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Intermediate Value Theorem (IVT)

Intermediate Value Theorem (IVT)

If f : [0, 1]→ R is a uniformly continuous function with
f(0) < 0 < f(1), then there exists x ∈ [0, 1] such that f(x) = 0.

without Countable Choice, without LEM

EL ⊢ WKL −→ IVT −→ LLPO

with Countable Choice, without LEM

BISH ⊢ WKL ←→ IVT ←→ LLPO

without Countable Choice, with LEM

RCA0 ⊢ IVT, LLPO,
RCA0 ̸⊢ WKL



WKL and IVT

▶ From the last observation RCA0 ⊢ IVT,LLPO and
RCA0 ̸⊢WKL, we do not have IVT→WKL in general.

▶ WKL states “Any infinite binary tree has a path”.

▶ By restricting infinite binary trees to convex ones, get a
principle which is equivalent to IVT over some suitable
setting (without CC, without LEM).



Real number and function

▶ A sequence x = (pn)n of rationals are regular if

∀mn(|pm − pn| < 2−m + 2−n)

▶ We say x is a real (x ∈ R) if x is regular.
For x = (pn)n, xn denotes pn.

▶ The equivalence relation =R between reals are defined by

(pn)n =R (qn)n
def⇐⇒ ∀n(|pn − qn| ≤ 2−n+2)

The following functions are well-defined

(x±R y)n = x2n+1 ± y2n+1 |x|n = |xn|
max{x, y}n = max{xn, yn} min{x, y}n = min{xn, yn}
(x ·R y)n = x2kn+1 · y2kn+1, where k = max{|x|0 + 2, |y|0 + 2}



Uniformly continuous function on [0, 1]

▶ A uniformly continuous function f : [0, 1]→ R consists of

φ : Q×N→ Q, ν : N→ N

s.t.

(f(p))n = φ(p, n) ∈ R

∀n ∈ N∀p, q ∈ Q(|p− q| < 2−ν(n) → |f(p)− f(q)| < 2−n).

For each x ∈ [0, 1], f(x) ∈ R is given by

(f(x))n = φ(min{max{xµ(n), 0}, 1}, n+ 1),

where µ(n) = ν(n+ 1) + 1.



Strict order <R

Let x and y are reals.

Order <R

▶ x is positive if ∃n(xn > 2−n+2).

▶ x is negative if ∃n(xn < −2−n+2).

▶ x <R y if y −R x is positive.

Some properties of <R

▶ x =R x′ ∧ y =R y′ ∧ x <R y → x′ <R y′

▶ We have ∀x, y ∈ R∀n(xn < yn ∨ xn = yn ∨ yn < xn).

▶ We CANNOT prove ∀x, y ∈ R(x <R y ∨ x =R y ∨ y <R x)
constructively. (LPO)



Order ≤R

Let x and y are reals.

Order ≤R

▶ x ≤ y if y −R x is not positive.

Some properties of ≤R

▶ x =R x′ ∧ y =R y′ ∧ x ≤R y → x′ ≤R y′

▶ We CANNOT prove ∀x, y ∈ R(x ≤R y ∨R y ≤R x)
constructively. (LLPO)

▶ We CANNOT prove ∀x, y ∈ R(x ≤R y ∨R ¬x ≤R y)
constructively. (WLPO)

▶ We CAN prove that ∀x, y ∈ R(¬x <R y → y ≤R x).

In what follows, we omit R in =R, +R, −R, <R, ≤R, etc..



IVT in constructive mathematics

Usual proof of IVT

For a uniformly continuous function f : [0, 1]→ R, define ln and
rn as follows:

l0 = 0, r0 = 1;

ln+1 =

{
ln+rn

2 if f( ln+rn
2 ) ≤ 0

ln otherwise
;

←WLPO

rn+1 = ln+1 + 2−(n+1).

Take x = limn→∞ ln. Then f(x) = 0.
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Binary sequence and binary tree

Some notations for binary sequence

▶ {0, 1}∗: the set of finite sequences of 0 and 1.

▶ |s|: the length of binary sequence.

▶ s ⪯ t: s is an initial segment of t, i.e., s = ⟨t(0), ..., t(k)⟩ for
some k < |t|.

▶ s ∗ t = ⟨s(0), ..., s(|s| − 1), t(0), ...t(|t| − 1)⟩

Definition

▶ T ⊆ {0, 1}∗ is a binary tree if it is closed under initial
segments, i.e., s ⪯ t ∧ t ∈ T implies s ∈ T .

▶ For a tree T , s ∈ T is a branch of T .

▶ A tree T is infinite if T is an infinite set.
Note that an infinite tree contains branches with any length.

▶ A path of T is a function α : N→ {0, 1} s.t. αn ∈ T for any
n, where αn = ⟨α(0), ..., α(n− 1)⟩.
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WKL

Weak König’s Lemma (WKL)

Any infinite binary tree T ⊆ {0, 1}∗ has a path.

...
...Fact

▶ WKL is usually proved as follows:
For an infinite tree T , define α by

α(n) =

{
0 if {t ∈ T : αn ⪯ t} is infinite;
1 otherwise.

←WLPO

▶ Constructively, the above construction of α is not allowed.

▶ Some infinite recursive trees have no recursive path.



WKL for convex trees

Definition

▶ s ⊏ t iff ∃u ⪯ s(u ∗ ⟨0⟩ ⪯ s ∧ u ∗ ⟨1⟩ ⪯ t).

▶ For a tree T , let Tn = {s ∈ T : |s| = n}.
▶ A tree T is convex if |u| = n, s ⊑ u ⊑ t, s ∈ Tn and t ∈ Tn

imply u ∈ T for each n.

WKLc

Any infinite binary convex tree has a path.

Fact
Trivially WKL implies WKLc.



Assignment of intervals to binary sequences

For each s ∈ {0, 1}∗, let Is = [ls, rs] be as follows:

l⟨⟩ = 0; ls∗⟨0⟩ = la; ls∗⟨1⟩ = ls + 2−(|s|+1); rs = ls + 2−|s|

I⟨⟩
| |
0 1
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WKLc → IVT

▶ Let f : [0, 1]→ R be a uniformly continuous function such
that f(0) < 0 and 0 < f(1).

▶ Define an and bn so that

1. |an| = |bn| = n and an ⊑ bn,
2. f(lan) < 0 < f(rbn),
3. ∀c ∈ {0, 1}n(an ⊏ c ⊑ bn→ |f(lc)| < 2−n).

▶ Let Tn = {u ∈ {0, 1}n | an ⊑ u ⊑ bn} for each n, and let
T =

∪∞
n=0 Tn.

▶ Then T is an infinite convex tree, and hence there exists a
path α in T .

▶ Let x =
∑∞

i=0 α(i) · 2−(i+1).

▶ If |f(x)| > 0, then we have a contradiction.

▶ Thus f(x) = 0.
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Construction of an and bn

▶ Let S = {u∈{0, 1}n+1 | ∃v∈{0, 1}n(an ⊑ v ⊑ bn ∧ v ⪯ u)}
▶ Divide S into S−, S0 and S+ s.t.

c ∈ S−→ (f(lc))n+2 < −2−(n+2),

c ∈ S0→ |(f(lc))n+2| ≤ 2−(n+2),

c ∈ S+→ 2−(n+2) < (f(lc))n+2.

▶ If S− is inhabited, then choose the right-most such c ∈ S as
an+1. Otherwise set an+1 = an ∗ ⟨0⟩.

▶ If {u ∈ S+ | an+1 ⊏ u} is inhabited, then choose the left-most
such c ∈ S+ and choose the right-most d s.t. an+1 ⊑ d ⊏ c as
bn+1. Otherwise set bn+1 = bn ∗ ⟨1⟩.



Some lemmata for IVT→WKLc

Lemma
Let T be a tree, and let x be a real number such that

∀n∃a ∈ Tn(|x− la| < 2−n).

Then there exists an infinite convex subtree T ′ of T having at
most two nodes at each level, i.e., ∀n(|Tn| ≤ 2) and

∀n∀a′ ∈ T ′
n(|x− la′ | < 2−n+1).

Lemma
IVT implies that every infinite convex tree T s.t. ∀n(|Tn| ≤ 2) for
each n has a path.



IVT→WKLc

▶ Let (an)n and (bn)n be sequences of {0, 1}∗ such that
Tn = {c ∈ {0, 1}n | an ⊑ c ⊑ bn} for each n.

▶ For each n, define a uniformly continuous function
fn : [0, 1]→ R by

fn(x) = min{(lan + 1)−1(3x− lan − 1), 0}+
max{(2− rbn)

−1(3x− rbn − 1), 0}.
f0(x) = f1(x)

▶ Let f(x) =
∑∞

n=0 2
−(n+1)fn(x).

▶ Then there exists x ∈ [0, 1] such that f(x) = 0.
▶ For each n, ∃a ∈ Tn(|(3x− 1)− la| < 2−n).
▶ There is an infinite convex subtree T ′ of T s.t. ∀n(|Tn| ≤ 2).
▶ By the previous lemma, there is a path in T ′, and hence in T .
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Concluding remarks

▶ These proofs can be formalized over EL0, which has only Σ0
1

induction.

▶ In particular, these proofs do not require countable choice.

▶ WKLc can be characterized as a combination of LLPO and a
fragment of countable choice.
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