

Symmetries of the damped harmonic oscillator and the Bateman system

Marco Cariglia

ICEB, Universidade Federal de Ouro Preto, MG, Brasil Dipartimento di Fisica, Università degli Studi di Camerino, Italy

Black Holes' New Horizons

Oaxaca, 17 May 2016

Main results from arXiv:1605.01932

"Eisenhart lifts and symmetries of time-dependent systems"

In collaboration with

Christian Duval, Marseille Gary Gibbons, Cambridge & Tours Peter Horváthy, Tours & Lanzhou Main results from arXiv:1605.01932

"Eisenhart lifts and symmetries of time-dependent systems"

In collaboration with

Christian Duval, Marseille Gary Gibbons, Cambridge & Tours Peter Horváthy, Tours & Lanzhou

• Quantization of time-dependent systems

Main results from arXiv:1605.01932

"Eisenhart lifts and symmetries of time-dependent systems"

In collaboration with

Christian Duval, Marseille Gary Gibbons, Cambridge & Tours Peter Horváthy, Tours & Lanzhou

- Quantization of time-dependent systems
- Special case of damped harmonic oscillator

• Damped harmonic oscillator has an extensive literature - both classical and quantum.

- Damped harmonic oscillator has an extensive literature both classical and quantum.
- Quantize geometrically using the Eisenhart lift.

- Damped harmonic oscillator has an extensive literature both classical and quantum.
- Quantize geometrically using the Eisenhart lift.
- Arnold map + Eisenhart \rightarrow 'freely falling' coordinates. Schrödinger symmetry.

- Damped harmonic oscillator has an extensive literature both classical and quantum.
- Quantize geometrically using the Eisenhart lift.
- Arnold map + Eisenhart \rightarrow 'freely falling' coordinates. Schrödinger symmetry.
- Damped oscillator appears naturally for black holes' quasinormal modes.

- Damped harmonic oscillator has an extensive literature both classical and quantum.
- Quantize geometrically using the Eisenhart lift.
- Arnold map + Eisenhart \rightarrow 'freely falling' coordinates. Schrödinger symmetry.
- Damped oscillator appears naturally for black holes' quasinormal modes.
- Two interacting copies of Schrödinger algebras. What is their physical interpretation?

Summary

Invitation/Possible application: Black holes' quasinormal modes

2 Quantizing time dependent systems with the Eisenhart lift

3) Symmetries of the damped oscillator

Quasinormal modes:

Quasinormal modes:

• Study linear perturbations of BHs around a solution with fields of spin s

Quasinormal modes:

- Study linear perturbations of BHs around a solution with fields of spin s
- Eigenvalue problem for a complex frequency ω = ω_R + iω_I, ω_I ≥ 0, for given physical boundary conditions in the tortoise coordinate r_{*}:

Quasinormal modes:

- Study linear perturbations of BHs around a solution with fields of spin s
- Eigenvalue problem for a complex frequency ω = ω_R + iω_I, ω_I ≥ 0, for given physical boundary conditions in the tortoise coordinate r_{*}:

1) $\Psi \sim e^{i\omega(t+r_*)}, r_* \to -\infty$, only ingoing modes at the horizon;

Quasinormal modes:

- Study linear perturbations of BHs around a solution with fields of spin s
- Eigenvalue problem for a complex frequency ω = ω_R + iω_I, ω_I ≥ 0, for given physical boundary conditions in the tortoise coordinate r_{*}:
 - (1) $\Psi \sim e^{i\omega(t+r_*)}, r_* \to -\infty$, only ingoing modes at the horizon;
 - 2 $\Psi \sim e^{i\omega(t-r_*)}, r_* \to +\infty$, only outgoing modes at asymptotic infinity.

Quasinormal modes:

- Study linear perturbations of BHs around a solution with fields of spin s
- Eigenvalue problem for a complex frequency ω = ω_R + iω_I, ω_I ≥ 0, for given physical boundary conditions in the tortoise coordinate r_{*}:

1) $\Psi \sim e^{i\omega(t+r_*)}, r_* \to -\infty$, only ingoing modes at the horizon;

- 2 $\Psi \sim e^{i\omega(t-r_*)}, r_* \to +\infty$, only outgoing modes at asymptotic infinity.
- *r*_{*} dependency determined from regularity, *t* dependency by asking solution does not diverge in time.

Quasinormal modes:

- Study linear perturbations of BHs around a solution with fields of spin s
- Eigenvalue problem for a complex frequency ω = ω_R + iω_I, ω_I ≥ 0, for given physical boundary conditions in the tortoise coordinate r_{*}:

1) $\Psi \sim e^{i\omega(t+r_*)}, r_* \to -\infty$, only ingoing modes at the horizon;

- 2 $\Psi \sim e^{i\omega(t-r_*)}, r_* \to +\infty$, only outgoing modes at asymptotic infinity.
- r_* dependency determined from regularity, *t* dependency by asking solution does not diverge in time.
- Find countable spectrum of frequencies ω_n . For example Schwarzschild: the $n \to +\infty$ modes for given spin *j* are independent of angular momentum and satisfy $e^{8\pi M\omega_j} = -(1 + 2\cos \pi j)$. [Motl 2002]

Recall Ψ ~ e^{iω(t-r_{*})} for r_{*} → +∞: then Ψ ~ e^{ω_lr^{*}} blows up exponentially. → not a complete set of wavefunctions.

- Recall Ψ ~ e^{iω(t-r_{*})} for r_{*} → +∞: then Ψ ~ e^{ω_lr^{*}} blows up exponentially. → not a complete set of wavefunctions.
- For large r_* contribution of quasinormal modes to $\Psi(t, r)$ is Re $\left[\sum_n C_n e^{i\omega_n(t-r_*)}\right]$: these modes are transient and important for intermediate times [Leaver 1986].

- Recall Ψ ~ e^{iω(t-r_{*})} for r_{*} → +∞: then Ψ ~ e^{ω_lr^{*}} blows up exponentially. → not a complete set of wavefunctions.
- For large r_* contribution of quasinormal modes to $\Psi(t, r)$ is Re $\left[\sum_n C_n e^{i\omega_n(t-r_*)}\right]$: these modes are transient and important for intermediate times [Leaver 1986].
- Quasinormal modes appear as poles in the Green function. They depend only on the BH's parameters.

- Recall Ψ ~ e^{iω(t-r_{*})} for r_{*} → +∞: then Ψ ~ e^{ω_lr^{*}} blows up exponentially. → not a complete set of wavefunctions.
- For large r_* contribution of quasinormal modes to $\Psi(t, r)$ is Re $\left[\sum_n C_n e^{i\omega_n(t-r_*)}\right]$: these modes are transient and important for intermediate times [Leaver 1986].
- Quasinormal modes appear as poles in the Green function. They depend only on the BH's parameters.
- Conjectured relation with area quantization [Hod 1998, Maggiore 2008, ...].

- Recall Ψ ~ e^{iω(t-r_{*})} for r_{*} → +∞: then Ψ ~ e^{ω_lr^{*}} blows up exponentially. → not a complete set of wavefunctions.
- For large r_* contribution of quasinormal modes to $\Psi(t, r)$ is Re $\left[\sum_n C_n e^{i\omega_n(t-r_*)}\right]$: these modes are transient and important for intermediate times [Leaver 1986].
- Quasinormal modes appear as poles in the Green function. They depend only on the BH's parameters.
- Conjectured relation with area quantization [Hod 1998, Maggiore 2008, ...].
- Application to gravitational wave data analysis.

In [Kim 2006] the following was done:

In [Kim 2006] the following was done:

• Consider scalar field Ψ with norm $(\Psi_{\lambda}, \Psi'_{\lambda}) = -i \int \sqrt{g} \left(\Psi_{\lambda}^* \overline{\partial_t} \Psi_{\lambda'} \right) d^3 x.$

In [Kim 2006] the following was done:

• Consider scalar field Ψ with norm $(\Psi_{\lambda}, \Psi'_{\lambda}) = -i \int \sqrt{g} \left(\Psi_{\lambda}^* \overline{\partial_t} \Psi_{\lambda'} \right) d^3 x.$

• Quantum field $\hat{\Psi}$, canonical Hamiltonian $\hat{H} = \frac{i}{2} \left(\hat{\Psi}, \partial_t \hat{\Psi} \right)$

In [Kim 2006] the following was done:

- Consider scalar field Ψ with norm $(\Psi_{\lambda}, \Psi'_{\lambda}) = -i \int \sqrt{g} \left(\Psi_{\lambda}^* \overline{\partial_t} \Psi_{\lambda'} \right) d^3 x.$
- Quantum field $\hat{\Psi}$, canonical Hamiltonian $\hat{H} = \frac{i}{2} \left(\hat{\Psi}, \partial_t \hat{\Psi} \right)$
- Choose the set

$$\begin{aligned} \Psi_{\lambda} &= e^{i\omega_{\lambda}t}\psi_{\lambda}(r_{*}), \quad Im(\omega_{\lambda}) > 0, \\ \Psi_{\bar{\lambda}} &= e^{-i\omega_{\lambda}^{*}t}\psi_{\lambda}^{*}(r_{*}), \quad Im(\omega_{\lambda}) < 0, \end{aligned}$$

and assume completeness $\hat{\Psi} = \sum_{\lambda,\bar{\lambda}} \left(\Psi_{\lambda} \hat{a}_{\lambda} + \Psi_{\lambda}^* \hat{a}_{\lambda}^{\dagger} + \Psi_{\bar{\lambda}} \hat{a}_{\bar{\lambda}} + \Psi_{\bar{\lambda}}^* \hat{a}_{\bar{\lambda}}^{\dagger} \right).$

In [Kim 2006] the following was done:

- Consider scalar field Ψ with norm $(\Psi_{\lambda}, \Psi'_{\lambda}) = -i \int \sqrt{g} \left(\Psi_{\lambda}^* \overline{\partial_t} \Psi_{\lambda'} \right) d^3 x.$
- Quantum field $\hat{\Psi}$, canonical Hamiltonian $\hat{H} = \frac{i}{2} \left(\hat{\Psi}, \partial_t \hat{\Psi} \right)$
- Choose the set

$$\begin{array}{l} \textcircled{1}{2} \Psi_{\lambda} = e^{i\omega_{\lambda}t}\psi_{\lambda}(r_{*}), \quad Im(\omega_{\lambda}) > 0, \\ \textcircled{2} \Psi_{\bar{\lambda}} = e^{-i\omega_{\lambda}^{-t}}\psi_{\lambda}^{*}(r_{*}), \quad Im(\omega_{\lambda}) < 0, \\ \text{and assume completeness } \hat{\Psi} = \sum_{\lambda,\bar{\lambda}} \left(\Psi_{\lambda}\hat{a}_{\lambda} + \Psi_{\lambda}^{*}\hat{a}_{\lambda}^{\dagger} + \Psi_{\bar{\lambda}}\hat{a}_{\bar{\lambda}} + \Psi_{\bar{\lambda}}^{*}\hat{a}_{\bar{\lambda}}^{\dagger} \right). \end{array}$$

• Modes (1) above decay in time, modes (2) diverge in time.

In [Kim 2006] the following was done:

- Consider scalar field Ψ with norm $(\Psi_{\lambda}, \Psi'_{\lambda}) = -i \int \sqrt{g} \left(\Psi_{\lambda}^* \overline{\partial_t} \Psi_{\lambda'} \right) d^3 x.$
- Quantum field $\hat{\Psi}$, canonical Hamiltonian $\hat{H} = \frac{i}{2} \left(\hat{\Psi}, \partial_t \hat{\Psi} \right)$
- Choose the set

$$\begin{array}{l} \textcircled{1}{2} \Psi_{\lambda} = e^{i\omega_{\lambda}t}\psi_{\lambda}(r_{*}), \quad Im(\omega_{\lambda}) > 0, \\ \textcircled{2} \Psi_{\bar{\lambda}} = e^{-i\omega_{\lambda}^{-t}}\psi_{\lambda}^{*}(r_{*}), \quad Im(\omega_{\lambda}) < 0, \\ \text{and assume completeness } \hat{\Psi} = \sum_{\lambda,\bar{\lambda}} \left(\Psi_{\lambda}\hat{a}_{\lambda} + \Psi_{\lambda}^{*}\hat{a}_{\bar{\lambda}}^{\dagger} + \Psi_{\bar{\lambda}}\hat{a}_{\bar{\lambda}} + \Psi_{\bar{\lambda}}^{*}\hat{a}_{\bar{\lambda}}^{\dagger} \right). \end{array}$$

- Modes (1) above decay in time, modes (2) diverge in time.
- Modes (1) are ingoing at the horizon and outgoing at infinity, modes (2) viceversa.

• Express the Hamiltonian as

$$\hat{H} = \sum_{\lambda,ar{\lambda}} \left[\omega_{R\lambda} \left(\hat{a}^{\dagger}_{\lambda} \hat{a}_{\lambda} - \hat{a}^{\dagger}_{ar{\lambda}} \hat{a}_{ar{\lambda}}
ight) + i \omega_{I\lambda} \left(\hat{a}^{\dagger}_{\lambda} \hat{a}_{ar{\lambda}} - \hat{a}^{\dagger}_{\lambda} \hat{a}_{ar{\lambda}}
ight)
ight] \,.$$

• Express the Hamiltonian as

$$\hat{H} = \sum_{\lambda,ar{\lambda}} \left[\omega_{R\lambda} \left(\hat{a}^{\dagger}_{\lambda} \hat{a}_{\lambda} - \hat{a}^{\dagger}_{ar{\lambda}} \hat{a}_{ar{\lambda}}
ight) + i \omega_{I\lambda} \left(\hat{a}^{\dagger}_{\lambda} \hat{a}_{ar{\lambda}} - \hat{a}^{\dagger}_{\lambda} \hat{a}_{ar{\lambda}}
ight)
ight] \,.$$

• Superselection rule: only $\lambda \leftrightarrow \overline{\lambda}$.

• Express the Hamiltonian as

$$\hat{H} = \sum_{\lambda,ar{\lambda}} \left[\omega_{R\lambda} \left(\hat{a}^{\dagger}_{\lambda} \hat{a}_{\lambda} - \hat{a}^{\dagger}_{ar{\lambda}} \hat{a}_{ar{\lambda}}
ight) + i \omega_{I\lambda} \left(\hat{a}^{\dagger}_{\lambda} \hat{a}_{ar{\lambda}} - \hat{a}^{\dagger}_{\lambda} \hat{a}_{ar{\lambda}}
ight)
ight] \,.$$

- Superselection rule: only $\lambda \leftrightarrow \overline{\lambda}$.
- A linear transformation changes each $(\lambda, \overline{\lambda})$ Hamiltonian into

$$\hat{H}_B = \hat{p}_x \hat{p}_y + \omega_I \left(\hat{y} \hat{p}_y - \hat{x} \hat{p}_x \right) + \omega_R^2 \hat{x} \hat{y} \,.$$

Bateman-Feshbach-Tikochinksy oscillator.

• Express the Hamiltonian as

$$\hat{H} = \sum_{\lambda,ar{\lambda}} \left[\omega_{R\lambda} \left(\hat{a}^{\dagger}_{\lambda} \hat{a}_{\lambda} - \hat{a}^{\dagger}_{ar{\lambda}} \hat{a}_{ar{\lambda}}
ight) + i \omega_{I\lambda} \left(\hat{a}^{\dagger}_{\lambda} \hat{a}_{ar{\lambda}} - \hat{a}^{\dagger}_{\lambda} \hat{a}_{ar{\lambda}}
ight)
ight] \,.$$

- Superselection rule: only $\lambda \leftrightarrow \overline{\lambda}$.
- A linear transformation changes each $(\lambda, \overline{\lambda})$ Hamiltonian into

$$\hat{H}_B = \hat{p}_x \hat{p}_y + \omega_I \left(\hat{y} \hat{p}_y - \hat{x} \hat{p}_x \right) + \omega_R^2 \hat{x} \hat{y} \,.$$

Bateman-Feshbach-Tikochinksy oscillator.

• Describes an oscillator with damping $2\omega_I$ and angular frequency ω_R , $\ddot{x} + 2\omega_I \dot{x} + (\omega_R^2 + \omega_I^2) x = 0$ plus a "doppelgänger" with anti-damping $\ddot{y} - 2\omega_I \dot{y} + (\omega_R^2 + \omega_I^2) y = 0$.

• Express the Hamiltonian as

$$\hat{H} = \sum_{\lambda,ar{\lambda}} \left[\omega_{R\lambda} \left(\hat{a}^{\dagger}_{\lambda} \hat{a}_{\lambda} - \hat{a}^{\dagger}_{ar{\lambda}} \hat{a}_{ar{\lambda}}
ight) + i \omega_{I\lambda} \left(\hat{a}^{\dagger}_{\lambda} \hat{a}_{ar{\lambda}} - \hat{a}^{\dagger}_{\lambda} \hat{a}_{ar{\lambda}}
ight)
ight] \,.$$

- Superselection rule: only $\lambda \leftrightarrow \overline{\lambda}$.
- A linear transformation changes each $(\lambda, \overline{\lambda})$ Hamiltonian into

$$\hat{H}_B = \hat{p}_x \hat{p}_y + \omega_I \left(\hat{y} \hat{p}_y - \hat{x} \hat{p}_x \right) + \omega_R^2 \hat{x} \hat{y} \,.$$

Bateman-Feshbach-Tikochinksy oscillator.

- Describes an oscillator with damping $2\omega_I$ and angular frequency ω_R , $\ddot{x} + 2\omega_I \dot{x} + (\omega_R^2 + \omega_I^2) x = 0$ plus a "doppelgänger" with anti-damping $\ddot{y} - 2\omega_I \dot{y} + (\omega_R^2 + \omega_I^2) y = 0$.
- A time dependent canonical transformation transforms it into a double Caldirola-Kanai oscillator

$$H_{CK} = e^{-\gamma t} \frac{{p'_x}^2}{2m} + \frac{1}{2}m\omega^2 x'^2 e^{\gamma t} - e^{\gamma t} \frac{{p'_y}^2}{2m} - \frac{1}{2}m\omega^2 y'^2 e^{-\gamma t}.$$

Marco Cariglia (UFOP & UNICAM)

Some open questions [Pal et Al. 2015]:

Some open questions [Pal et Al. 2015]:

• Quasinormal modes do not for a complete set.
Beginning of quantization of quasinormal modes 3

Some open questions [Pal et Al. 2015]:

• Quasinormal modes do not for a complete set. However: 1) subsector of the complete Cauchy data, can restrict to it in a linear theory. 2) In some cases they are a complete set, e.g. near horizon Kerr [Cvetič and Gibbons 2014]

Beginning of quantization of quasinormal modes 3

Some open questions [Pal et Al. 2015]:

- Quasinormal modes do not for a complete set. However: 1) subsector of the complete Cauchy data, can restrict to it in a linear theory. 2) In some cases they are a complete set, e.g. near horizon Kerr [Cvetič and Gibbons 2014]
- What is the role of the amplifying modes? Not clear. Pal et Al. suggest an antiparticle. Related to the quantization of unstable 'quantons'.

Summary

Quantizing time dependent systems with the Eisenhart lift

Symmetries of the damped oscillator

Time-dependent Lagrangian and Hamiltonian

Time-dependent Lagrangian and Hamiltonian

$$\begin{cases} L = \frac{m}{2\alpha(t)}g_{ij}(x^k)\dot{x}^i\dot{x}^j - \beta(t)V(x^i,t), \\ H = \frac{\alpha(t)}{2m}g^{ij}(x^k)p_ip_j + \beta(t)V(x^i,t), \end{cases}$$

m is mass, $g_{ij}(x^k)$ curved metric on configuration space *Q* with local coordinates x^i , i = 1, ..., n. $V(x^i, t)$ potential.

Time-dependent Lagrangian and Hamiltonian

$$\begin{cases} L = \frac{m}{2\alpha(t)}g_{ij}(x^k)\dot{x}^i\dot{x}^j - \beta(t)V(x^i,t), \\ H = \frac{\alpha(t)}{2m}g^{ij}(x^k)p_ip_j + \beta(t)V(x^i,t), \end{cases}$$

m is mass, $g_{ij}(x^k)$ curved metric on configuration space *Q* with local coordinates x^i , i = 1, ..., n. $V(x^i, t)$ potential.

Equations of motion

$$\frac{d^2x^i}{dt^2} + \Gamma^i_{jk}\frac{dx^j}{dt}\frac{dx^k}{dt} - \frac{\dot{\alpha}}{\alpha}\frac{dx^i}{dt} = -\frac{\alpha\beta}{m}g^{ij}\partial_j V\,,$$

 Γ_{jk}^i Christoffel symbols of metric connection. When explicitly time-dependent \rightarrow energy is not conserved.

Velocity dependent term can be eliminated by introducing a new time-parameter $\tau = \tau(t)$ defined by $d\tau = \alpha dt$.

$$rac{d^2 x^i}{d au^2} + \Gamma^i_{jk} rac{dx^j}{d au} rac{dx^k}{d au} = -rac{eta}{mlpha} g^{ij} \partial_j V \,.$$

Velocity dependent term can be eliminated by introducing a new time-parameter $\tau = \tau(t)$ defined by $d\tau = \alpha dt$.

$$\frac{d^2x^i}{d\tau^2} + \Gamma^i_{jk}\frac{dx^j}{d\tau}\frac{dx^k}{d\tau} = -\frac{\beta}{m\alpha}g^{ij}\partial_j V \,.$$

For $V = \frac{1}{2}m\omega^2 x^2$, $\alpha = \beta^{-1} = e^{-\gamma t}$, get damped harmonic oscillator

$$L = \frac{m}{2}e^{\gamma t} \left(\left| \frac{d\vec{x}}{dt} \right|^2 - \omega^2 \vec{x}^2 \right), \qquad \frac{d^2 \vec{x}}{dt^2} + \gamma \frac{d\vec{x}}{dt} = -\omega^2 \vec{x}.$$

[Bateman 1931, Caldirola 1941, Kanai 1948, Dekker 1981, Um Yeon George 2002, Aldaya Cossío Guerrero López-Ruiz 2011-2012]

Eisenhart lift

Luther Pfahler Eisenhart (1876-1965)

Solutions $t \mapsto x^i(t)$ of $H = \frac{\alpha(t)}{2m} g^{ij} p_i p_j + \beta(t) V(x, t)$ in correspondence with *null geodesics* of the Lorentzian metric in (n + 2)-dimensions

Solutions $t \mapsto x^i(t)$ of $H = \frac{\alpha(t)}{2m} g^{ij} p_i p_j + \beta(t) V(x, t)$ in correspondence with *null geodesics* of the Lorentzian metric in (n + 2)-dimensions

$$g_{ab}dx^a dx^b = \frac{1}{\alpha}g_{ij}dx^i dx^j + 2dtds - \frac{2\beta V}{m}dt^2.$$

where $(x^{a}) = (x^{i}, t, s)$.

Solutions $t \mapsto x^i(t)$ of $H = \frac{\alpha(t)}{2m} g^{ij} p_i p_j + \beta(t) V(x, t)$ in correspondence with *null geodesics* of the Lorentzian metric in (n + 2)-dimensions

$$g_{ab}dx^a dx^b = \frac{1}{\alpha}g_{ij}dx^i dx^j + 2dtds - \frac{2\beta V}{m}dt^2.$$

where $(x^a) = (x^i, t, s)$. Geodesic Hamiltonian

$$\mathcal{H} = \frac{g^{ab}}{2} p_a p_b = \frac{\alpha}{2} g^{ij} p_i p_j + p_t p_s + \frac{V}{m} p_s^2 \xrightarrow{p_s = m} m \left(H + p_t \right) \,.$$

Solutions $t \mapsto x^i(t)$ of $H = \frac{\alpha(t)}{2m} g^{ij} p_i p_j + \beta(t) V(x, t)$ in correspondence with *null geodesics* of the Lorentzian metric in (n + 2)-dimensions

$$g_{ab}dx^a dx^b = \frac{1}{\alpha}g_{ij}dx^i dx^j + 2dtds - \frac{2\beta V}{m}dt^2.$$

where $(x^a) = (x^i, t, s)$. Geodesic Hamiltonian

$$\mathcal{H} = \frac{g^{ab}}{2} p_a p_b = \frac{\alpha}{2} g^{ij} p_i p_j + p_i p_s + \frac{V}{m} p_s^2 \xrightarrow{p_s = m} m \left(H + p_t \right) \,.$$

Time reparameterization associated to a conformal rescaling

$$\tilde{g} = \alpha(t)g = g_{ij}(x^k)dx^i dx^j + 2d\tau ds - \frac{2\beta}{m\alpha}Vd\tau^2$$

Modern point of view

• Christian Duval rediscovers the lift and applies it to non-relativistic mechanics

Modern point of view

- Christian Duval rediscovers the lift and applies it to non-relativistic mechanics
- Today: Schrödinger equation, non-relativistic electrodynamics [Duval, Gibbons, Horváthy 1991], pp-waves, non-relativistic holography [Balasubramanian, McGreevy 2008; Son 2008; Duval, Hassaïne, Horváthy 2009; Bekaert, Morand 2013], Lorentzian distance and least action [Minguzzi 2007], ...

Massless minimally coupled scalar wave equation in Eisenhart spacetime

$$\frac{1}{\sqrt{-g}}\partial_a \left(\sqrt{-g}g^{ab}\partial_b\phi\right) = 0\,.$$

Massless minimally coupled scalar wave equation in Eisenhart spacetime

$$\frac{1}{\sqrt{-g}}\partial_a \left(\sqrt{-g}g^{ab}\partial_b\phi\right) = 0\,.$$

Set $\phi = e^{ims} \alpha^{\frac{n}{4}}(t) \Psi(x^j, t)$ and obtain

$$i\partial_t \Psi = \hat{H}\Psi, \qquad \hat{H} = -\frac{\alpha}{2m}\nabla^2 + \beta V.$$

Massless minimally coupled scalar wave equation in Eisenhart spacetime

$$\frac{1}{\sqrt{-g}}\partial_a \left(\sqrt{-g}g^{ab}\partial_b\phi\right) = 0\,.$$

Set $\phi = e^{ims} \alpha^{\frac{n}{4}}(t) \Psi(x^j, t)$ and obtain

$$i\partial_t \Psi = \hat{H}\Psi, \qquad \hat{H} = -\frac{lpha}{2m} \nabla^2 + \beta V.$$

Find $\partial_t(\bar{\Psi}\Psi) = i\frac{\alpha}{2m}\nabla^j(\bar{\Psi}\partial_j\Psi - \Psi\partial_j\bar{\Psi})$, where ∇^i is the Levi-Civita covariant derivative of the metric g_{ij} . Then the conserved probability is

$$\langle \Psi | \Psi \rangle = \int_{t=const.} |\Psi|^2 \sqrt{\det g_{ij}} d^n x.$$

Massless minimally coupled scalar wave equation in Eisenhart spacetime

$$\frac{1}{\sqrt{-g}}\partial_a \left(\sqrt{-g}g^{ab}\partial_b\phi\right) = 0\,.$$

Set $\phi = e^{ims} \alpha^{\frac{n}{4}}(t) \Psi(x^j, t)$ and obtain

$$i\partial_t \Psi = \hat{H}\Psi, \qquad \hat{H} = -\frac{\alpha}{2m}\nabla^2 + \beta V.$$

Find $\partial_t(\bar{\Psi}\Psi) = i\frac{\alpha}{2m}\nabla^j(\bar{\Psi}\partial_j\Psi - \Psi\partial_j\bar{\Psi})$, where ∇^i is the Levi-Civita covariant derivative of the metric g_{ij} . Then the conserved probability is

$$\langle \Psi | \Psi \rangle = \int_{t=const.} |\Psi|^2 \sqrt{\det g_{ij}} d^n x.$$

Notice that

$$\Psi(t+t')\neq e^{-i\hat{H}t}\Psi(t')\,.$$

• Crucially one can define positive frequency states because the Eisenhart metric has a globally defined null vector ∂_s .

- Crucially one can define positive frequency states because the Eisenhart metric has a globally defined null vector ∂_s .
- As before inner product

$$(\phi',\phi) = \int_{\Sigma} J_a d\Sigma^a$$
, $J_a[\phi',\phi] = i(\bar{\phi}'\partial_a\phi - \phi\partial_a\bar{\phi}')$,

where Σ is a Cauchy surface.

- Crucially one can define positive frequency states because the Eisenhart metric has a globally defined null vector ∂_s .
- As before inner product

$$(\phi',\phi) = \int_{\Sigma} J_a d\Sigma^a, \qquad J_a[\phi',\phi] = i(\bar{\phi}'\partial_a\phi - \phi\partial_a\bar{\phi}'),$$

where Σ is a Cauchy surface.

• Define positive frequency by

$$(\partial_s)^a \partial_a \phi = -im\phi, \qquad m > 0, \qquad \phi = e^{-ims}\chi(x,t).$$

- Crucially one can define positive frequency states because the Eisenhart metric has a globally defined null vector ∂_s .
- As before inner product

$$(\phi',\phi) = \int_{\Sigma} J_a d\Sigma^a$$
, $J_a[\phi',\phi] = i(\bar{\phi}'\partial_a\phi - \phi\partial_a\bar{\phi}')$,

where Σ is a Cauchy surface.

Define positive frequency by

$$(\partial_s)^a \partial_a \phi = -im\phi, \qquad m > 0, \qquad \phi = e^{-ims}\chi(x,t).$$

• Choose Cauchy surface as $t = t_0 \rightarrow$

$$(\phi',\phi)=2i\int ds\int\sqrt{-g}d^nxig(ar\phi'\partial_s\phi-\phi\partial_sar\phi'ig)\,.$$

This generates the superselection rule m = m'.

Summary

2 Quantizing time dependent systems with the Eisenhart lift

Symmetries of the damped oscillator

Reminder of main formulas

Hamiltonian of the Caldirola-Kanai oscillator

$$H = \frac{1}{2m}e^{-\gamma t}p^2 + \frac{1}{2}e^{\gamma t}m\omega^2 x^2.$$

Reminder of main formulas

Hamiltonian of the Caldirola-Kanai oscillator

$$H = \frac{1}{2m}e^{-\gamma t}p^2 + \frac{1}{2}e^{\gamma t}m\omega^2 x^2.$$

Equations of motion give

$$\ddot{x} + \gamma x + \omega^2 x = 0.$$

Reminder of main formulas

Hamiltonian of the Caldirola-Kanai oscillator

$$H = \frac{1}{2m}e^{-\gamma t}p^2 + \frac{1}{2}e^{\gamma t}m\omega^2 x^2.$$

Equations of motion give

$$\ddot{x} + \gamma x + \omega^2 x = 0.$$

Eisenhart lift

$$g_{ab}dx^a dx^b = e^{\gamma t} dx^2 + 2dt ds - e^{\gamma t} \omega^2 x^2 dt^2 \,.$$

• The most general linear second-order differential equation in one dimension

$$\ddot{x} + \dot{f}(t)\dot{x} + \omega^2(t)x = F(t) ,$$

can be transformed *locally* into that of a free particle [Arnold 1978]. Can be extended to a quantum Arnold transformation. [Aldaya Cossío Guerrero López-Ruiz 2011-2012]

• The most general linear second-order differential equation in one dimension

$$\ddot{x} + \dot{f}(t)\dot{x} + \omega^2(t)x = F(t) ,$$

can be transformed *locally* into that of a free particle [Arnold 1978]. Can be extended to a quantum Arnold transformation. [Aldaya Cossío Guerrero López-Ruiz 2011-2012]

• u_1, u_2 two independent solutions of the homogeneous equation, u_p particular solution of the full equation. Convenient initial conditions

$$u_1(t_0) = \dot{u}_2(t_0) = u_p(t_0) = \dot{u}_p(t_0) = 0, \qquad \dot{u}_1(t_0) = u_2(t_0) = 1.$$

Wronskian is $\dot{u}_1 u_2 - u_1 \dot{u}_2 = e^{-f}$.

• The most general linear second-order differential equation in one dimension

$$\ddot{x} + \dot{f}(t)\dot{x} + \omega^2(t)x = F(t) ,$$

can be transformed *locally* into that of a free particle [Arnold 1978]. Can be extended to a quantum Arnold transformation. [Aldaya Cossío Guerrero López-Ruiz 2011-2012]

• u_1, u_2 two independent solutions of the homogeneous equation, u_p particular solution of the full equation. Convenient initial conditions

$$u_1(t_0) = \dot{u}_2(t_0) = u_p(t_0) = \dot{u}_p(t_0) = 0, \qquad \dot{u}_1(t_0) = u_2(t_0) = 1.$$

Wronskian is $\dot{u}_1 u_2 - u_1 \dot{u}_2 = e^{-f}$.

$$x(t) = u_p(t) + au_1(t) + bu_2(t)$$
.

Dividing times $u_1(t)$ when allowed:

$$\xi(\tau) = a\tau + b$$
, $\xi = \frac{x - u_p}{u_2}$, $\tau = \frac{u_1}{u_2}$.

Marco Cariglia (UFOP & UNICAM)

۲

• One finds the Eisenhart metric is conformally flat:

$$g_{ab}dx^{a}dx^{b} = \underbrace{e^{f}}_{\alpha^{-1}}dx^{2} + 2dtds - 2e^{f}\underbrace{\left(\frac{1}{2}\omega^{2}x^{2} - F(t)x\right)}_{\frac{V}{m}}dt^{2}$$

• One finds the Eisenhart metric is conformally flat:

$$g_{ab}dx^{a}dx^{b} = \underbrace{e^{f}}_{\alpha^{-1}}dx^{2} + 2dtds - 2e^{f}\underbrace{\left(\frac{1}{2}\omega^{2}x^{2} - F(t)x\right)}_{\frac{V}{m}}dt^{2}$$
$$= e^{f}u_{2}^{2}\left(d\xi^{2} + 2d\tau d\sigma\right) ,$$

• One finds the Eisenhart metric is conformally flat:

$$g_{ab}dx^{a}dx^{b} = \underbrace{e^{f}}_{\alpha^{-1}}dx^{2} + 2dtds - 2e^{f}\underbrace{\left(\frac{1}{2}\omega^{2}x^{2} - F(t)x\right)}_{\frac{V}{m}}dt^{2}$$
$$= e^{f}u_{2}^{2}\left(d\xi^{2} + 2d\tau d\sigma\right),$$

where

$$\sigma = s + e^{f} u_{2} \left(\frac{1}{2} \dot{u}_{2} \sigma^{2} + \dot{u}_{p} \sigma \right) + h(t) , \qquad \dot{h}(t) = \frac{1}{2} e^{t} \left(\dot{u}_{p}^{2} - \omega^{2} u_{p}^{2} + 2F u_{p} \right) .$$

• One finds the Eisenhart metric is conformally flat:

$$g_{ab}dx^{a}dx^{b} = \underbrace{e^{f}}_{\alpha^{-1}}dx^{2} + 2dtds - 2e^{f}\underbrace{\left(\frac{1}{2}\omega^{2}x^{2} - F(t)x\right)}_{\frac{V}{m}}dt^{2}$$
$$= e^{f}u_{2}^{2}\left(d\xi^{2} + 2d\tau d\sigma\right) ,$$

where

$$\sigma = s + e^{f} u_2 \left(\frac{1}{2} \dot{u}_2 \, \sigma^2 + \dot{u}_p \, \sigma \right) + h(t) \,, \qquad \dot{h}(t) = \frac{1}{2} e^t \left(\dot{u}_p^2 - \omega^2 u_p^2 + 2F u_p \right) \,.$$

• For the damped harmonic oscillator $e^f = e^{\gamma t}$, F(t) = 0,

$$u_1 = e^{-\gamma t/2} \frac{\sin \Omega t}{\Omega}$$
, $u_2 = e^{-\gamma t/2} (\cos \Omega t + \frac{\gamma}{2\Omega} \sin \Omega t)$, $\Omega^2 = \omega^2 - \gamma^2/4$.

• One finds the Eisenhart metric is conformally flat:

$$g_{ab}dx^{a}dx^{b} = \underbrace{e^{f}}_{\alpha^{-1}}dx^{2} + 2dtds - 2e^{f}\underbrace{\left(\frac{1}{2}\omega^{2}x^{2} - F(t)x\right)}_{\frac{V}{m}}dt^{2}$$
$$= e^{f}u_{2}^{2}\left(d\xi^{2} + 2d\tau d\sigma\right) ,$$

where

$$\sigma = s + e^{f} u_2 \left(\frac{1}{2} \dot{u}_2 \, \sigma^2 + \dot{u}_p \, \sigma \right) + h(t) \,, \qquad \dot{h}(t) = \frac{1}{2} e^t \left(\dot{u}_p^2 - \omega^2 u_p^2 + 2F u_p \right) \,.$$

• For the damped harmonic oscillator $e^f = e^{\gamma t}$, F(t) = 0,

$$u_1 = e^{-\gamma t/2} \frac{\sin \Omega t}{\Omega}$$
, $u_2 = e^{-\gamma t/2} \left(\cos \Omega t + \frac{\gamma}{2\Omega} \sin \Omega t \right)$, $\Omega^2 = \omega^2 - \gamma^2/4$.

• For $\gamma = 0$ reduces to 'Niederer's trick' [Niederer 1973] lifted to higher dimension.
Symmetries of the damped oscillator

Conformally related Hamiltonians share identical symmetries generated by conformal Killing vectors: import symmetries from those of flat space!

Symmetries of the damped oscillator 2

Extended Schrödinger algebra

- $T = p_{\xi}$ $B = -p_{\sigma}\xi + p_{\xi}\tau$ $E = -p_{\tau}$
- $m = p_{\sigma}$
- $D = -2\tau p_{\tau} \xi p_{\xi}$

$$K = \tau^2 p_\tau + \tau \xi p_\xi - \frac{1}{2} \xi^2 p_s$$

Symmetries of the damped oscillator 2

Extended Schrödinger algebra

$$\begin{split} T &= p_{\xi} = u_2 p_x - e^{\gamma t} \dot{u}_2 x p_s \,, \\ B &= -p_{\sigma} \xi + p_{\xi} \tau = u_1 p_x - e^{\gamma t} \dot{u}_1 x p_s \,, \\ E &= -p_{\tau} = -e^{\gamma t} u_2 \dot{u}_2 x p_x - u_2^2 e^{\gamma t} p_t + \frac{1}{2} e^{2\gamma t} \left(\dot{u}_2^2 - \omega^2 u_2^2 \right) x^2 p_s \,, \\ m &= p_{\sigma} = p_s \,. \\ D &= -2\tau p_{\tau} - \xi p_{\xi} \\ &= -2e^{\gamma t} u_1 u_2 p_t - (1 + 2e^{\gamma t} u_1 \dot{u}_2) \, x p_x + \frac{e^{\gamma t}}{u_2} \left[\dot{u}_2 - e^{\gamma t} u_1 \left(\omega^2 u_2^2 - \dot{u}_2^2 \right) \right] x^2 p_s \,. \\ K &= \tau^2 p_{\tau} + \tau \xi p_{\xi} - \frac{1}{2} \xi^2 p_s \\ &= e^{\gamma t} u_1^2 p_t + \frac{u_1}{u_2} \left(1 + e^{\gamma t} u_1 \dot{u}_2 \right) x p_x \\ &+ \frac{1}{2u_2^2} \left[-1 - 2e^{\gamma t} u_1 \dot{u}_2 + e^{2\gamma t} u_1^2 \left(\omega^2 u_2^2 - \dot{u}_2^2 \right) \right] x^2 p_s \,. \end{split}$$

Marco Cariglia (UFOP & UNICAM)

,

• Recall the Bateman-Feshbach-Tikochinksy oscillator:

$$\hat{H}_B = p_x p_y + rac{\gamma}{2} (y p_y - x p_x) + m \Omega^2 x y, \qquad \Omega = \sqrt{\omega^2 - rac{\gamma^2}{4}}.$$

• Recall the Bateman-Feshbach-Tikochinksy oscillator:

$$\hat{H}_B = p_x p_y + \frac{\gamma}{2} (y p_y - x p_x) + m \Omega^2 x y, \qquad \Omega = \sqrt{\omega^2 - \frac{\gamma^2}{4}}.$$

• Describes a damped particle and an anti-damped double, or doppelgänger:

$$\ddot{x} + \gamma \dot{x} + \omega^2 x = 0, \quad \ddot{y} - \gamma \dot{y} + \omega^2 y = 0.$$

Total energy is conserved, although indefinite.

• Recall the Bateman-Feshbach-Tikochinksy oscillator:

$$\hat{H}_B = p_x p_y + \frac{\gamma}{2} (y p_y - x p_x) + m \Omega^2 x y, \qquad \Omega = \sqrt{\omega^2 - \frac{\gamma^2}{4}}.$$

• Describes a damped particle and an anti-damped double, or doppelgänger:

$$\ddot{x} + \gamma \dot{x} + \omega^2 x = 0, \quad \ddot{y} - \gamma \dot{y} + \omega^2 y = 0.$$

Total energy is conserved, although indefinite.

• A time dependent canonical transformation transforms it into a double Caldirola-Kanai oscillator

$$H_{CK} = e^{-\gamma t} \frac{{p'_x}^2}{2m} + \frac{1}{2}m\omega^2 x'^2 e^{\gamma t} - e^{\gamma t} \frac{{p'_y}^2}{2m} - \frac{1}{2}m\omega^2 y'^2 e^{-\gamma t}.$$

using

• Recall the Bateman-Feshbach-Tikochinksy oscillator:

$$\hat{H}_B = p_x p_y + \frac{\gamma}{2} (y p_y - x p_x) + m \Omega^2 x y, \qquad \Omega = \sqrt{\omega^2 - \frac{\gamma^2}{4}}.$$

• Describes a damped particle and an anti-damped double, or doppelgänger:

$$\ddot{x} + \gamma \dot{x} + \omega^2 x = 0, \quad \ddot{y} - \gamma \dot{y} + \omega^2 y = 0.$$

Total energy is conserved, although indefinite.

• A time dependent canonical transformation transforms it into a double Caldirola-Kanai oscillator

$$H_{CK} = e^{-\gamma t} \frac{{p'_x}^2}{2m} + \frac{1}{2} m \omega^2 x'^2 e^{\gamma t} - e^{\gamma t} \frac{{p'_y}^2}{2m} - \frac{1}{2} m \omega^2 y'^2 e^{-\gamma t}.$$

using

$$p'_{x} = \frac{\partial F_{2}}{\partial x'}, \quad p'_{y} = \frac{\partial F_{2}}{\partial y'}, \quad x = \frac{\partial F_{2}}{\partial p_{x}}, \quad y = \frac{\partial F_{2}}{\partial p_{y}}, \quad H_{B} = H_{CK} + \frac{\partial F_{2}}{\partial t},$$

$$F_{2} = \frac{1}{\sqrt{2}} \left(e^{\gamma t} x' + y' \right) p_{y} + \frac{1}{\sqrt{2}} \left(x' - e^{-\gamma t} y' \right) p_{x} + \frac{\gamma}{4m\Omega^{2}} e^{-\gamma t} p_{x}^{2} - \frac{m\gamma}{8} \left(e^{\frac{\gamma t}{2}} x' - e^{-\frac{\gamma t}{2}} y' \right)^{2}$$

Marco Cariglia (UFOP & UNICAM)

• Eisenhart lift of the double Caldirola-Kanai

 $\mathcal{H}=mH_{CK}+p_tp_s.$

• Eisenhart lift of the double Caldirola-Kanai

$$\mathcal{H}=mH_{CK}+p_tp_s.$$

• Two interacting copies of the Schrödinger algebras. Define $T_1 = T$, $B_1 = B$ and $E_1 = E$ for the first copy. Then $v_{1,2}(t)$ obtained from $u_{1,2}(t)$ using $\gamma \to -\gamma$,

$$T_{2} = v_{2} p'_{y} - e^{-\gamma t} \dot{v}_{2} y' p_{s},$$

$$B_{2} = v_{1} p'_{y} - e^{-\gamma t} \dot{v}_{1} y' p_{s}$$

$$E_{2} = -e^{-\gamma t} v_{2} \dot{v}_{2} y' p'_{y} - v_{2}^{2} e^{-\gamma t} p_{t} + \frac{1}{2} e^{-2\gamma t} \left(\dot{v}_{2}^{2} - \omega^{2} v_{2}^{2} \right) y'^{2} p_{s}.$$

• Eisenhart lift of the double Caldirola-Kanai

$$\mathcal{H}=mH_{CK}+p_tp_s.$$

• Two interacting copies of the Schrödinger algebras. Define $T_1 = T$, $B_1 = B$ and $E_1 = E$ for the first copy. Then $v_{1,2}(t)$ obtained from $u_{1,2}(t)$ using $\gamma \to -\gamma$,

$$T_{2} = v_{2} p'_{y} - e^{-\gamma t} \dot{v}_{2} y' p_{s},$$

$$B_{2} = v_{1} p'_{y} - e^{-\gamma t} \dot{v}_{1} y' p_{s}$$

$$E_{2} = -e^{-\gamma t} v_{2} \dot{v}_{2} y' p'_{y} - v_{2}^{2} e^{-\gamma t} p_{t} + \frac{1}{2} e^{-2\gamma t} \left(\dot{v}_{2}^{2} - \omega^{2} v_{2}^{2} \right) y'^{2} p_{s}.$$

• Heisenberg subalgebras are mutually commuting:

$$\{T_1, T_2\} = 0 = \{T_1, B_2\},\$$

$$\{B_1, T_2\} = 0 = \{B_1, B_2\}.$$

Marco Cariglia (UFOP & UNICAM)

However there exist two independent definitions of 'conformally flat time', and each Heisenberg subalgebra is time dependent with respect to the other time: infinite copies of mutually commuting Heisenberg subalgebras. For $i \neq j$, i, j = 1, 2

$$\{E_i, T_j\} := \tau_j^{(1)} \qquad \{E_i, \tau_j^{(n)}\} := \tau_j^{(n+1)},$$

$$\{E_i, B_j\} := \beta_j^{(1)} \qquad \{E_i, \beta_j^{(n)}\} := \beta_j^{(n+1)}$$

$$\{\tau_i^{(n)}, \beta_j^{(n)}\} = \delta_{ij}\mu_i^{(n)},$$

However there exist two independent definitions of 'conformally flat time', and each Heisenberg subalgebra is time dependent with respect to the other time: infinite copies of mutually commuting Heisenberg subalgebras. For $i \neq j$, i, j = 1, 2

$$\begin{split} \{E_i, T_j\} &:= \tau_j^{(1)} & \{E_i, \tau_j^{(n)}\} := \tau_j^{(n+1)}, \\ \{E_i, B_j\} &:= \beta_j^{(1)} & \{E_i, \beta_j^{(n)}\} := \beta_j^{(n+1)} \\ & \{\tau_i^{(n)}, \beta_j^{(n)}\} = \delta_{ij} \mu_i^{(n)} \end{split}$$

For concreteness, specialising to the first n = 1 level we find the following generators:

$$\begin{split} \tau_2^{(1)} &= e^{\gamma t} \, u_2^2 \, \dot{v}_2 \, p_y' + \omega^2 \, u_2^2 \, v_2 \, y' \, p_s \,, \\ \tau_1^{(1)} &= e^{-\gamma t} \, v_2^2 \, \dot{u}_2 \, p_x' + \omega^2 \, v_2^2 \, u_2 \, x' \, p_s \,, \\ \beta_2^{(1)} &= e^{\gamma t} \, u_2^2 \, \dot{v}_1 \, p_y' + \omega^2 \, u_2^2 \, v_1 \, y' \, p_s \,, \\ \beta_1^{(2)} &= e^{-\gamma t} \, v_2^2 \, \dot{u}_1 \, p_x' + \omega^2 \, v_2^2 \, u_1 \, x' \, p_s \,, \\ \mu_2^{(1)} &= e^{2\gamma t} \omega^2 u_2^4 \, p_s \,, \\ \mu_1^{(2)} &= e^{-2\gamma t} \omega^2 v_2^4 \, p_s \,. \end{split}$$

(there are also cross commutators)

Marco Cariglia (UFOP & UNICAM)

• The Caldirola-Kanai damped harmonic oscillator can be described and quantized using the Eisenhart lift technique.

- The Caldirola-Kanai damped harmonic oscillator can be described and quantized using the Eisenhart lift technique.
- Geometrical meaning of the Arnold transform is that the Eisenhart lift metric is locally conformally flat.

- The Caldirola-Kanai damped harmonic oscillator can be described and quantized using the Eisenhart lift technique.
- Geometrical meaning of the Arnold transform is that the Eisenhart lift metric is locally conformally flat.
- Flat space Schrödinger algebra can be imported.

- The Caldirola-Kanai damped harmonic oscillator can be described and quantized using the Eisenhart lift technique.
- Geometrical meaning of the Arnold transform is that the Eisenhart lift metric is locally conformally flat.
- Flat space Schrödinger algebra can be imported.
- The Bateman system has two interacting copies of the Schrödinger algebras, plus all their 'time derivatives'. Physical meaning in case of black holes??

- The Caldirola-Kanai damped harmonic oscillator can be described and quantized using the Eisenhart lift technique.
- Geometrical meaning of the Arnold transform is that the Eisenhart lift metric is locally conformally flat.
- Flat space Schrödinger algebra can be imported.
- The Bateman system has two interacting copies of the Schrödinger algebras, plus all their 'time derivatives'. Physical meaning in case of black holes??

Future perspectives:

- The Caldirola-Kanai damped harmonic oscillator can be described and quantized using the Eisenhart lift technique.
- Geometrical meaning of the Arnold transform is that the Eisenhart lift metric is locally conformally flat.
- Flat space Schrödinger algebra can be imported.
- The Bateman system has two interacting copies of the Schrödinger algebras, plus all their 'time derivatives'. Physical meaning in case of black holes??

Future perspectives:

• Study in detail a concrete example of quasinormal modes to get insight.