Stability in Gagliardo-Nirenberg-Sobolev inequalities $1 / 3$:
 A variational point of view

Bruno Nazaret

SAMM, Université Paris 1 Panthéon-Sorbonne
September 8th, 2021
BIRS-CMO workshop
New Trends in Nonlinear Diffusion: a Bridge between PDEs, Analysis and Geometry
Oaxaca (September 5-10, 2021)

Joint work on Stability in Gagliardo-Nirenberg-Sobolev inequalities: Flows, regularity and the entropy method arXiv:2007.03674 (Apr. 29, 2021) with

Matteo Bonforte
\triangleright Universidad Autónoma de Madrid and ICMAT

Jean Dolbeault
\triangleright Ceremade, Université Paris-Dauphine (PSL)

Nikita Simonov
\triangleright Ceremade, Université Paris-Dauphine (PSL)

Outline and reference

Q Chapter 1: Gagliardo-Nirenberg-Sobolev inequalities by variational methods
\triangleright Gagliardo-Nirenberg-Sobolev inequalities
\triangleright Relative entropy and relative Fisher information
\triangleright Optimality in GNS inequalities
\triangleright A stability result for GNS inequalities
with Matteo Bonforte, Jean Dolbeault, Nikita Simonov
e M. Bonforte, J. Dolbeault, B. Nazaret, and N. Simonov. Stability in Gagliardo-Nirenberg-Sobolev inequalities.
Preprint https://hal.archives-ouvertes.fr/hal-02887010

Gagliardo-Nirenberg-Sobolev inequalities

Q We consider the inequalities

$$
\begin{equation*}
\|\nabla f\|_{2}^{\theta}\|f\|_{p+1}^{1-\theta} \geq \mathscr{C}_{\mathrm{GNS}}(p)\|f\|_{2 p} \tag{GNS}
\end{equation*}
$$

$\theta=\frac{d(p-1)}{(d+2-p(d-2)) p}, \quad p \in(1,+\infty)$ if $d=1$ or $2, \quad p \in\left(1, p^{*}\right]$ if $d \geq 3, \quad p^{*}=\frac{d}{d-2}$
\triangleright Function space $\mathscr{H}_{p}\left(\mathbb{R}^{d}\right)$: completion of $\mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ with respect to the norm

$$
f \mapsto(1-\theta)\|f\|_{p+1}+\theta\|\nabla f\|_{2} .
$$

Q [del Pino, Dolbeault (2002)]: Equality case in (GNS) is achieved if and only if

$$
f \in \mathfrak{M}:=\left\{g_{\lambda, \mu, y}:(\lambda, \mu, y) \in(0,+\infty) \times \mathbb{R} \times \mathbb{R}^{d}\right\}
$$

\triangleright Aubin-Talenti functions:

$$
g_{\lambda, \mu, y}(x):=\mu \mathbf{g}((x-y) / \lambda), \mathbf{g}(x)=\left(1+|x|^{2}\right)^{-\frac{1}{\rho-1}}
$$

Related inequalities

$$
\begin{equation*}
\|\nabla f\|_{2}^{\theta}\|f\|_{p+1}^{1-\theta} \geq \mathscr{C}_{\mathrm{GNS}}(p)\|f\|_{2 p} \tag{GNS}
\end{equation*}
$$

Q Sobolev's inequality: $d \geq 3, p=p^{*}=d /(d-2)$

$$
S_{d}\|\nabla f\|_{2} \geq\|f\|_{2 p^{*}}
$$

Q Euclidean Onofri inequality

$$
\int_{\mathbb{R}^{2}} e^{h-\bar{h}} \frac{d x}{\pi\left(1+|x|^{2}\right)^{2}} \leq e^{\frac{1}{16 \pi} \int_{\mathbb{R}^{2}}|\nabla h|^{2} d x}
$$

$d=2, p \rightarrow+\infty$ with $f_{p}(x):=\mathrm{g}(x)\left(1+\frac{1}{2 p}(h(x)-\bar{h})\right), \bar{h}=\int_{\mathbb{R}^{2}} h(x) \frac{d x}{\pi\left(1+|x|^{2}\right)^{2}}$
Q Euclidean logarithmic Sobolev inequality in scale invariant form

$$
\frac{d}{2} \log \left(\frac{2}{\pi d e} \int_{\mathbb{R}^{d}}|\nabla f|^{2} \mathrm{~d} x\right) \geq \int_{\mathbb{R}^{d}}|f|^{2} \log |f|^{2} \mathrm{~d} x
$$

or $\int_{\mathbb{R}^{d}}|\nabla f|^{2} \mathrm{~d} x \geq \frac{1}{2} \int_{\mathbb{R}^{d}}|f|^{2} \log \left(\frac{|f|^{2}}{\|f\|_{2}^{2}}\right) \mathrm{d} x+\frac{d}{4} \log \left(2 \pi e^{2}\right) \int_{\mathbb{R}^{d}}|f|^{2} \mathrm{~d} x$

Deficit functional, scale invariance

Deficit functional

$$
\delta[f]:=(p-1)^{2}\|\nabla f\|_{2}^{2}+4 \frac{d-p(d-2)}{p+1}\|f\|_{p+1}^{p+1}-\mathcal{K}_{\mathrm{GNS}}\|f\|_{2 p}^{2 p \gamma}
$$

Lemma

(GNS) is equivalent to $\delta[f] \geq 0$ if and only if

$$
\mathscr{K}_{\mathrm{GNS}}=C(p, d) \mathscr{C}_{\mathrm{GNS}}^{2 p \gamma}
$$

where $\gamma=\frac{d+2-p(d-2)}{d-p(d-4)}$ and $C(p, d)$ is an explicit positive constant
Take $f_{\lambda}(x)=\lambda^{\frac{d}{2 p}} f(\lambda x)$ and optimize on $\lambda>0$

$$
\delta[f] \geq \delta[f]-\inf _{\lambda>0} \delta\left[f_{\lambda}\right]=: \delta \star[f] \geq 0
$$

A simplification: $\delta[f]=\delta[|f|]$ so we shall assume that $f \geq 0$ a.e.

$$
\begin{gathered}
I_{M}=\inf \left\{(p-1)^{2}\|\nabla f\|_{2}^{2}+4 \frac{d-p(d-2)}{p+1}\|f\|_{p+1}^{p+1}: f \in \mathscr{H}_{p}\left(\mathbb{R}^{d}\right), \quad\|f\|_{2 p}^{2 p}=M\right\} \\
I_{1}=\mathscr{K}_{\text {GNS }} \text { and } I_{M}=I_{1} M^{\gamma} \text { for any } M>0
\end{gathered}
$$

Lemma

If $d \geq 1$ and p is an admissible exponent with $p<d /(d-2)$, then

$$
I_{M_{1}+M_{2}}<I_{M_{1}}+I_{M_{2}} \quad \forall M_{1}, M_{2}>0
$$

Lemma

Let $d \geq 1$ and p be an admissible exponent with $p<d /(d-2)$ if $d \geq 3$. If $\left(f_{n}\right)_{n}$ is minimizing and if $\limsup _{n \rightarrow+\infty} \sup _{y \in \mathbb{R}^{d}} \int_{B(y)}\left|f_{n}\right|^{p+1} d x=0$, then

$$
\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{2 p}=0
$$

Existence of a minimizer, further properties

Proposition

Assume that $d \geq 1$ is an integer and let p be an admissible exponent with $p<d /(d-2)$ if $d \geq 3$. Then there is an optimal function for (GNS)

Q Pólya-Szegö principle: there is a radial minimizer solving

$$
-2(p-1)^{2} \Delta f+4(d-p(d-2)) f^{p}-C f^{2 p-1}=0
$$

If $f=\mathbf{g}$, then $C=8 p$
Q. A rigidity result: if f is a (smooth) minimizer and $\mathrm{P}=-\frac{p+1}{p-1} f^{1-p}$, then

$$
\begin{aligned}
& (d-p(d-2)) \int_{\mathbb{R}^{d}} f^{p+1}\left|\Delta \mathrm{P}+(p+1)^{2} \frac{\int_{\mathbb{R}^{d}}|\nabla f|^{2} \mathrm{~d} x}{\int_{\mathbb{R}^{d}} f{ }^{p+1} \mathrm{~d} x}\right|^{2} \mathrm{~d} x \\
& +2 d p \int_{\mathbb{R}^{d}} f^{p+1} \| \mathrm{D}^{2} \mathrm{P}-\frac{1}{d} \Delta \mathrm{P} \text { Id } \|^{2} \mathrm{~d} x=0
\end{aligned}
$$

\mathbf{g} is a minimizer and $\delta[\mathbf{g}]=0$

Relative entropy and Fisher information

Q. Free energy or relative entropy functional

$$
\mathscr{E}[f \mid g]:=\frac{2 p}{1-p} \int_{\mathbb{R}^{d}}\left(f^{p+1}-g^{p+1}-\frac{1+p}{2 p} g^{1-p}\left(f^{2 p}-g^{2 p}\right)\right) \mathrm{d} x \geq 0
$$

Lemma (Csiszár-Kullback inequality)

Let $d \geq 1$ and $p>1$. There exists a constant $C_{p}>0$ such that

$$
\left\|f^{2 p}-\mathrm{g}^{2 p}\right\|_{\mathrm{L}^{1}\left(\mathbb{R}^{d}\right)}^{2} \leq C_{p} \mathscr{E}[f \mid \mathrm{g}] \quad \text { if } \quad\|f\|_{2 p}=\|\mathrm{g}\|_{2 p}
$$

Q Relative Fisher information

$$
\mathscr{J}[f \mid g]:=\frac{p+1}{p-1} \int_{\mathbb{R}^{d}}\left|(p-1) \nabla f+f^{p} \nabla g^{1-p}\right|^{2} \mathrm{~d} x
$$

Best matching profile

Q Nonlinear extension of the Heisenberg uncertainty principle

$$
\left(\frac{d}{p+1} \int_{\mathbb{R}^{d}} f^{p+1} \mathrm{~d} x\right)^{2} \leq \int_{\mathbb{R}^{d}}|\nabla f|^{2} \mathrm{~d} x \int_{\mathbb{R}^{d}}|x|^{2} f^{2 p} \mathrm{~d} x
$$

\triangleright Take $g=\mathbf{g}$ in $\mathscr{J}[f \mid g]$ and expand the square.

- If

$$
\begin{gathered}
\int_{\mathbb{R}^{d}} f^{2 p}\left(1, x,|x|^{2}\right) \mathrm{d} x=\int_{\mathbb{R}^{d}} g^{2 p}\left(1, x,|x|^{2}\right) \mathrm{d} x, \quad g \in \mathfrak{M} \\
\text { then } \mathscr{E}[f \mid g]=\frac{2 p}{1-p} \int_{\mathbb{R}^{d}}\left(f^{p+1}-g^{p+1}\right) \mathrm{d} x
\end{gathered}
$$

\triangleright A smaller space: $\mathscr{W}_{p}\left(\mathbb{R}^{d}\right):=\left\{f \in \mathscr{H}_{p}\left(\mathbb{R}^{d}\right):|x||f|^{p} \in \mathrm{~L}^{2}\left(\mathbb{R}^{d}\right)\right\}$

Lemma

For any $f \in \mathscr{W}_{p}\left(\mathbb{R}^{d}\right)$, we have

$$
\mathscr{E}\left[f \mid g_{f}\right]=\inf _{g \in \mathfrak{M}} \mathscr{E}[f \mid g]
$$

where g_{f} is the unique function in \mathfrak{M} satisfying (1)

A first (weak) stability result

Lemma (A weak stability result)

If $g_{f}=\mathbf{g}$, then

$$
\delta[f] \geq \delta_{\star}[f] \approx \mathscr{E}[f \mid \mathbf{g}]^{2}
$$

\triangleright Up to the invariances, \mathbf{g} is the unique minimizer for $f \mapsto \delta[f]$, hence for (GNS)

Lemma (Entropy - entropy production inequality)

If $\|f\|_{2 p}=\|g\|_{2 p}$ with $\delta[g]=0$,

$$
\frac{p+1}{p-1} \delta[f]=\mathscr{J}[f \mid g]-4 \mathscr{E}[f \mid g] \geq 0
$$

\triangleright From now on, we will assume that $g_{f}=\mathbf{g}$, i.e.

$$
\int_{\mathbb{R}^{d}} f^{2 p}\left(1, x,|x|^{2}\right) \mathrm{d} x=\int_{\mathbb{R}^{d}} \mathbf{g}^{2 p}\left(1, x,|x|^{2}\right) \mathrm{d} x,
$$

Stability in (GNS)

Q [Bianchi, Egnell (1991)] There is a positive constant α such that

$$
\mathrm{S}_{d}\|\nabla f\|_{\mathrm{L}^{2}\left(\mathbb{R}^{d}\right)}^{2}-\|f\|_{\mathrm{L}^{2^{*}}\left(\mathbb{R}^{d}\right)}^{2} \geq \alpha \inf _{\varphi \in \mathcal{M}}\|\nabla f-\nabla \varphi\|_{\mathrm{L}^{2}\left(\mathbb{R}^{d}\right)}^{2}
$$

Q Various extensions to:
$\triangleright L^{q}$ norm of the gradient by [Chianchi, Fusco, Maggi, Pratelli (2009)], [Figalli, Neumayer (2018)], [Neumayer (2020)], [Figalli, Zhang (2020)]
$\triangleright(\mathrm{GNS})$ inequalities by [Carlen, Figalli (2013)], [Seuffert (2017)], [Nguyen (2019)]

Theorem

There exists a constant $C>0$ such that

$$
\delta[f] \geq C \mathscr{E}[f \mid \mathbf{g}]
$$

for any $f \in \mathscr{W}_{p}\left(\mathbb{R}^{d}\right)$ satisfying

$$
\int_{\mathbb{R}^{d}} f^{2 p}\left(1, x,|x|^{2}\right) \mathrm{d} x=\int_{\mathbb{R}^{d}} g^{2 p}\left(1, x,|x|^{2}\right) \mathrm{d} x
$$

Q The spectral gap inequality

$$
\int_{\mathbb{R}^{d}}|\nabla u|^{2} \mathbf{g}^{2 p} \mathrm{~d} x \geq \frac{4 p}{p-1} \int_{\mathbb{R}^{d}}|u|^{2} \mathbf{g}^{3 p-1} \mathrm{~d} x
$$

valid for any function u such that $\int_{\mathbb{R}^{d}} u \mathbf{g}^{3 p-1} \mathrm{~d} x=0$, can be improved with a constant $\Lambda_{\star}>4 p /(p-1)$ under the constraint that

$$
\int_{\mathbb{R}^{d}}\left(1, x,|x|^{2}\right) u(x) \mathbf{g}(x)^{3 p-1} \mathrm{~d} x=0
$$

Q. A Taylor expansion with $f=\mathbf{g}+\eta h$ gives

$$
\lim _{\eta \rightarrow 0} \frac{\delta\left[f_{\eta}\right]}{\mathscr{E}\left[f_{\eta} \mid g\right]} \geq \frac{(p-1)^{2}}{p(p+1)}\left[\Lambda_{\star}-\frac{4 p}{p-1}\right]
$$

Thank you for your attention!

