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Intermediate Value Theorem (IVT)

Intermediate Value Theorem (IVT)

If f:]0,1] — R is a uniformly continuous function with
f(0) <0< f(1), then there exists x € [0, 1] such that f(z) = 0.

without Countable Choice, without LEM

EL+F WKL — IVIT — LLPO
with Countable Choice, without LEM
BISH+ WKL +«+— IVT <+— LLPO

without Countable Choice, with LEM

RCA,+ IVT, LLPO,
RCA,l/ WKL



WKL and IVT

» From the last observation RCAy + IVT, LLPO and
RCA I WKL, we do not have IVT — WKL in general.

» WKL states “Any infinite binary tree has a path”.

» By restricting infinite binary trees to convex ones, get a
principle which is equivalent to IVT over some suitable
setting (without CC, without LEM).



Real number and function

» A sequence x = (p,,), of rationals are regular if
VYmn(|pm — pn| <27 +27")

» We say x is a real (x € R) if z is regular.
For x = (pn)n, =, denotes p,.

» The equivalence relation =gr between reals are defined by
def _
(pn)n =R (Qn)n <:e> \v/n(’pn - Qn| <2 n+2)
The following functions are well-defined

(SU +r y)n = T2n+1 =+ Yon+1 |$|n = |xn|
max{x, y}n = max{a:n, yn} min{x, y}n = min{xn, yn}

( R Y)n = Tokn+1 * Y2kn+1, Where k = max{|z|o + 2, |y|o + 2}



Uniformly continuous function on [0, 1]

» A uniformly continuous function f : [0, 1] — R consists of
p: QxN = Q, v:N—-N
s.t.

(f(P))n = w(p,n) €R
Vn € NVp,q € Q(lp—q < 27" — |f(p) — f(@)] <27™).

For each z € [0,1], f(z) € R is given by
(f(x))n = (p(min{max{xu(n)? 0}7 1}7 n+ 1)a

where u(n) =v(n+1) + 1.



Strict order <gr

Let x and y are reals.

Order <gr

> x is positive if In(x, > 27"+2).
> z is negative if In(z, < —27"12).

> © <p vy if y —gr « is positive.

Some properties of <gr

» =R ANYy=RY Ne<gry—2 <rvy
» We have Vz,y € RVn(x, < yn V xn = yn V yn < Tp).

» We CANNOT prove Vz,y € R(z <p yVz =r yVy <r )
constructively. (LPO)



Order <gp

Let x and y are reals.

Order <gr

» z <y if y —r x is not positive.

Some properties of <r

»z=p 2’ ANy=ry Az <ry—2 <gy
» We CANNOT prove Vz,y € R(z <r y VR ¥ <R )
constructively. (LLPO)

» We CANNOT prove Vz,y € R(z <r y VR = <R V)
constructively. (WLPO)

» We CAN prove that Vz,y € R(—z <r y = y <Rr 7).

In what follows, we omit R in =g, +r, —R, <R, <R, €tc..



IVT in constructive mathematics

Usual proof of IVT
For a uniformly continuous function f : [0,1] — R, define [,, and
ry, as follows:

l():O,TO = 1;

L, = L Iy <0
n+1 . 9
ln otherwise

o1 = bngr + 270D,

Take z = limy, 00 L. Then f(x) = 0.



IVT in constructive mathematics

Usual proof of IVT
For a uniformly continuous function f : [0,1] — R, define [,, and
ry, as follows:

l():O,TO = 1;
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Binary sequence and binary tree

Some notations for binary sequence

» {0,1}*: the set of finite sequences of 0 and 1.
» |s|: the length of binary sequence.

» s =X t: sis an initial segment of ¢, i.e., s = (¢(0), ..., t(k)) for
some k < [t|.

» sxt=(s(0),...,s(]s| —1),t(0),...t(|t| — 1))



Binary sequence and binary tree

Some notations for binary sequence

» {0,1}*: the set of finite sequences of 0 and 1.
» |s|: the length of binary sequence.

» s =X t: sis an initial segment of ¢, i.e., s = (¢(0), ..., t(k)) for
some k < [t|.

» sxt=(s(0),...,s(]s| —1),t(0),...t(|t| — 1))

Definition

» T C {0,1}* is a binary tree if it is closed under initial
segments, i.e., s Xt At €T implies s € T.



Binary sequence and binary tree

Some notations for binary sequence

» {0,1}*: the set of finite sequences of 0 and 1.
» |s|: the length of binary sequence.

» s =X t: sis an initial segment of ¢, i.e., s = (¢(0), ..., t(k)) for
some k < [t|.

» sxt=(s(0),...,s(]s| —1),t(0),...t(|t| — 1))

Definition
» T C {0,1}* is a binary tree if it is closed under initial
segments, i.e., s Xt At €T implies s € T.
» ForatreeT, s € T isa branch of T.



Binary sequence and binary tree

Some notations for binary sequence

» {0,1}*: the set of finite sequences of 0 and 1.
» |s|: the length of binary sequence.

» s =X t: sis an initial segment of ¢, i.e., s = (¢(0), ..., t(k)) for
some k < [t|.

» sxt=(s(0),...,s(]s| —1),t(0),...t(|t| — 1))

Definition
» T C {0,1}* is a binary tree if it is closed under initial
segments, i.e., s Xt At €T implies s € T.
» ForatreeT, s € T isa branch of T.

> A tree T is infinite if T" is an infinite set.
Note that an infinite tree contains branches with any length.



Binary sequence and binary tree

Some notations for binary sequence

» {0,1}*: the set of finite sequences of 0 and 1.
» |s|: the length of binary sequence.

» s =X t: sis an initial segment of ¢, i.e., s = (¢(0), ..., t(k)) for
some k < [t|.

» sxt=(s(0),...,s(]s| —1),t(0),...t(|t| — 1))

Definition

» T C {0,1}* is a binary tree if it is closed under initial
segments, i.e., s Xt At €T implies s € T.

» ForatreeT, s € T isa branch of T.

» A tree T is infinite if T is an infinite set.
Note that an infinite tree contains branches with any length.

» A path of T is a function o : N — {0,1} s.t. @n € T for any
n, where an = (a(0), ..., a(n — 1)).



WKL

Weak Konig's Lemma (WKL)
Any infinite binary tree ' C {0,1}* has a path.

Fact

» WKL is usually proved as follows:
For an infinite tree T', define a by

+— WLPO

0 if {t € T :an <t} is infinite;
a(n) = .
1 otherwise.

» Constructively, the above construction of « is not allowed.

» Some infinite recursive trees have no recursive path.



WKL for convex trees

Definition
> sCtiff Ju < s(ux*(0) < sAux(l) <t).
» Foratree T, let T,, = {s € T : |s| = n}.

n
» Atree Tis convexif |u|=n, sCult se€T,andteT,
imply v € T for each n.

WKL,
Any infinite binary convex tree has a path.

Fact
Trivially WKL implies WKL,.



Assignment of intervals to binary sequences

For each s € {0,1}*, let Is = [l5, 75| be as follows:

ly =0 Loty =la; lowqy = Lo+ 27Dy ry =1 427

1y
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Assignment of intervals to binary sequences

For each s € {0,1}*, let Is = [l5, 75| be as follows:

=la; lsqy =1ls+ 2_(|S|+1); re =1+ 271

Loy 110 Ty
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» Let f:[0,1] — R be a uniformly continuous function such
that f(0) <0 and 0 < f(1).
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» Let f:[0,1] — R be a uniformly continuous function such
that f(0) <0 and 0 < f(1).
» Define a,, and b,, so that

1. |an| = |bn] =n and a, C by,
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3. Ve e {0,1}"(an T c T b, — |f(l)] <27™).

» Let T, = {u € {0,1}" | a, C u C b, } for each n, and let
T =UpoTh-

» Then T is an infinite convex tree, and hence there exists a
path a in T.

> Let z = >.0° a(i) - 270+,

» If | f(z)|] > 0, then we have a contradiction.

» Thus f(x) =0.



Construction of a, and b,

» Let S = {uec{0,1}" | Jve{0,1}"(a, CvC b, Av < u)}
» Divide S into S_, Sp and Sy s.t.

c €S- = (fle)nga < —27 "),
c€ 8o — |(f(lc))nta] < 2_(n+2)7
c€ Sy =270 < (f(l))nso.

» If S_ is inhabited, then choose the right-most such ¢ € S as
an+1. Otherwise set a,+1 = ay, * (0).

» If {u € S; | apt1 C u} is inhabited, then choose the left-most
such ¢ € S and choose the right-most d s.t. a,+1 E d C ¢ as
bn+1. Otherwise set by, +1 = by, * (1).



Some lemmata for IVT — WKL,

Lemma
Let T be a tree, and let x be a real number such that

Vnda € Ty (lx —la] < 277).

Then there exists an infinite convex subtree T' of T' having at
most two nodes at each level, i.e., Yn(|T,,| < 2) and

vnVa' € T (|x — 1y < 27",
Lemma

IVT implies that every infinite convex tree T s.t. Yn(|T,| < 2) for
each n has a path.



IVT — WKL,
> Let (ay), and (b,), be sequences of {0,1}* such that
T, ={ce{0,1}" | a, C c C b,} for each n.
» For each n, define a uniformly continuous function
fu: 10,1 = R by
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max{(2 —rp,) "  (3z — rp, — 1),0}.

fol@) = fi(x)
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» Let (an)n and (b,), be sequences of {0,1}* such that
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v

Let f(a) = Y0202~ ful(x).

Then there exists = € [0, 1] such that f(z) = 0.

Foreach n, Ja € T,,(|(3x — 1) — l4] < 27™).

There is an infinite convex subtree 7" of T' s.t. Vn(|T,,| < 2).

v

v

v
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» Let (an)n and (b,), be sequences of {0,1}* such that
T, ={ce€{0,1}" | an, C ¢ C by} for each n.

» For each n, define a uniformly continuous function
fn10,1] = R by

fro(z) = min{(lo, + 1)1 (32 — o, — 1),0}+
max{(2 —ry ) ' (3z — 7, —1),0}.

> Let f(a) = 202027 fu(e).

» Then there exists x € [0, 1] such that f(z) = 0.

» Foreachn, Ja € T,,(|(3x — 1) — lo] < 27™).

» There is an infinite convex subtree 7" of T' s.t. Vn(|T,,| < 2).

» By the previous lemma, there is a path in 77, and hence in T.



Concluding remarks

» These proofs can be formalized over ELg, which has only ¢
induction.

» In particular, these proofs do not require countable choice.

» WKL, can be characterized as a combination of LLPO and a
fragment of countable choice.
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