Geodesic complexity for nongeodesic spaces

Don Davis
Lehigh University

BIRS-CMO workshop, September, 2020

Definition. (Recio-Mitter) If X is a metric space and E is a subspace of $X \times X$, a geodesic motion planning rule (GMPR) on E is a continuous map $s: E \rightarrow P(X)$ such that $s\left(x_{0}, x_{1}\right)$ is a (minimal) geodesic from x_{0} to x_{1}.

Definition. (Recio-Mitter) $\mathrm{GC}(X)$ is the smallest k such that $X \times X=E_{0} \sqcup \cdots \sqcup E_{k}$ with a GMPR on each E_{i}.

Definition. X is geodesic if for all $\left(x_{0}, x_{1}\right)$ there exists a geodesic from x_{0}

Definition. (Recio-Mitter) If X is a metric space and E is a subspace of $X \times X$, a geodesic motion planning rule (GMPR) on E is a continuous map $s: E \rightarrow P(X)$ such that $s\left(x_{0}, x_{1}\right)$ is a (minimal) geodesic from x_{0} to x_{1}.

Definition. (Recio-Mitter) $\mathrm{GC}(X)$ is the smallest k such that $X \times X=E_{0} \sqcup \cdots \sqcup E_{k}$ with a GMPR on each E_{i}.

Definition. X is geodesic if for all $\left(x_{0}, x_{1}\right)$ there exists a geodesic from x_{0} to x_{1}.
$F(X, 2)=\left\{\left(x, x^{\prime}\right) \in X \times X: x^{\prime} \neq x\right\}$.
$F\left(\mathbf{R}^{n}, 2\right)$ is not geodesic. (Linear path $\left(a, a^{\prime}\right)$ to $\left(b, b^{\prime}\right)$ might "collide.") $F_{\epsilon}\left(\mathbf{R}^{n}, 2\right)=\left\{\left(x, x^{\prime}\right): d\left(x, x^{\prime}\right) \geq \epsilon\right\}$ is geodesic and has same homotopy type as $F\left(\mathbf{R}^{n}, 2\right)$. Found explicit geodesics and showed $\mathrm{GC}=\mathrm{TC}$.

We introduce "near geodesics" and use it to define and compute GC for non-geodesic spaces, many with $\mathrm{GC}=\mathrm{TC}$, but one with $G C=T C+1$. Under certain conditions, the completion \bar{X} of a metric space X is geodesic.
$F(X, 2)=\left\{\left(x, x^{\prime}\right) \in X \times X: x^{\prime} \neq x\right\}$.
$F\left(\mathbf{R}^{n}, 2\right)$ is not geodesic. (Linear path $\left(a, a^{\prime}\right)$ to $\left(b, b^{\prime}\right)$ might "collide.")
$F_{\epsilon}\left(\mathbf{R}^{n}, 2\right)=\left\{\left(x, x^{\prime}\right): d\left(x, x^{\prime}\right) \geq \epsilon\right\}$ is geodesic and has same homotopy type as $F\left(\mathbf{R}^{n}, 2\right)$. Found explicit geodesics and showed $\mathrm{GC}=\mathrm{TC}$.

We introduce "near geodesics" and use it to define and compute GC for non-geodesic spaces, many with $\mathrm{GC}=\mathrm{TC}$, but one with $G C=T C+1$.

Under certain conditions, the completion \bar{X} of a metric space X is geodesic.
$F(X, 2)=\left\{\left(x, x^{\prime}\right) \in X \times X: x^{\prime} \neq x\right\}$.
$F\left(\mathbf{R}^{n}, 2\right)$ is not geodesic. (Linear path $\left(a, a^{\prime}\right)$ to $\left(b, b^{\prime}\right)$ might "collide.")
$F_{\epsilon}\left(\mathbf{R}^{n}, 2\right)=\left\{\left(x, x^{\prime}\right): d\left(x, x^{\prime}\right) \geq \epsilon\right\}$ is geodesic and has same homotopy type as $F\left(\mathbf{R}^{n}, 2\right)$. Found explicit geodesics and showed GC $=$ TC.

We introduce "near geodesics" and use it to define and compute GC for non-geodesic spaces, many with $\mathrm{GC}=\mathrm{TC}$, but one with $G C=T C+1$.

Under certain conditions, the completion \bar{X} of a metric space X is geodesic.

Definition. Let X be a metric space such that the completion \bar{X} is geodesic. The set of points $\left(x_{0}, x_{1}\right)$ of $X \times X$ for which there is no geodesic from x_{0} to x_{1} is called the nogeo set of X. If x_{0} and x_{1} are in the nogeo set of X, a near geodesic from x_{0} to x_{1} is a map $\phi: I \rightarrow P\left(\bar{X} ; x_{0}, x_{1}\right)$ satisfying
i. $\phi(0)$ is a geodesic in \bar{X} from x_{0} to x_{1};
ii. $\phi((0,1]) \subset P\left(X ; x_{0}, x_{1}\right)$;
iii. if $s_{n} \rightarrow 0$, then length $\left(\phi\left(s_{n}\right)\right) \rightarrow$ length $(\phi(0))$.

Definition. Let X be a metric space such that the completion \bar{X} is geodesic. The set of points $\left(x_{0}, x_{1}\right)$ of $X \times X$ for which there is no geodesic from x_{0} to x_{1} is called the nogeo set of X. If x_{0} and x_{1} are in the nogeo set of X, a near geodesic from x_{0} to x_{1} is a map $\phi: I \rightarrow P\left(\bar{X} ; x_{0}, x_{1}\right)$ satisfying
i. $\phi(0)$ is a geodesic in \bar{X} from x_{0} to x_{1};
ii. $\phi((0,1]) \subset P\left(X ; x_{0}, x_{1}\right)$;
iii. if $s_{n} \rightarrow 0$, then length $\left(\phi\left(s_{n}\right)\right) \rightarrow$ length $(\phi(0))$.

Definition. If E is contained in the nogeo set of X, a near geodesic motion planning rule (NGMPR) on E is a continuous map Φ from E to $P(\bar{X})^{I}$ such that, for all $\left(x_{0}, x_{1}\right) \in E, \Phi\left(x_{0}, x_{1}\right)$ is a near geodesic from x_{0} to x_{1}. The geodesic complexity $\operatorname{GC}(X)$ is defined as the smallest k such that $X \times X$ can be partitioned into ENRs E_{0}, \ldots, E_{k} such that each E_{i} has either a GMPR or NGMPR. It is also allowed that E_{i} be the union of topologically disjoint sets, of which one has a GMPR and the other a NGMPR.

Examples with explicit near geodesics and $G C=T C$.
(1) $\mathbf{R}^{n}-Q, Q$ finite.
(2) $F\left(\mathbf{R}^{n}, 2\right)$.
(3) $F\left(\mathbf{R}^{n}-\left\{x_{0}\right\}, 2\right)$.
(9) $C\left(\mathbf{R}^{n}, 2\right)$.
(6) $F(Y, 2), Y$ the Y-graph.

Theorem. If $X=F\left(\mathbf{R}^{n}-Q, 2\right)$ with n even and Q a finite subset
containing points $q_{1}, q_{2}, q_{3}, q_{4}$ such that the segments $q_{1} q_{2}$ and $q_{3} q_{4}$
intersect, and no other points of Q are in an expanded disk determined by these two segments, then $\mathrm{GC}(X)=5$, while $\mathrm{TC}(X)=4$.

Examples with explicit near geodesics and $G C=T C$.
(1) $\mathbf{R}^{n}-Q, Q$ finite.
(2) $F\left(\mathbf{R}^{n}, 2\right)$.
(3) $F\left(\mathbf{R}^{n}-\left\{x_{0}\right\}, 2\right)$.
(9) $C\left(\mathbf{R}^{n}, 2\right)$.
(6) $F(Y, 2), Y$ the Y-graph.

Theorem. If $X=F\left(\mathbf{R}^{n}-Q, 2\right)$ with n even and Q a finite subset containing points $q_{1}, q_{2}, q_{3}, q_{4}$ such that the segments $q_{1} q_{2}$ and $q_{3} q_{4}$ intersect, and no other points of Q are in an expanded disk determined by these two segments, then $\mathrm{GC}(X)=5$, while $\mathrm{TC}(X)=4$.

Theorem. Let Q be a finite subset of \mathbf{R}^{n} with $|Q| \geq 2$, and $X=\mathbf{R}^{n}-Q$. Then $\mathrm{GC}(X)=\mathrm{TC}(X)=2$.

Proof. (n even). Let

$$
E_{i}=\{(a, b):|a b \cap Q|=0,1, \geq 2\}, i=0,1,2 .
$$

Use linear geodesic on E_{0}. On E_{1} and E_{2}, use

Theorem. Let Q be a finite subset of \mathbf{R}^{n} with $|Q| \geq 2$, and $X=\mathbf{R}^{n}-Q$. Then $\mathrm{GC}(X)=\mathrm{TC}(X)=2$.

Proof. (n even). Let

$$
E_{i}=\{(a, b):|a b \cap Q|=0,1, \geq 2\}, i=0,1,2 .
$$

Use linear geodesic on E_{0}. On E_{1} and E_{2}, use

$$
\Phi(a, b)(s)(t)=(1-t) a+t b+\delta(a, b) \cdot s \cdot g(t) \cdot v\left(\frac{a-b}{\|a-b\|}\right)
$$

v a unit vector field on S^{n-1},
$g(t)=\sin (\pi t), 0 \leq t \leq 1$,
$\delta(a, b)=\frac{1}{2} \min (d(a b, Q-a b), 1)$.

Theorem. Let Q be a finite subset of \mathbf{R}^{n} with $|Q| \geq 2$, and $X=\mathbf{R}^{n}-Q$. Then $\mathrm{GC}(X)=\mathrm{TC}(X)=2$.

Proof. (n even). Let

$$
E_{i}=\{(a, b):|a b \cap Q|=0,1, \geq 2\}, i=0,1,2 .
$$

Use linear geodesic on E_{0}. On E_{1} and E_{2}, use

$$
\Phi(a, b)(s)(t)=(1-t) a+t b+\delta(a, b) \cdot s \cdot g(t) \cdot v\left(\frac{a-b}{\|a-b\|}\right)
$$

v a unit vector field on S^{n-1},
$g(t)=\sin (\pi t), 0 \leq t \leq 1$,
$\delta(a, b)=\frac{1}{2} \min (d(a b, Q-a b), 1)$.

Therefore $\mathrm{GC}(X) \leq 2$. We have $\mathrm{GC}(X) \geq \mathrm{TC}(X)=2$ by cup products.

Theorem. $X=F\left(\mathbf{R}^{n}-Q, 2\right), n$ even, $|Q| \geq 4$ implies $\mathrm{GC}(X) \leq 5$. Proof. Points of $X \times X$ are $\left(\left(a, a^{\prime}\right),\left(b, b^{\prime}\right)\right)$. Subsets $E_{0}, E_{1}, E_{2}, E_{1,1}, E_{1,2}, E_{2,2} . a b$ and $a^{\prime} b^{\prime}$ don't collide. Subscripts are number of points of Q on the two segments.

Subsets $C_{0}, C_{1}, C_{2}, C_{1,1}, C_{1,2}, C_{2,2}$. Segments collide, but not at a point of Q. Not collinear.
Y_{0}, Y_{1}, Y_{2}. Segments collide at a point of Q. Subscript is number of segments containing another point of Q.
L_{0}, L_{1}, L_{2}. Collinear. $a a^{\prime}$ and $b b^{\prime}$ have opposite orientation.
Have NGMPR or GMPR on each. Can groun into six batches of mutually topologically disjoint subsets.

Theorem. $X=F\left(\mathbf{R}^{n}-Q, 2\right), n$ even, $|Q| \geq 4$ implies $\mathrm{GC}(X) \leq 5$.
Proof. Points of $X \times X$ are $\left(\left(a, a^{\prime}\right),\left(b, b^{\prime}\right)\right)$.
Subsets $E_{0}, E_{1}, E_{2}, E_{1,1}, E_{1,2}, E_{2,2} . a b$ and $a^{\prime} b^{\prime}$ don't collide. Subscripts are number of points of Q on the two segments.

Subsets $C_{0}, C_{1}, C_{2}, C_{1,1}, C_{1,2}, C_{2,2}$. Segments collide, but not at a point of Q. Not collinear.
Y_{0}, Y_{1}, Y_{2}. Segments collide at a point of Q. Subscript is number of segments containing another point of Q.
L_{0}, L_{1}, L_{2}. Collinear. $a a^{\prime}$ and $b b^{\prime}$ have opposite orientation.
Have NGMPR or GMPR on each. Can group into six batches of mutually topologically disjoint subsets.

Theorem. If $X=F\left(\mathbf{R}^{n}-Q, 2\right)$ with Q a finite subset containing points $q_{1}, q_{2}, q_{3}, q_{4}$ such that the segments $q_{1} q_{2}$ and $q_{3} q_{4}$ intersect, and no other points of Q are in an expanded disk determined by these two segments, then $\mathrm{GC}(X) \geq 5$.

Sketch of proof. One domain with GMPR is the geoset E_{0}. It cannot be combined with any of our nogeo sets. Will show that NGMPR on each.

Theorem. If $X=F\left(\mathbf{R}^{n}-Q, 2\right)$ with Q a finite subset containing points $q_{1}, q_{2}, q_{3}, q_{4}$ such that the segments $q_{1} q_{2}$ and $q_{3} q_{4}$ intersect, and no other points of Q are in an expanded disk determined by these two segments, then $\mathrm{GC}(X) \geq 5$.

Sketch of proof. One domain with GMPR is the geoset E_{0}. It cannot be combined with any of our nogeo sets. Will show that $C_{0} \cup C_{1} \cup C_{2} \cup C_{1,2} \cup C_{2,2}$ cannot be partitioned $S_{1} \sqcup S_{2} \sqcup S_{3} \sqcup S_{4}$ with NGMPR on each.

Let $x=\left(\left(a, a^{\prime}\right),\left(b, b^{\prime}\right)\right) \in S_{1}$ with $\operatorname{pr}_{1} \Phi_{1}(x)(1)$ as shown.

Choose $x_{n}=\left(\left(a_{n}, a^{\prime}\right),\left(b_{n}, b^{\prime}\right)\right) \rightarrow x$ with $a_{n} b_{n}$ on side of $(-1,1)$ opposite to $\mathrm{pr}_{1} \Phi_{1}(x)(1)$. If $x_{n} \in S_{1}$, then $\mathrm{pr}_{1} \Phi_{1}\left(x_{n}\right)(1) \rightarrow \mathrm{pr}_{1} \Phi_{1}(x)(1)$, so passes on right of $(-1,1)$. But homotopy to $\mathrm{pr}_{1} \Phi_{1}\left(x_{n}\right)(0)$ can't pass through $(-1,1)$. Hence $x_{n} \notin S_{1}$.
Infinitely many x_{n} in some S_{j}. So may say $x_{n_{1}} \in S_{2}$.

Consider $x_{n_{1}, n_{2}}=\left(\left(a_{n_{1}, n_{2}}, a^{\prime}\right),\left(b_{n_{1}, n_{2}}, b^{\prime}\right)\right) \rightarrow x_{n_{1}}$ with $a_{n_{1}, n_{2}} b_{n_{1}, n_{2}}$ parallel to $a_{n_{1}} b_{n_{2}}$. May assume all $x_{n_{1}, n_{2}} \in S_{j}$. Will show $j \neq 2$ and $j \neq 1$. Then may say $x_{n_{1}, n_{2}} \in S_{3}$.

Assume $j=2$. If $a_{n_{1}, n_{2}} b_{n_{1}, n_{2}}$ passes $(1,1)$ on side opposite to

$\operatorname{pr}_{1} \Phi_{2}\left(x_{n_{1}}\right)(1)$, then homotopy $\operatorname{pr}_{1} \Phi_{2}\left(x_{n_{1}, n_{2}}\right)$ must pass through (1,1).

If $j=1$, get contradiction as on previous page, since $a_{n_{1}, n_{2}} b_{n_{1}, n_{2}}$ is very

Consider $x_{n_{1}, n_{2}}=\left(\left(a_{n_{1}, n_{2}}, a^{\prime}\right),\left(b_{n_{1}, n_{2}}, b^{\prime}\right)\right) \rightarrow x_{n_{1}}$ with $a_{n_{1}, n_{2}} b_{n_{1}, n_{2}}$ parallel to $a_{n_{1}} b_{n_{2}}$. May assume all $x_{n_{1}, n_{2}} \in S_{j}$. Will show $j \neq 2$ and $j \neq 1$. Then may say $x_{n_{1}, n_{2}} \in S_{3}$.
Assume $j=2$. If $a_{n_{1}, n_{2}} b_{n_{1}, n_{2}}$ passes $(1,1)$ on side opposite to $\operatorname{pr}_{1} \Phi_{2}\left(x_{n_{1}}\right)(1)$, then homotopy $\operatorname{pr}_{1} \Phi_{2}\left(x_{n_{1}, n_{2}}\right)$ must pass through $(1,1)$.

If $j=1$, get contradiction as on previous page, since $a_{n_{1}, n_{2}} b_{n_{1}, n_{2}}$ is very

Consider $x_{n_{1}, n_{2}}=\left(\left(a_{n_{1}, n_{2}}, a^{\prime}\right),\left(b_{n_{1}, n_{2}}, b^{\prime}\right)\right) \rightarrow x_{n_{1}}$ with $a_{n_{1}, n_{2}} b_{n_{1}, n_{2}}$ parallel to $a_{n_{1}} b_{n_{2}}$. May assume all $x_{n_{1}, n_{2}} \in S_{j}$. Will show $j \neq 2$ and $j \neq 1$. Then may say $x_{n_{1}, n_{2}} \in S_{3}$.
Assume $j=2$. If $a_{n_{1}, n_{2}} b_{n_{1}, n_{2}}$ passes $(1,1)$ on side opposite to $\operatorname{pr}_{1} \Phi_{2}\left(x_{n_{1}}\right)(1)$, then homotopy $\operatorname{pr}_{1} \Phi_{2}\left(x_{n_{1}, n_{2}}\right)$ must pass through $(1,1)$.

If $j=1$, get contradiction as on previous page, since $a_{n_{1}, n_{2}} b_{n_{1}, n_{2}}$ is very close to $a_{n_{1}} b_{n_{1}}$.

Choose points $x_{n_{1}, n_{2}, m}=\left(\left(a_{n_{1}, n_{2}}, a_{m}^{\prime}\right),\left(b_{n_{1}, n_{2}}, b_{m}^{\prime}\right)\right) \rightarrow x_{n_{1}, n_{2}}$ with $a_{m}^{\prime} b_{m}^{\prime}$ passing through $(-1,1)$ and passing $(1,-1)$ on the side opposite to $\operatorname{pr}_{2} \Phi_{3}\left(x_{n_{1}, n_{2}}\right)(1)$, and all in the same S_{j}. If $j=3$, since $\operatorname{pr}_{2} \Phi_{3}\left(x_{n_{1}, n_{2}, m}\right)(1)$ converges uniformly to this, we obtain a contradiction since the homotopy cannot pass through $(-1,1)$

If $x_{n_{1}, n_{2}, m} \in S_{2}$, then $x_{n_{1}, n_{2}, n_{2}} \rightarrow x_{n_{1}}$, and we can get the same

Choose points $x_{n_{1}, n_{2}, m}=\left(\left(a_{n_{1}, n_{2}}, a_{m}^{\prime}\right),\left(b_{n_{1}, n_{2}}, b_{m}^{\prime}\right)\right) \rightarrow x_{n_{1}, n_{2}}$ with $a_{m}^{\prime} b_{m}^{\prime}$ passing through $(-1,1)$ and passing $(1,-1)$ on the side opposite to $\operatorname{pr}_{2} \Phi_{3}\left(x_{n_{1}, n_{2}}\right)(1)$, and all in the same S_{j}. If $j=3$, since $\operatorname{pr}_{2} \Phi_{3}\left(x_{n_{1}, n_{2}, m}\right)(1)$ converges uniformly to this, we obtain a contradiction since the homotopy cannot pass through $(-1,1)$

If $x_{n_{1}, n_{2}, m} \in S_{2}$, then $x_{n_{1}, n_{2}, n_{2}} \rightarrow x_{n_{1}}$, and we can get the same contradiction as before, using $\mathrm{pr}_{1} \Phi_{2}$, and similarly we can show $j \neq 1$. Therefore, $x_{n_{1}, n_{2}, m} \in S_{4}$.

By similar methods, we obtain a sequence $x_{n_{1}, n_{2}, m, m^{\prime}}$ not in $S_{1} \cup S_{2} \cup S_{3} \cup S_{4}$, completing the proof.

For $X=F(Y, 2), \bar{X}=Y \times Y$ is geodesic, but some geodesics in \bar{X} cannot be approximated by paths in X; e.g., from $\left(a, a^{\prime}\right)$ to $\left(b, b^{\prime}\right)$ below. If instead we use the intrinsic metric $d_{I}\left(x_{0}, x_{1}\right)$ defined as the infimum of lengths of paths from x_{0} to x_{1}, then the completion is $F(Y, 2) \cup\{(v, v)\}$, path lengths and topologies are preserved, and we have near geodesics. In this case, the geodesic goes from $\left(a, a^{\prime}\right)$ to (v, v), and then back to $\left(b, b^{\prime}\right)$, and the near geodesics go slightly beyond (v, v).

Thank you!

