1}\\
u & =0 & & \text { on } \partial \Omega \times(0, \infty), \tag{2}\\
u(\cdot, 0) & =u_{0} & & \text { in } \Omega \tag{3}
\end{align*}
$$

where $\Omega \subset \mathbb{R}^{N}$ is a bounded domain with smooth boundary $\partial \Omega$, under the hypotheses

$$
\begin{equation*}
u_{0} \in H_{0}^{1}(\Omega) \backslash\{0\}, \quad 2<q<2^{*}:=\frac{2 N}{(N-2)_{+}} \tag{H}
\end{equation*}
$$

Physical Background: stability of asymptotic profiles of plasma diffusion (for $\boldsymbol{q}=3$ in [Okuda-Dawson '73], [Berryman-Holland '80])

Linear diffusion ($q=2$)

In case $q=2$, the solution is represented as a Fourier series,

$$
u(x, t)=\sum_{n=1}^{\infty} a_{n} \mathrm{e}^{-\lambda_{n} t} e_{n}(x), \quad a_{n}=\left(u_{0}, e_{n}\right)_{L^{2}(\Omega)}
$$

where $\left\{\left(\lambda_{n}, e_{n}\right)\right\}_{j=1}^{\infty}$ denote eigenpairs of

$$
-\Delta e=\lambda e \text { in } \Omega, \quad e=0 \text { on } \partial \Omega
$$

satisfying $\left(e_{j}, e_{k}\right)_{L^{2}(\Omega)}=\delta_{j k}$. Moreover,

$$
0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots \leq \lambda_{n} \rightarrow+\infty
$$

and hence, as long as $a_{1} \neq 0$,

$$
u(x, t) \sim a_{1} \mathrm{e}^{-\lambda_{1} t} e_{1}(x) \quad \text { for } t \gg 1
$$

Finite-time extinction

Proposition 1 (Finite-time extinction with rates)

Let u be the energy solution to (FDE). Then $\forall u_{0} \in H_{0}^{1}(\Omega) \backslash\{0\}$, $\exists t_{*}=t_{*}\left(u_{0}\right)>0$ and $\exists c_{1}, c_{2}>0$ such that

$$
\begin{equation*}
c_{1}\left(t_{*}-t\right)_{+}^{1 /(q-2)} \leq\|u(\cdot, t)\|_{H_{0}^{1}} \leq c_{2}\left(t_{*}-t\right)_{+}^{1 /(q-2)} \tag{4}
\end{equation*}
$$

for all $t \geq 0$. Moreover,

$$
\begin{equation*}
\lambda_{q} \frac{\left\|u_{0}\right\|_{L^{q}}^{q}}{\left\|\nabla u_{0}\right\|_{L^{2}}^{2}} \leq t_{*}\left(u_{0}\right) \leq \lambda_{q} C_{q}^{2}\left\|u_{0}\right\|_{L^{q}}^{q-2} \tag{5}
\end{equation*}
$$

where $\lambda_{q}:=\frac{q-1}{q-2}>0$ and C_{q} is the best constant of the SobolevPoincaré inequality, $\|w\|_{L^{q}} \leq C_{q}\|\nabla w\|_{L^{2}}$ for $w \in H_{0}^{1}(\Omega)$.
[Berryman-Holland '80] [Kwong '88] [Savaré-Vespri '94]...[A-Kajikiya '13]

Asymptotic profiles of vanishing solutions

Consider the asymptotic profile of $\boldsymbol{u}=\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{t})$ as follows:

$$
\phi(x):=\lim _{t \nearrow t_{*}}\left(t_{*}-t\right)_{+}^{-1 /(q-2)} u(x, t)
$$

To this end, set

$$
\begin{equation*}
v(x, s):=\left(t_{*}-t\right)_{+}^{-1 /(q-2)} u(x, t), \quad s:=\log \left(\frac{t_{*}}{t_{*}-t}\right) . \tag{6}
\end{equation*}
$$

Then \boldsymbol{v} turns out to be an energy solution to $(\mathbb{R})=\{(7)-(9)\}$:
(7)

$$
\begin{aligned}
\partial_{s}\left(|v|^{q-2} v\right) & =\Delta v+\lambda_{q}|v|^{q-2} v & & \text { in } \Omega \times(0, \infty), \\
v & =0 & & \text { on } \partial \Omega \times(0, \infty), \\
v(\cdot, 0) & =v_{0} & & \text { in } \Omega,
\end{aligned}
$$

(8)
(9)
where $v_{0}:=t_{*}\left(u_{0}\right)^{-1 /(q-2)} u_{0} \in H_{0}^{1}(\Omega) \backslash\{0\}$ and $\lambda_{q}:=\frac{q-1}{q-2}>0$.

Rescaled equation (R) as a gradient flow

Then (R) is reduced into the Cauchy problem for

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} s}\left(|v|^{q-2} v\right)(s)=-J^{\prime}(v(s)) \text { in } H^{-1}(\Omega), \quad s>0 \tag{10}
\end{equation*}
$$

where $J^{\prime}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ is the Fréchet derivative of the following energy functional $J: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$:

$$
\begin{equation*}
J(w):=\frac{1}{2}\|\nabla w\|_{L^{2}}^{2}-\frac{\lambda_{q}}{q}\|w\|_{L^{q}}^{q} \quad \text { for } \boldsymbol{w} \in \boldsymbol{H}_{\mathbf{0}}^{\mathbf{1}}(\boldsymbol{\Omega}) . \tag{11}
\end{equation*}
$$

Then $J(v(s))$ decreases in time and $v(s)$ converges to a critical point $\phi \in H_{0}^{1}(\Omega)$ of $J(\cdot)$, that is,

$$
\begin{equation*}
J^{\prime}(\phi)=0 \text { in } H^{-1}(\Omega) \tag{12}
\end{equation*}
$$

Asymptotic profiles for vanishing solutions

Theorem 2 (Asymptotic profiles for vanishing solutions)
For every $s_{n} \rightarrow \infty$, there exist a subsequence $\left(n^{\prime}\right)$ of (n) and a function $\phi \in H_{0}^{1}(\Omega) \backslash\{0\}$ such that

$$
v\left(s_{n^{\prime}}\right) \rightarrow \phi \quad \text { strongly in } H_{0}^{1}(\Omega)
$$

Moreover, ϕ solves the following Dirichlet problem (D):

$$
-\Delta \phi=\lambda_{q}|\phi|^{q-2} \phi \text { in } \Omega, \quad \phi=0 \text { on } \partial \Omega .
$$

[Berryman-Holland '80] [Kwong '88] [Savaré-Vespri '94]...[A-Kajikiya '13] Convergence (along the whole sequence) follows for isolated asymptotic profiles (e.g., 1D case, ball domains, "convex domains" for $q \sim 2,2^{*}$) and for positive asymptotic profiles (by Łojasiewicz-Simon's inequality).

Convergence of non-negative solutions for (R)

As for non-negative solutions $v \geq 0$ to (R), we can further use

- [DiBenedetto-Kwong-Vespri '91] $\forall \varepsilon>0, \exists c, C>0$;
(13) $\quad c d(x) \leq \frac{v(x, s)}{\phi(x)} \leq C d(x) \quad$ for $x \in \Omega, s \geq \varepsilon$,
where $d(x):=\operatorname{dist}(x, \partial \Omega) . \forall \varepsilon>0, \forall k \in \mathbb{N}, \exists C_{k}>0$;

$$
\left|D^{\alpha} v(x, s)^{q-1}\right| \leq C_{k} d(x)^{q-1-k} \quad \text { for } x \in \Omega, s \geq \varepsilon,|\alpha|=k .
$$

- [Feireisl-Simondon '00] Uniform convergence

$$
\begin{equation*}
v(\cdot, s) \rightarrow \phi \quad \text { uniformly in } \bar{\Omega} . \tag{14}
\end{equation*}
$$

- [Bonforte-Grillo-Vázquez '12] Relative error convergence

$$
\begin{equation*}
\lim _{s \rightarrow \infty}\left\|\frac{v(s)}{\phi}-1\right\|_{L^{\infty}}=0 \tag{15}
\end{equation*}
$$

Rates of convergence to non-degenerate profiles

The aim of this talk is to discuss rate of convergence of $v(s) \rightarrow \phi$ as $s \rightarrow \infty$ in view of linearized analysis.

To this end, we always assume that

- $\phi=\phi$ is a non-degenerate solution to (D), that is,

$$
\mathcal{L}_{\phi} e:=-\Delta e-\lambda_{q}(q-1)|\phi|^{q-2} e=0 \text { in } \Omega, \quad e=0 \text { on } \partial \Omega
$$

admits no non-trivial solution. That is,

- \mathcal{L}_{ϕ} does not have zero eigenvalue ($0 \notin \sigma_{p t}\left(\mathcal{L}_{\phi}\right)$),
- \mathcal{L}_{ϕ} is invertible.
- If $\boldsymbol{v}=\boldsymbol{v}(\boldsymbol{x}, s)$ is non-negative (hence $\phi>0$), then

$$
\lim _{s \rightarrow \infty}\left\|\frac{v(s)}{\phi}-1\right\|_{L^{\infty}}=0
$$

Analysis of linearized problems (1/3)

Suppose that $v \geq 0$ (and hence, $\phi>0$). Based on [Bonforte-Figalli '21], set $v=\phi+h$ and formally expand $v^{q-1} \fallingdotseq \phi^{q-1}+(q-1) \phi^{q-2} h$. Then

$$
\begin{aligned}
(q-1) \phi^{q-2} \partial_{s} h & \fallingdotseq \Delta h+\lambda_{q}(q-1) \phi^{q-2} h & & \text { in } \Omega \times(0, \infty) \\
h & =0 & & \text { on } \partial \Omega \times(0, \infty) \\
h(\cdot, 0) & =h_{0}:=v_{0}-\phi & & \text { in } \Omega .
\end{aligned}
$$

Multiply both sides by h and integrate it over Ω to get

$$
\begin{aligned}
& \frac{q-1}{2} \frac{\mathrm{~d}}{\mathrm{~d} s}(\underbrace{\int_{\Omega} h^{2} \phi^{q-2} \mathrm{~d} x}_{=: \mathrm{E}[h]}) \\
& +\underbrace{\int_{\Omega}|\nabla h|^{2} \mathrm{~d} x-\lambda_{q}(q-1) \int_{\Omega} h^{2} \phi^{q-2} \mathrm{~d} x}_{=: \downharpoonright[h]} \fallingdotseq 0 .
\end{aligned}
$$

Analysis of linearized problems (2/3)

Improved Poincaré Inequality (IPI)
(16) $\quad \mu_{k} \underbrace{\int_{\Omega} h^{2} \phi^{q-2} \mathrm{~d} x}_{=\mathrm{E}[h]} \leq \int_{\Omega}|\nabla h|^{2} \mathrm{~d} x \quad$ if $h \perp \operatorname{span}\left\{\psi_{j}\right\}_{j=1}^{k-1}$,
where $\left(\mu_{j}, \psi_{j}\right)$ denote eigenpairs of the eigenvalue problem,

$$
\begin{equation*}
-\Delta \psi=\mu \phi^{q-2} \psi \text { in } \Omega, \quad \psi=0 \text { on } \partial \Omega \tag{17}
\end{equation*}
$$

and $0<\mu_{1}<\mu_{2} \leq \cdots \leq \mu_{j} \rightarrow+\infty$ and $\left(\psi_{j}\right)$ forms a CONS of $L^{2}\left(\Omega ; \phi^{q-2} \mathrm{~d} x\right)$ (normalized as $\left.\left(\psi_{i}, \psi_{j}\right)_{L^{2}\left(\Omega ; \phi^{q-2} \mathrm{~d} x\right)}=\delta_{i j}\right)$.

Let $\boldsymbol{\mu}_{\boldsymbol{k}}$ be the smallest eigenvalue such that $\mu_{k}>\lambda_{q}(q-1)$.
Then if $h(s) \perp\left\{\psi_{j}\right\}_{j=1}^{k-1}$ for $s \gg 1$, Improved Poincaré Inequality holds,
(IPI)

$$
\left[\mu_{k}-\lambda_{q}(q-1)\right] \mathrm{E}[h(s)] \leq \mathrm{I}[h(s)] \quad \text { for } s \gg 1
$$

Analysis of linearized problems (3/3)

Thus

$$
\frac{\boldsymbol{q}-1}{2} \frac{\mathrm{~d}}{\mathrm{~d} s} \mathbf{E}[h(s)]+\left[\mu_{k}-\lambda_{q}(q-1)\right] \mathbf{E}[h(s)] " \leq " 0
$$

which implies
Optimal decay rate for the linearized problem

$$
\mathbf{E}[h(s)] " \leq " \mathbf{E}\left[\boldsymbol{h}_{0}\right] \mathrm{e}^{-\lambda_{0} s}, \quad \lambda_{0}:=\frac{2}{q-1}\left[\mu_{k}-\lambda_{q}(q-1)\right]>0
$$

Here we recall that

$$
\mathrm{E}[h(s)]=\int_{\Omega} h(\cdot, s)^{2} \phi^{q-2} \mathrm{~d} x=\int_{\Omega}|v(\cdot, s)-\phi|^{2} \phi^{q-2} \mathrm{~d} x
$$

[Bonforte-Figalli '21] introduced "Nonlinear Entropy Method" to justify the analysis of linearization for (R).

Nonlinear entropy method [Bonforte-Figalli '21]

Step 1. Derivation of entropy inequality: Test (R) by $h=v-\phi$.

$$
\begin{gathered}
\frac{1}{\boldsymbol{q}^{\prime}} \frac{\mathrm{d}}{\mathrm{~d} s} \mathcal{E}[v(s) \mid \phi]+\mathrm{I}[h(s)]=\mathrm{R}[h(s)], \\
\mathcal{E}[v \mid \phi]:=\int_{\Omega}\left[\boldsymbol{v}^{q}-\phi^{q}-\boldsymbol{q}^{\prime}\left(\boldsymbol{v}^{q-1}-\phi^{q-1}\right) \phi\right] \mathrm{d} x \asymp \mathrm{E}[h(s)], \\
|\mathbf{R}[h]| \lesssim\left\|\frac{\boldsymbol{v}}{\phi}-1\right\|_{\infty} \underbrace{\int_{\Omega}|\boldsymbol{h}|^{2} \phi^{q-2} \mathrm{~d} x}_{=\mathrm{E}[h]} .
\end{gathered}
$$

Step 2. Improved Poincaré Inequality for "almost orthogonality":

$$
\mathbf{Q}_{j}[h(s)]:=\frac{\left|\int_{\Omega} h(s) \psi_{j} \phi^{q-2} \mathrm{~d} x\right|}{\mathrm{E}[h]^{1 / 2}}<\varepsilon \quad(\forall j \leq k-1) \Rightarrow(\mathrm{IPI})_{\varepsilon}
$$

Nonlinear entropy method [Bonforte-Figalli '21]

Step 3. Nonlinear flows improve "almost orthogonality": claims that

$$
\forall \varepsilon>0, \exists s_{\varepsilon}>0 ; \sup _{\mathbf{Q}_{j}}[h(s)]<\varepsilon \text { for } j=1,2, \ldots, k-1
$$

Hence (IPI) $)_{\varepsilon}$ yields

$$
\frac{1}{q^{\prime}} \frac{\mathrm{d}}{\mathrm{~d} s} \mathcal{E}[\boldsymbol{v} \mid \phi]+\underbrace{\left(\mu_{k}-\lambda_{q}(q-1)-C \varepsilon^{2}-C \boldsymbol{\delta}\right) C_{1}}_{\fallingdotseq\left[\mu_{k}-\lambda_{q}(q-1)\right](2 / q)>0 \text { for } \delta, \varepsilon \ll 1, s \gg 1} \mathcal{E}[v \mid \phi] \leq 0
$$

Step 4. Sharp rate of convergence: Remove ε and δ to get
Theorem 3 (Sharp rate for the relative entropy [BF '21])
Assume $v \geq 0$. There exists $\kappa_{0}>0$ such that

$$
\int_{\Omega}|v(\cdot, s)-\phi|^{2} \phi^{q-2} \mathrm{~d} x \leq \kappa_{0} \mathrm{e}^{-\lambda_{0} s} \quad \text { for } \quad s \geq 0
$$

Rates of convergence via energy methods

In this talk, we shall reveal rates of convergence based on energy methods.
Theorem 4 (Rates of convergence for the energy [A])
For any constant $\boldsymbol{\lambda}>0$ satisfying

$$
0<\lambda<\frac{2}{q-1} C_{q}^{-2}\|\phi\|_{L^{q}(\Omega)}^{-(q-2)} \min _{j}\left|\frac{\mu_{j}-\lambda_{q}(q-1)}{\mu_{j}}\right|,
$$

where C_{q} is the best constant of the Sobolev-Poincaré inequality, there exists a constant $C>0$ depending on the choice of λ such that

$$
0 \leq J(v(s))-J(\phi) \leq C \mathrm{e}^{-\lambda s} \quad \text { for } s \geq 0
$$

Furthermore, $v(s)$ strongly converges to ϕ in $H_{0}^{1}(\Omega)$ at an exponential rate as $s \rightarrow+\infty$.

Ingredients of proof

- Energy identity: Test (R) by $\partial_{s} v(s)$ to get

$$
c_{q}\left\|\partial_{s}\left(|v|^{(q-2) / 2} v\right)(s)\right\|_{L^{2}}^{2}+\frac{\mathrm{d}}{\mathrm{~d} s} J(v(s)) \leq 0
$$

with $c_{q}=4 /\left(q q^{\prime}\right)$.

- Gradient inequality: For any constant

$$
\omega>\left\|\mathcal{L}_{\phi}^{-1}\right\|_{\mathscr{L}\left(H^{-1}(\Omega), H_{0}^{1}(\Omega)\right)}^{1 / 2} / \sqrt{2}
$$

there exists a constant $\delta>0$ such that

$$
|J(w)-J(\phi)|^{1 / 2} \leq \omega\left\|J^{\prime}(w)\right\|_{H^{-1}(\Omega)} \quad \text { for } \quad w \in H_{0}^{1}(\Omega)
$$

provided that $\|w-\phi\|_{H_{0}^{1}(\Omega)}<\delta$.

- Quantitative estimate for $\left\|\mathcal{L}_{\phi}^{-1}\right\|$ in terms of eigenvalues $\left(\mu_{j}\right)$

Sharp rate of convergence via energy methods
As for non-negative solutions $v=v(x, s) \geq 0$, we obtain
Theorem 5 (Sharp rate of convergence for the energy [A])
Assume $v \geq 0$. Then there exists $\kappa_{1}>0$ such that

$$
\begin{equation*}
0 \leq J(v(s))-J(\phi) \leq \kappa_{1} \mathrm{e}^{-\lambda_{0} s} \quad \text { for } s \geq 0 \tag{18}
\end{equation*}
$$

Here λ_{0} is the decay rate of solutions for the linearized problem.

Theorem 3 follows as a corollary, and moreover, we have
Corollary 6 (Sharp rate of convergence in $\boldsymbol{H}_{0}^{1}(\Omega)[\mathrm{A}]$)
Assume $v \geq 0$. There exists $\kappa_{2}>0$ such that

$$
\begin{equation*}
\int_{\Omega}|\nabla v(x, s)-\nabla \phi(x)|^{2} \mathrm{~d} x \leq \kappa_{2} \mathrm{e}^{-\lambda_{0} s} \quad \text { for } \quad s \geq 0 \tag{19}
\end{equation*}
$$

Outline of proof (1/3)

Step 1. "Refined" gradient inequality:
Lemma 7 ("Refined" gradient inequality)

$$
\begin{aligned}
0 & \leq J(v(s))-J(\phi) \\
& \leq \frac{1}{2 \nu_{k}}\left\|J^{\prime}(v(s))\right\|_{L^{2}\left(\Omega ; \phi^{2-q}(x)\right.}^{2}+o\left(\|v(s)-\phi\|_{H_{0}^{1}}^{2}\right) .
\end{aligned}
$$

Step 2. Energy inequality: Note that

$$
\int_{\Omega}\left|\partial_{s}\left(v^{q-1}\right)(s)\right|^{2} \phi^{2-q} \mathrm{~d} x=\frac{4(q-1)^{2}}{q^{2}} \int_{\Omega}\left|\partial_{s}\left(v^{\frac{q}{2}}\right)(s)\right|^{2}\left(\frac{v(s)}{\phi}\right)^{q-2} \mathrm{~d} x .
$$

Then for any $\lambda<\lambda_{0}$, one can take $s_{\lambda}>0$ such that

$$
0 \leq J(v(s))-J(\phi) \leq-\frac{1}{\lambda} \frac{\mathrm{~d}}{\mathrm{~d} s} J(v(s)) \quad \text { for } s>s_{\lambda} .
$$

Thus we shall obtain the "almost sharp" rate of convergence for $J(v(s))$.

Outline of proof (2/3)

Step 3. Exponential convergence of Sobolev norm:

Lemma 8 (Exponential convergence in $H_{0}^{1}(\Omega)$)
Assume that $J(v(s))-J(\phi) \lesssim \mathrm{e}^{-\lambda s}$ for some $\lambda>0$. Then

$$
\begin{array}{r}
\mathrm{E}[h(s)]=\|v(s)-\phi\|_{L^{2}\left(\Omega ; \phi^{q-2} \mathrm{~d} x\right)}^{2} \lesssim \mathrm{e}^{-\lambda s}, \\
\|v(s)-\phi\|_{H_{0}^{1}}^{2} \lesssim \mathrm{e}^{-\lambda s} .
\end{array}
$$

Step 4. "Sharp" rate of convergence: We have obtained

$$
\begin{aligned}
H(s) & :=J(v(s))-J(\phi) \\
& \leq-\left(\frac{q-1}{2 \nu_{k}}+\varepsilon(s)\right)(1+\delta(s))^{q-2} \frac{\mathrm{~d}}{\mathrm{~d} s} J(v(s)) .
\end{aligned}
$$

Outline of proof (3/3)

By Lemma 8, (assuming $q \geq 3$ for simplicity) we observe

$$
\varepsilon(s):=\frac{o\left(\|v(s)-\phi\|_{H_{0}^{1}}^{2}\right)}{\|v(s)-\phi\|_{H_{0}^{1}}^{2}} \lesssim\|v(s)-\phi\|_{H_{0}^{1}} \lesssim \mathrm{e}^{-\frac{\lambda}{2} s} .
$$

Moreover, thanks to Lemma 8 with [Theorem 4.1, BF '21], we can prove

$$
\delta(s):=\left\|\frac{v(s)}{\phi}-1\right\|_{L^{\infty}} \lesssim \mathrm{e}^{-b s} \quad \text { for } s \gg 1
$$

for some $b>0$. Thus

$$
\frac{\mathrm{d} \boldsymbol{H}}{\mathrm{~d} s}(s)+\lambda_{0} \boldsymbol{H}(s) \leq C \mathrm{e}^{-c s} \boldsymbol{H}(s) \quad \text { for } s>s_{*}
$$

for some $c, C, s_{*}>0$. Then it follows that

$$
\boldsymbol{H}(s) \leq \boldsymbol{H}\left(s_{*}\right) \mathrm{e}^{C / c} \mathrm{e}^{-\lambda_{0}\left(s-s_{*}\right)} \quad \text { for } \quad s \geq s_{*} .
$$

Remarks for nonnegative solutions

As for the results obtained for $v \geq 0$, we remark that:

- These results seem slightly stronger than Theorem 3 for relative entropy; on the other hand, with aid of the recent regularity result by [Jin-Xiong, to appear], they may also be derived from Theorem 3.
- However, the proof of [A] seems simpler than that of [BF '21]; in particular, we can avoid "Step 3", which may be the most involved part of the proof.

Thank you for your attention !

Goro Akagi
Tohoku University, JP

goro.akagi@tohoku.ac.jp

Sketch of proof

Let us recall that

Ansatz

- $v=v(x, s) \geq 0$: non-negative solution to (R)
- $\phi=\phi(x)>0$: non-degenerate positive solution to (D)
- $\delta(s):=\left\|\frac{v(s)}{\phi}-1\right\|_{L^{\infty}} \rightarrow 0$ as $s \rightarrow+\infty$

Sketch of proof

Weighted eigenvalue problem

$$
-\Delta e_{j}=\mu_{j} \phi^{q-2} e_{j} \text { in } \Omega, \quad \phi=0 \text { on } \partial \Omega
$$

- $0<\mu_{1}<\mu_{2} \leq \cdots \leq \mu_{n} \rightarrow+\infty$,
- $\left(e_{j}\right)$ forms a CONS of $H_{0}^{1}(\Omega)$ such that $\left(e_{i}, e_{j}\right)_{H_{0}^{1}}=\delta_{i j}$,
- $\mu_{1}=\lambda_{q}, e_{1}=\phi /\|\phi\|_{H_{0}^{1}}$,
- $\left(-\Delta e_{j}\right)$ forms a CONS of $H^{-1}(\Omega)$.

Then the linearized operator $\mathcal{L}_{\phi}=-\Delta-\lambda_{q}(q-1) \phi^{q-2}$ fulfills

- $\mathcal{L}_{\phi} e_{j}=\nu_{j} \phi^{q-2} e_{j}$ in $\Omega, \quad e_{j}=0$ on $\partial \Omega$,
- $\nu_{j}=\mu_{j}-\lambda_{q}(q-1)$ (in particular, $\left.\nu_{1}=1-q<0\right)$,
- Let $k \in \mathbb{N} ; \mu_{k-1}<\lambda_{q}(q-1)<\mu_{k}$ (i.e., $\left.\nu_{k-1}<0<\nu_{k}\right)$.

Step 1. "Refined" gradient inequality

Lemma 9 ("Refined" gradient inequality)

$$
\begin{aligned}
0 & \leq J(v(s))-J(\phi) \\
& \leq \frac{1}{2 \nu_{k}}\left\|J^{\prime}(v(s))\right\|_{L^{2}\left(\Omega ; \phi^{2-q}(x)\right.}^{2}+o\left(\|v(s)-\phi\|_{H_{0}^{1}}^{2}\right) .
\end{aligned}
$$

By Taylor's theorem, we have

$$
\begin{aligned}
J(v(s))-J(\phi)= & \frac{1}{2}\left\langle\mathcal{L}_{\phi}(v(s)-\phi), v(s)-\phi\right\rangle_{H_{0}^{1}} \\
& +o\left(\|v(s)-\phi\|_{H_{0}^{1}}^{2}\right) \\
J^{\prime}(v(s))= & \mathcal{L}_{\phi}(v(s)-\phi)+o\left(\|v(s)-\phi\|_{H_{0}^{1}}\right) .
\end{aligned}
$$

Step 1. "Refined" gradient inequality

Hence

$$
\begin{aligned}
& J(v(s))-J(\phi) \\
& =\frac{1}{2}\left\langle J^{\prime}(v(s)), \mathcal{L}_{\phi}^{-1}\left(J^{\prime}(v(s))\right)\right\rangle_{H_{0}^{1}}+o\left(\|v(s)-\phi\|_{H_{0}^{1}}^{2}\right) .
\end{aligned}
$$

We substitute

$$
J^{\prime}(v(s))=\sum_{j=1}^{\infty} \sigma_{j}(s)\left(-\Delta e_{j}\right)
$$

Then we find that

$$
\begin{aligned}
& J(v(s))-J(\phi) \\
& =\frac{1}{2} \sum_{j=1}^{\infty} \frac{\mu_{j}}{\nu_{j}} \sigma_{j}(s)^{2}+o\left(\|v(s)-\phi\|_{H_{0}^{1}}^{2}\right) .
\end{aligned}
$$

Step 1. "Refined" gradient inequality

Moreover,

$$
\begin{aligned}
& J(v(s))-J(\phi)-\frac{1}{2} \sum_{j=1}^{k-1} \frac{\mu_{j}}{\nu_{j}} \sigma_{j}(s)^{2} \\
& =\frac{1}{2} \sum_{j=k}^{\infty} \frac{\mu_{j}}{\nu_{j}} \sigma_{j}(s)^{2}+o\left(\|v(s)-\phi\|_{H_{0}^{1}}^{2}\right) \\
& \leq \frac{1}{2 \nu_{k}} \sum_{j=k}^{\infty} \mu_{j} \sigma_{j}(s)^{2}+o\left(\|v(s)-\phi\|_{H_{0}^{1}}^{2}\right) \\
& \leq \frac{1}{2 \nu_{k}}\left\|J^{\prime}(v(s))\right\|_{L^{2}\left(\Omega ; \phi^{2-q} \mathrm{~d}_{\mathrm{d} x}\right.}^{2}+o\left(\|v(s)-\phi\|_{H_{0}^{1}}^{2}\right) \\
& \leq\left(\frac{1}{2 \nu_{k}}+\varepsilon(s)\right)\left\|J^{\prime}(v(s))\right\|_{L^{2}\left(\Omega ; \phi^{2}-q_{\mathrm{d} x)}\right.}^{2} .
\end{aligned}
$$

Thus we have proved Lemma 9.

Step 2. "Almost sharp" rate of convergence

Lemma 10 ("Almost sharp" rate of convergence)

For any $\lambda<\lambda_{0}=\frac{2 \nu_{k}}{q-1}$, there exist $s_{\lambda}, \kappa_{\lambda}>0$ such that

$$
0 \leq J(v(s))-J(\phi) \leq \kappa_{\lambda} \mathrm{e}^{-\lambda\left(s-s_{\lambda}\right)} \quad \text { for } \quad s \geq s_{\lambda}
$$

Noting that

$$
\partial_{s}\left(v^{q-1}\right)(s)=\frac{2(q-1)}{q}|v(s)|^{\frac{q-2}{2}} \partial_{s}\left(v^{\frac{q}{2}}\right)(s),
$$

we find that

$$
\begin{aligned}
\left\|J^{\prime}(v(s))\right\|_{L^{2}\left(\Omega ; \phi^{2-q} \mathrm{~d} x\right)}^{2} & \stackrel{(\mathrm{R})}{=} \int_{\Omega}\left|\partial_{s}\left(v^{q-1}\right)(s)\right|^{2} \phi^{2-q} \mathrm{~d} x \\
& =\frac{4(q-1)^{2}}{q^{2}} \int_{\Omega}\left|\partial_{s}\left(v^{\frac{q}{2}}\right)(s)\right|^{2}\left(\frac{v(s)}{\phi}\right)^{q-2} \mathrm{~d} x .
\end{aligned}
$$

Step 2. "Almost sharp" rate of convergence

Combine this with the last lemma to see that

$$
\begin{aligned}
& J(v(s))-J(\phi) \\
& \leq\left(\frac{1}{2 \nu_{k}}+\varepsilon(s)\right) \frac{4(\boldsymbol{q}-1)^{2}}{\boldsymbol{q}^{2}}(1+\delta(s))^{q-2}\left\|\partial_{s}\left(v^{\frac{q}{2}}\right)(s)\right\|_{L^{2}}^{2} \\
& \leq-\left(\frac{1}{2 \nu_{k}}+\varepsilon(s)\right) \frac{4(\boldsymbol{q}-1)^{2}}{\boldsymbol{q}^{2}}(1+\delta(s))^{q-2} \boldsymbol{c}_{q}^{-1} \frac{\mathrm{~d}}{\mathrm{~d} s} J(v(s)) .
\end{aligned}
$$

Thus for any $\boldsymbol{\lambda}<\lambda_{0}$, one can take $s_{\boldsymbol{\lambda}}>0$ such that

$$
J(v(s))-J(\phi) \leq-\frac{1}{\lambda} \frac{\mathrm{~d}}{\mathrm{~d} s} J(v(s)) \quad \text { for } \quad s>s_{\lambda}
$$

which implies

$$
J(v(s))-J(\phi) \leq\left[J\left(v\left(s_{\lambda}\right)\right)-J(\phi)\right] \mathrm{e}^{-\lambda\left(s-s_{\lambda}\right)} \quad \text { for } \quad s>s_{\lambda}
$$

Step 3. Convergence of Sobolev norm with rate

Lemma 11 (Convergence in $\boldsymbol{H}_{0}^{1}(\Omega)$ with rates)

Assume that $J(v(s))-J(\phi) \lesssim \mathrm{e}^{-\lambda s}$ for some $\boldsymbol{\lambda}>0$. Then

$$
\begin{array}{r}
\mathrm{E}[h(s)]=\|v(s)-\phi\|_{L^{2}\left(\Omega ; \phi^{q-2} \mathrm{~d} x\right)}^{2} \lesssim \mathrm{e}^{-\lambda s}, \\
\|v(s)-\phi\|_{H_{0}^{1}}^{2} \lesssim \mathrm{e}^{-\lambda s} .
\end{array}
$$

As a by-product of the argument so far, we obtain

$$
\left\|\partial_{s}\left(v^{q-1}\right)(s)\right\|_{L^{2}\left(\Omega ; \phi^{2-q} \mathrm{~d} x\right)} \leq-C \frac{\mathrm{~d}}{\mathrm{~d} s}[J(v(s))-J(\phi)]^{1 / 2}
$$

whence follows from Lemma 10 that

$$
\begin{aligned}
\left\|\phi^{q-1}-v^{q-1}(s)\right\|_{L^{2}\left(\Omega ; \phi^{2-q} \mathrm{~d} x\right)} & \leq \int_{s}^{\infty}\left\|\partial_{s}\left(v^{q-1}\right)(\sigma)\right\|_{L^{2}\left(\Omega ; \phi^{2-q} \mathrm{~d} x\right)} \mathrm{d} \sigma \\
& \leq C[J(v(s))-J(\phi)]^{1 / 2} \lesssim e^{-\frac{\lambda}{2} s}
\end{aligned}
$$

Step 3. Convergence of Sobolev norm with rate

On the other hand, we observe that

$$
\begin{aligned}
& \int_{\Omega}|v(\cdot, s)-\phi|^{2} \phi^{q-2} \mathrm{~d} x \\
& \leq \int_{\Omega}\left|v(\cdot, s)^{q-1}-\phi^{q-1}\right|^{2} \phi^{2-q} \mathrm{~d} x \lesssim \mathrm{e}^{-\lambda s}
\end{aligned}
$$

Furthermore, a simple calculation yields

$$
\begin{aligned}
& J(v(s))-J(\phi) \\
& =\frac{1}{2}\|\nabla(v(s)-\phi)\|_{L^{2}(\Omega)}^{2}-\frac{\lambda_{q}}{2}(q-1) \int_{\Omega}|v-\phi|^{2} \phi^{q-2} \mathrm{~d} x \\
& \quad+o\left(\|v(s)-\phi\|_{H_{0}^{1}(\Omega)}^{2}\right)
\end{aligned}
$$

Thus the desired conclusion follows from Lemma 10 and the above.

Step 4. "Sharp" rate of convergence

Now, we are ready to prove Theorem 5. For simplicity, assume $q \geq 3$ and then recall that

$$
\begin{aligned}
& \boldsymbol{H}(s):=J(v(s))-J(\phi) \\
& \leq-\left(\frac{q-1}{2 \nu_{k}}+\varepsilon(s)\right)(1+\delta(s))^{q-2} \frac{\mathrm{~d}}{\mathrm{~d} s} J(v(s)) .
\end{aligned}
$$

By Lemma 11, we observe

$$
\varepsilon(s)=\frac{o\left(\|v(s)-\phi\|_{\boldsymbol{H}_{0}^{1}}^{2}\right)}{\|v(s)-\phi\|_{\boldsymbol{H}_{0}^{1}}^{2}} \lesssim\|v(s)-\phi\|_{\boldsymbol{H}_{0}^{1}} \lesssim \mathrm{e}^{-\frac{\lambda}{2} s}
$$

Moreover, thanks to Lemma 11 with [Theorem 4.1, BF '21], we can prove

$$
\delta(s)=\left\|\frac{v(s)}{\phi}-1\right\|_{L^{\infty}} \lesssim \mathrm{e}^{-b s} \quad \text { for } s \gg 1
$$

for some $b>0$.

Step 4. "Sharp" rate of convergence

Lemma 12 ([Theorem 4.1, Bonforte-Figalli '21])

There exist positive constants C, L, s_{*} such that

$$
\begin{aligned}
\left\|\frac{v(s)}{\phi}-1\right\|_{L^{\infty}} \leq & C \frac{\mathrm{e}^{L\left(s-s_{0}\right)}}{s-s_{0}} \sup _{\sigma \in\left[s_{0}, s\right]}\left(\int_{\Omega}|v(\sigma)-\phi|^{2} \phi^{q-2} \mathrm{~d} x\right)^{\frac{1}{4 N}} \\
& +C\left(s-s_{0}\right) \mathrm{e}^{L\left(s-s_{0}\right)} \quad \text { for } s>s_{0} \geq s_{*}
\end{aligned}
$$

Proof. Let $s>0$ and set $s_{0}=s-\mathrm{e}^{-a s}$, where \boldsymbol{a} is a positive number to be determined later. Then

$$
\begin{aligned}
\left\|\frac{\boldsymbol{v}(s)}{\phi}-1\right\|_{L^{\infty}(\Omega)} \leq & C \frac{\mathrm{e}^{L \mathrm{e}^{-a s}}}{\mathrm{e}^{-a s}} \sup _{\sigma \in\left[s-\mathrm{e}^{-a s}, s\right]}\left(\int_{\Omega}|v(\sigma)-\phi|^{2} \phi^{q-2} \mathrm{~d} x\right)^{\frac{1}{4 N}} \\
& +C \mathrm{e}^{-a s} \mathrm{e}^{L \mathrm{e}^{-a s}} .
\end{aligned}
$$

Step 4. "Sharp" rate of convergence

Thus Lemma 11 yields

$$
\delta(s)=\left\|\frac{v(s)}{\phi}-1\right\|_{L^{\infty}(\Omega)} \leq C \mathrm{e}^{L} \mathrm{e}^{a s} \mathrm{e}^{-\frac{\lambda}{4 N}(s-1)}+C \mathrm{e}^{-a s} \mathrm{e}^{L} .
$$

Hence it suffices to choose $0<a<\lambda /(4 N)$.

Step 4. "Sharp" rate of convergence

Therefore we have

$$
\frac{\mathrm{d} \boldsymbol{H}}{\mathrm{~d} s}(s)+\lambda_{0} \boldsymbol{H}(s) \leq C \mathrm{e}^{-c s} \boldsymbol{H}(s) \quad \text { for } s>s_{*}
$$

for some $s_{*}>0$. Then there exists $C>0$ such that

$$
\boldsymbol{H}(s) \leq \boldsymbol{C H}\left(s_{*}\right) \mathrm{e}^{-\lambda_{0}\left(s-s_{0}\right)} \quad \text { for } s \geq s_{*} .
$$

Consequently, we obtain

$$
\begin{equation*}
0 \leq J(v(s))-J(\phi) \leq \kappa_{1} \mathrm{e}^{-\lambda_{0} s} \quad \text { for } s \geq 0 \tag{20}
\end{equation*}
$$

for some $\kappa_{1}>0$. This completes the proof of Theorem 5 .

Proof of Corollaries. Combine (20) with Lemma 11 (see Step 3).

