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A Basic Model in Stochastic Optimization

Information pattern: here single-stage at first
decision x € R" followed by observing £ € = (prob. space)
multistage extension: repeated interplay — coming later

Problem (in simplified initial formulation)

minimize E¢[fo(x,€)] subject to F(x,§) € K C R™

K = closed convex cone, F(x,&) = (fi(x,€),..., fm(x,§))
functions f;(x, &) continuous with respect to x

Alternative objectives: (to just minimizing an “expected cost”)
e minimizing a CVaR-type measure of risk, or
e minimizing buffered probability of failure at some threshold

these extensions can be subsumed into the expectation model! J




Scenario Framework

there are finitely many scenarios £ € =, probabilities p(§) > 0 J

Problem restatement: in reduced form with oo penalization

minimize ®(x) = E¢[p(x,£)] = 25 p(&)e(x,&) over x € R"
[ f(x,8) if F(x,§) e K
where  ¢(x,€) = { RN F(x,€) & K

The convex case: @ is Isc convex function on R" when, for all &,
o the set C(&) = {x| F(x,§) € K} is convex
o fy(x,&) is convex with respect to x € C(§)

but here the nonconvex case will be targeted as well J




Relaxation in Terms of Subgradients

Fermat’s rule: for minimizing ® the condition 0 € 9®(X) is
e necessary for local optimality at X in general,
o sufficient for global optimality at X in the convex case

Subgradient calculus: under a minor constraint qualification,

O(x) =D p(E)p(x,§) = 0P(x) =3 ¢ p(§)Ip(x, &)

Associated first-order optimality condition

VE, 3(E) € D(%,€) such that 0 = Yo, p(€)W(E) =: E[w(E)]

Status: necessary for local optimality under a constraint qual.,
sufficient for global optimality always in the convex case

Computational focus in progressive hedging

find vectors x € R" and w(&) € R" satisfying this condition




Progressive Hedging Background

Aim: reduce computations to iteratively solving subproblems
which depend only on the individual scenarios £ € =

Original algorithm (convex case) — with proximal parameter r > 0
In iteration k, having x¥ and w*(¢) with E¢[wk(£)] =0, get
%4(¢) = argmin{ p(x, £) — wk()x + §l1x — x|I2}

€R" i
* = argmin { fo(x, €) — wk(E)x + §llx — x¥[2 |
F(x,£)eK
(taking advantage of strong convexity in x), and then update by

X = E[RM ), whH(€) = wh(g) — r[X(€) — X

Convergence: in convex case, global from any initial x%, w0(¢)

Challenge: how to adapt this now to a nonconvex setting?
fo(-, &) not convex? C(&) = {x| F(x,£) € K} not convex?



A Special Motivation for Admitting Nonconvexity

Decision-influenced probabilities: p(&) — p(x. &)
min 3¢ p(€)p(x.€) replaced by min 3 p(x, £)p(x.)

Example: promotion can affect the demand for a product

Transformation back to the influence-free format:
e let p(§) = % where S = the total number of scenarios £ € =
e introduce ¢(x,&) = Sp(x, &)p(x, &), so that
BO)B(x, €) = plx, )o(x,€)
e the given problem becomes mXin > P(§)P(x, )

but this transformation won’'t preserve convexity!

Conclusion:  the capability of solving nonconvex stochastic
programming problems will open up treatment of this case



Reformulation Toward Accommodating Nonconvexity

Linkage problem format: Rock. 2018
minimize a function ¢ over some “linkage” subspace S
— “progressive decoupling algorithm” that can “elicit” convexity

New context: the space £ = all (x(-), u(-)) = (x(§), u(§))ee=

Extended problem statement — with perturbation vectors

minimize W(x(:), u(-)) = E¢|H(x(€), €) + ok F(x(£), &) + u(¢))]
over the subspace S of the space £ defined by
for all £ € =, x(§) = the same x € R", while u(§) =0

Complementary subspace: orthogonal to S in £
St = {(w().y()) = (W), ¥(©))eez | Elw(€)] = 0}
expectational inner product:

() U)Wy (D)) = Ee| (x(€), u(©))-(w(€), ()]



Progressive Decoupling in this Stochastic Setting

specializing a new, very general procedure of Rock. 2018
Having (x¥(£), u¥(€))eez € S and (WH(€), y*(€))eez € S* find
(x(¢),T*(¢)) € argminyX(x, u, &) for each £ € =

where *(x, u,£) = fo(x,é’)xi (5K(F(x,£) + u)

—wk(€)x =y (&)u+ 5lIx = x (I + §llu— u(EIP
and then update by

(H1(€), ukH1(€))eez = projection of (RX(€), 3¥(¢€)) .z onto S,

(WKL), y 1 (8)) = (WH(€), ¥y (€))—
(r = e)[(x(€), (€)= (H(8), u ()]

e = elicitation parameter which needs to be “high enough”




Consolidation With the Specifics of S and S+

here x(¢) = same xk € R" for all £, while u*(&) = 0 for all ¢

Having x*, y%(¢), and wk(&) with E([wk(¢)] = 0, calculate
(x5(€), u*(&)) € argmink(x, u, &) for each € € =

where /(/]k(xv U,f) — fO(X7£) + 5K(F(X*£) + U)
—wH(€)x — ¥ (€)-u+ §llx — xK|[> + §||ul]?

and then update by

X = E[X“()], y<rH(€) = y*(€) — (r — e)u*(¢)

wkH(€) =

k+1]

wk(&) — (r = e)[%4(§) -

Further consolidation:

carry out the min in v in “closed form”

this will bring augmented Lagrangians into the picture




Toward Refinement Using Augmented Lagrangians

Consider pure scenario problems as auxiliaries:
min fo(x, &) subject to (A(x,£),..., fm(x,§)) = F(x. &) € K
let Y = polar cone K* and let dy(y) = dist(y, Y)

Associated Lagrangian:
L(Xuyag) = fO(Xag) +yF(X7€) - 5Y(y)
— minu{fO(ng) + 5K(F(X7£) + U) - yu}
Augmented Lagrangian: with parameter r > 0
Lr(X’y)g) - fo(x,f)—i—yF(x,f)—kéHF(x,§)|\2—%d%(y+rF(X,§))
= min, {fo(x, &) + ok (F(x,€) + u) — y-u+ 5[|ul|?}

where moreover —V, L,(x,y,{) = the unique u giving this min

4

often there's a direct formula for this gradient
Example: the case of K = R™ and its polar Y = R has
fi(x, &) if yi+rfi(x,€) <0
— = aL, — ! ’ 1 1 ) =
o= B = {00 T S




Application to the Algorithm's Subproblems

Augmented Lagrangian formula to utilize:
Lr(x,y,€) = ming{fo(x, &) + ok (F(x,&) + u) — y-u+ F||u]|*}

Subminimization in the subproblems: with respect to u

since ¥ (x, u,€) = fo(x, &) + ok (F(x, &) + u) = y*(&)-u+ 5[ul?
—wk(&)-x + §[|x — x¥]|? it follows that

min, X (x, u,€) = Le(x,y*(€),€) — w'(&)x + 5llx — x¥[? J

Residual computation: in executing the (x, u) minimization
e minimize this Lagrangian expression in x to get xX(&)
e then get —u*(£) as the gradient V, L, (X*(€),y*(€),€)



Resulting Procedure and its Characteristics

Having x*, y%(¢), and wk(¢) with E([w*(¢)] = 0, calculate
%4(€) € argmin, { Lr(x, y¥(€), €) — wh(€)x + 3 IIx — x|},
(&) = =V Lr(X(€), 7*(€), €)
and then update by
KL =E[ROL YU =y () — (r = )T¥()
whHL(€) = wh(8) — (r — ) [R4(8) — x**]

Key observation: around solution elements X, y(&), w(§)
second-order optimality conditions guarantee de such
that, when r > e, the augmented Lagrangian L.(x,y, &)
will be convex-concave on a neighborhood of (X, y(&))

then the algorithm will converge locally as if in the convex case J




Extension to a Multistage Model

“Decisions” and “observations” in stages s=1,..., N:
X1, 51, X2, 52,. cy XN 5/\/ with x5 € Rns, fs €=
x=(x1,...,.xn) E R"=R™ x --- x R™
5:(51,...,5,\/)6 = C Ty X XEN

Nonanticipativity of decisions

Xs can respond to &1,...,&—1 but not to &, ..., &p:

x(&) = (x1,x2(&1), x3(&1,&2), - - - s xw(€1, &2, -+, EN—1))

Embedding: £ = all functions x(-) from £ € = to x(&) € R”
Nonanticipativity subspace: and its complement in £
N = {x(-) € L | xs(§) depends only on &1,..., &1}
NE={w()eL| E, e lws(ér, 61,6 én)] =0}

x(+) is nonanticipative <= x(-) e N )




Multistage Objective Structure

Relaxation elements: serving as “perturbations”

u(§) = (t1(§),..-,un(§)) € R™ x - x R™
Constraint cones: K; C R™ in stage s, closed and convex
Objective function: W(x(-), u(-)) = Eg[zglzl bs(x(8), u(g),g)]

where s(x(£), u(€),€) = foo(x1(§), - -, x5(€), )+
O Fola(8)s- - 56(6),6) + us(©))

Problem

minimize W(x(-), u(-)) subject to x(-) € N, u(-) =0

Treatment: everything in the single-stage case of progressive
hedging can be extended to this multistage pattern, including
execution with stage-dependent augmented Lagrangians
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