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Motivation

http://www.black-holes.org I Black holes exist (LIGO ’16)

I Einstein’s theory predicts singular
core

I Black holes evaporate (Hawking ’76)

→ Loss of predictability

I Quantum gravity hard

Can process be described by self-consistent non-singular effective
theory?
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Executive Summary: new improved 2D gravity

I Generalizes spher. symm. Einstein-Lanczos-Lovelock gravity:
I higher order Lagrangian,
I second order equations,
I mass function,
I Birkhoff’s theorem.

I Has as sub-class D →∞ Einstein-Lanczos-Lovelock gravity.

I Can be designed to produce as unique solution any spherical
black hole

Provides consistent model for studying effective dynamics of
regular black hole formation and evaporation.
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Outline:

1. Regular black holes

2. New (improved) 2D gravity

3. Adding radiation

4. Conclusions
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Static Regular black holes
Regular Black Hole Formation and Evaporation

Regular black holes (Sakharov,’65, Bardeen, ’68, Frolov-Vilkovisky, ’88)

Example: derived by Poisson and Israel ’88 using semi-classical arguments

ds2 = −

(
1− 2MR2

(R3 + l3pl)

)
dt2 +

(
1− 2MR2

(R3 + l3pl)

)−1

dR2 + R2dΩ(2)

Ricci Scalar R(n) = 12l3pl
M(−R3 + 2l3pl)

(R3 + l3pl)
3

I deSitter core with curvature R(n)
core = 12M/l3pl

I Two horizons R+ → 2M and R− →
√

lpl
2M

lpl →M→∞ 0

I mass gap 2Mmin ∼ lpl .

I R(n)
core →∞; R− →M→∞ 0 as M →∞

Semi-classical approximation doomed from beginning!
Thanks to V. Frolov for stressing this.
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A better class of regular black holes Hayward(’06)

ds2 = −

(
1− 2MR2

R3 + Ml2pl

)
dt2 +

(
1− 2MR2

R3 + Ml2pl

)−1

dR2 + R2dΩ(2)

R(n) = 24
M2l2pl(−R3 + 2Ml2pl)

(R3 + Ml2pl)
3

(1)

I deSitter core: R(n)
core = 12/l2pl

I Two horizons: R+ ∼ 2M and R− ∼ lpl

I Mass gap 2Mmin = lpl

I Curvature bounded above, R− bounded below.

Basis for consistent semi-classical model?
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Static Regular black holes
Regular Black Hole Formation and Evaporation

Why are we interested in regular black hole formation and
evaporation?

I Expect qualitative changes to structure of complete
semi-classical spacetime.
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Static Regular black holes
Regular Black Hole Formation and Evaporation

Recall: Singular Black Hole Formation
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Static Regular black holes
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Singular Black Hole Formation and Evaporation
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Static Regular black holes
Regular Black Hole Formation and Evaporation

Regular black hole formation (Ziprick, GK ’09; Maeda, Taves, GK ’16)

I r = 0 timelike, regular.

I Expect mass inflation as
matter piles up on inner
horizon.

I As mass inflates, inner
horizon generally shrink.
Stabilizes at lpl for Hayward
black holes.
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Static Regular black holes
Regular Black Hole Formation and Evaporation

... and evaporation

Hayward ’06: explicit construction by patching Vaidya spacetimes
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Static Regular black holes
Regular Black Hole Formation and Evaporation

...but can we find consistent dynamical equations that
yield this spacetime?

Outline:

1. Regular black holes

2. New (improved) 2D gravity

3. Adding radiation

4. Conclusions
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Motivation and Construction
Designer Black Holes
Numerial Results

Recall: Generic 2D Dilaton Gravity (1990’s)

Einstein action in n dimensions:

IE =
1

16πG

∫
dnx
√
−g (n)R(g (n)) (2)

Dimensionally Reduced Action (ds2 = −gµνdxµdxν + R2dΩ(n−2)):

I(2) =
1

ln−2

∫
d2x
√
−g
[
Rn−2R

+ (n − 2)(n − 3)R(n−4)(∇R)2 + (n − 2)(n − 3)R(n−4)
]

(3)

Generalization (Generic 2D Dilaton Gravity):

IG =
1

ln−2

∫
d2x
√
−g
{
φ(R)R+ h(R)(DR)2 + V (R)

}
. (4)

Can’t get bounded curvature metrics from this class of theories.
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Extended Spherical Einstein-Lovelock-Lanczos Gravity

Recall Lovelock Action:

I =
1

2κ2
n

∫
dnx
√
−g

[n/2]∑
p=0

α(p)

(
1

2p
δ
µ1···µpν1···νp
ρ1···ρpσ1···σpR

ρ1σ1
µ1ν1 · · ·R ρpσp

µpνp

)
, (5)

where κn :=
√

8πGn and δ
µ1···µp
ρ1···ρp := p!δµ1

[ρ1
· · · δµp

ρp ]
..

Eg: Einstein-Gauss-Bonnet Gravity (n ≥ 5):

I =

∫
dnx
√
−g
{
R+

α̃

2

[
R2 − 4RµνRµν +RµνρσRµνρσ

]}
. (6)
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Generic spherically symmetric Lovelock terms:

Shown by G.K., Maeda and Taves ’13, generalizing an identity used for
Einstein-Gauss-Bonnet by Taves, Leonard, GK and Mann ’11:

I =
1

2κ2
n

∫
dnx
√
−g

[n/2]∑
p=0

α(p)L(p)

L(p) =
(n − 2)!

(n − 2p)!

[
pR2−2p

(2)

R + (n − 2p)(n − 2p − 1)

{
(1− Z)p + 2pZ

}
R−2p

]

+ p(n − 2p)R1−2p

{
1− (1− Z)p−1

}
∇R · ∇Z

Z
.

where: Z := |∇R|2
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New 2D Gravity

Natural extension:

I =
1

ln−2

∫
d2x
√
−g
{
φ(R)R+ H(R,Z ) + χ(R,Z )∇R · ∇Z

}
Z := |∇R|2 (7)

I Second order equations for gµν and R

I Birkhoff’s theorem

I Mass function: M such that DAM = 0 in vacuum on shell

Conjecture: Most general 2D with above properties?
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Mass Function

Integrability Condition on Lagrangian Functions:

φ,RR =η,Z − χ,R .

Guarantees existence of the mass function:

M(R,Z ) := −φ,RZ +

∫ Z

χ(R, Z̄ )dZ̄ .

which gives

DAM =(χ− φ,R)DAZ − 2

(
φ,RRZ −

1

2
η(R,Z )

)
DAR

=0 in vacuum
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Birkhoff Theorem

I Most general solution (Schwarzschild coords):

ds2 =− f (R;M)dt2 + f (R;M)−1dR2.

where
M(R,Z ) = M = constant. (8)

I f (R;M) is determined by inverting (8) to solve for Z :

Z = f (R;M)
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How to design your personalized black hole spacetime

1. Choose your favourite metric function f (R,M)

2. In Schwarzchild coords Z := |∇R|2 = f (R;M): Solve for
M =M(R,Z )

3. Obtain lagrangian functions:

∂M
∂Z

=χ− φ,R ,

∂M
∂R

=− 2

(
φ,RRZ −

1

2
η(R,Z )

)
.

4. Just add matter and solve collapse equations.
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Example: Hayward black hole in 4D

metric function : f (R) = 1− 2MR2

R3 + l2plM
= Z .

mass function: 2M =
(1− Z )R3

R2 − l2pl(1− Z )
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Adding matter

Massless scalar field:

Imatter = −1

2

∫
d2xR2|∇ψ|2

I Straightforward to derive Hamiltonian equation.

ds2 = −N2dt2 + Λ2(dx + Nrdt)2R2(x)dΩ(2)

I We work in flat slice coordinates (mostly due to inertia).

R = x Λ = 1
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Numerical Results: l=5, MADM = 78.3195, 150,000 iterations to T=47.7636.

Mass Density M,R :
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Mass Function:
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Ricci Scalar in terms of data on a slice

R(n) = −B ′(R)

M,Z
|∇ψ|2 − M,ZZ

M3
,Z

B2|∇ψ|4 +
MRR

M,Z
− 2M,ZR

(
M,R

M2
,Z

)

+
M,ZZ

M,Z

(
M,R

M,Z

)2

+ 2(n − 2)
M,R

M,ZR
+ (n − 2)(n − 3)

1− Z

R2

=
−B ′(R)R5

(R3 +Ml2)2
|∇ψ|2 −

(
8l2R5B2(R)

(R3 +Ml2)3

)
|∇ψ|4 − 3M2l2(R3 − 22)

(R3 +Ml2)3

|∇ψ|2 = −
P2
ψ

Λ2B2(R)
+
ψ2
,x

Λ2
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Ricci Scalar:
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Outgoing null geodesic that asymptotes to inner horizon, and plots of Mass

and Ricci scalar along it.
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Outgoing null geodesic that asymptotes to inner horizon, and plots of Mass

and Ricci scalar along it.
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Outline:

1. Regular black holes

2. New (improved) 2D gravity

3. Adding radiation

4. Conclusions
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Radiation Terms: Polyakov Action

IPoly ∼ −
∫

d4x

√
−g (4)R(4) 1

D2
(4)

R(4) (9)

Local Form: auxilliary field z

IPoly ∼ −
∫ √

−gR2
[
zR(g) + DAzD

Az
]

(10)

So far:

I Eqs. obtained and code running for Bardeen-type black hole:
stability (and other?) issues

I Working on equations and code for new 2D gravity.
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Summary

Presented new class of 2D theories to model the formation and
evaporation of physical regular spherically symmetric black holes.

I Can design lagrangian to produce any 2D black hole, including
Hayward.

I Sub-class (eg Hayward BH) have physical interpretation as
infinite dimensional Lovelock: lagrangian functions need to
have Taylor expansion in 1− Z .
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Outstanding Questions:

I Can any of the new 2D gravity theories be obtained via
dimensional reduction (Cf. Meyers, Robinson ’10; Oliva, Ray ’11)?

I Does Hayward black hole suffer (a lot) from mass inflation?
(Stable inner horizon, curvature bounded.)

I Radiation of regular black holes should produce spacetime
with compact trapping horizon. Consequences for information
loss?
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Thanks for listening!
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Regular black hole formation (Ziprick, GK ’09; Maeda, Taves, GK ’16)

Penrose Diagram
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