Rotating black holes in 5D Einstein-Maxwell-Chern-Simons theory with negative cosmological constant

Jose Luis Blázquez Salcedo
In collaboration with Jutta Kunz, Francisco Navarro Lérida, and Eugen Radu

Black Holes' New Horizons, May 2016, Oaxaca, Mexico

Rotating black holes in 5D Einstein-Maxwell-Chern-Simons theory with negative cosmological constant

1. Introduction
2. Near-horizon formalism
3. Exploring the global solutions

EM-AdS vs EMCS-AdS $\lambda=1$ (SUGRA) vs EMCS-AdS $\lambda=1.5$
Global solutions and branch structure for $\lambda>2$

1. Introduction

Black holes in $\mathrm{D}=5$ dimensions in
Einstein-Maxwell-Chern-Simons theory with negative cosmological constant
Asymptotically anti-de-Sitter space-times:
Interesting in the context of the AdS/CFT correspondence
Gravitating fields propagating in an AdS space-time

Fields propagating in a conformal field theory
Known analytical solutions:

- Myers-Perry black hole (uncharged)
- 5D Reissner-Nordström black hole (static)
- Cvetič-Lu-Pope black hole (rotating and charged, SUGRA) (PLB598 273)

What are the properties of black holes connecting these solutions?

1. Introduction ||

We are interested in the higher dimensional generalization of the Kerr-Newman black holes in 5D EMCS-AdS theory:

$$
I=\frac{1}{16 \pi G_{5}} \int d^{5} x\left[\sqrt{-g}\left(R-F^{2}-2 \Lambda\right)-\frac{2 \lambda}{3 \sqrt{3}} \varepsilon^{\mu \nu \alpha \beta \gamma} A_{\mu} F_{\nu \alpha} F_{\beta \gamma}\right]
$$

$$
R=\text { curvature scalar }
$$

$\mathrm{U}(1)$ electro-magnetic potential A_{μ}
F = field strength tensor

$$
\Lambda=\text { cosmological constant }
$$

$\lambda=$ Chern-Simons coupling parameter

1. Introduction ||

$$
I=\frac{1}{16 \pi G_{5}} \int d^{5} x\left[\sqrt{-g}\left(R-F^{2}-2 \Lambda\right)-\frac{2 \lambda}{3 \sqrt{3}} \varepsilon^{\mu \nu \alpha \beta \gamma} A_{\mu} F_{\nu \alpha} F_{\beta \gamma}\right]
$$

Einstein-Maxwell-Chern-Simons theory in 5 dimensions

$$
G_{\mu \nu}+\Lambda g_{\mu \nu}=2\left(F_{\mu \rho} F_{\nu}^{\rho}-\frac{1}{4} F^{2}\right)
$$

Einstein equations

$$
G_{5}=1
$$

$$
\nabla \nabla_{\nu} F^{\mu \nu}+\frac{\lambda}{2 \sqrt{3}} \varepsilon^{\mu \nu \alpha \beta \gamma} F_{\nu \alpha} F_{\beta \gamma}=0
$$

Maxwell equations

1. Introduction ||

Ansatz constraints:

1. Axially symmetric and stationary: $U(1)^{N}$ symmetry In D dimensions $\mathrm{N}=[(\mathrm{D}-1) / 2]$ (planes of rotation)
2. All angular momenta of equal magnitude: enhanced $U(N)$ symmetry

$$
\left|J_{(1)}\right|=\left|J_{(2)}\right|=\ldots=\left|J_{(N)}\right|=J
$$

3. Event horizon with spherical topology
4. Asymptotically AdS

1. Introduction ||

Ansatz for the metric (5D):

$$
\begin{aligned}
& d s^{2}=-b(r) d t^{2}+\frac{1}{u(r)} d r^{2}+g(r) d \theta^{2}+p(r) \sin ^{2} \theta\left(d \varphi_{1}-\frac{\omega(r)}{r} d t\right)^{2} \\
& +p(r) \cos ^{2} \theta\left(d \varphi_{2}-\frac{\omega(r)}{r} d t\right)^{2}+(g(r)-p(r)) \sin ^{2} \theta \cos ^{2} \theta\left(d \varphi_{1}-d \varphi_{2}\right)^{2}
\end{aligned}
$$

$$
\theta \in[0, \pi / 2], \varphi_{1} \in[0,2 \pi] \text { and } \varphi_{2} \in[0,2 \pi]
$$

Lewis-Papapetrou coordinates. The radial coordinate \mathbf{r} is quasi-isotropic.
Ansatz for the gauge field:

$$
A_{\mu} d x^{\mu}=a_{0}(r) d t+a_{\varphi}(r)\left(\sin ^{2} \theta d \varphi_{1}+\cos ^{2} \theta d \varphi_{2}\right)
$$

System of second order ordinary differential equations + constraints

1. Introduction ||

Global Charges:

Mass $\quad M=-\frac{\pi}{8} \frac{\beta-3 \alpha}{L^{2}}$
(Ashtekar-Magnon-Das conformal mass)

Angular
Momenum

$$
J_{(k)}=\int_{S_{\infty}^{3}} \beta_{(k)}
$$

$$
\beta_{(k) \mu_{1} \mu_{2} \mu_{3}} \equiv \epsilon_{\mu_{1} \mu_{2} \mu_{3} \rho \sigma} \nabla^{\rho} \eta_{(k)}^{\sigma}
$$

$$
\left|J_{(k)}\right|=J
$$

Electric charge

$$
Q=-\frac{1}{2} \int_{S_{\infty}^{3}} \tilde{F}
$$

$$
\tilde{F}_{\mu_{1} \mu_{2} \mu_{3}} \equiv \epsilon_{\mu_{1} \mu_{2} \mu_{3} \rho \sigma} F^{\rho \sigma}
$$

1. Introduction ||

Horizon Charges:

Area

$$
A_{\mathrm{H}}=\int_{\mathcal{H}} \sqrt{\left|g^{(3)}\right|}=2 \pi^{2} r_{\mathrm{H}}^{3} \lim _{r \rightarrow r_{\mathrm{H}}} \sqrt{\frac{m^{2} n}{f^{3}}}
$$

Entropy
$S=4 \pi A_{H}$

Horizon Mass

$$
M_{\mathrm{H}}=-\frac{3}{2} \int_{\mathcal{H}} \alpha=\lim _{r \rightarrow r_{\mathrm{H}}} 2 \pi^{2} r^{3} \sqrt{\frac{m n}{f^{3}}}\left[\frac{n \omega}{f}\left(\frac{\omega}{r}-\omega^{\prime}\right)+f^{\prime}\left(1+\frac{r^{2}}{L^{2}}\right)+\frac{2 r f}{L^{2}}\right]
$$

Horizon Angular Momenta

$$
J_{\mathrm{H}(k)}=\int_{\mathcal{H}} \beta_{(k)}=\lim _{r \rightarrow r_{\mathrm{H}}} \pi^{2} r^{3} \sqrt{\frac{m n^{3}}{f^{5}}}\left[\omega-r \omega^{\prime}\right]
$$

2. Near-horizon formalism

Properties of the near-horizon geometry of extremal black holes.
H. K. Kunduri and J. Lucietti, Living Reviews in Relativity 16 (2013)

- The near-horizon geometry of extremal black holes with spherical topology is the product of two independent spaces.

Isometries: $S O(2,1) \times S O(D-1) \quad$ static case (sphere)

$$
S O(2,1) \times U(1)^{N} \quad \text { rotation (squashed sphere) }
$$

This factorization is obtained for all the known examples of topologically spherical black holes

|| 2. Near Horizon Formalism ||

Hence we can assume such factorization in our black holes (extremal case)
Metric:

$$
\begin{aligned}
& d s^{2}=v_{1}\left(d r^{2} / r^{2}-r^{2} d t^{2}\right)+v_{2}\left[4 d \theta^{2}+\sin ^{2} 2 \theta\left(d \phi_{2}-d \phi_{1}\right)^{2}\right] \\
& +v_{2} \eta\left[d \phi_{1}+d \phi_{2}+\cos ^{2} 2 \theta\left(d \phi_{2}-d \phi_{1}\right)-\alpha r d t\right]^{2}
\end{aligned}
$$

Gauge potential:

$$
A=-(\rho+p \alpha) r d t+2 p\left(\sin ^{2} \theta d \phi_{1}+\cos ^{2} \theta d \phi_{2}\right)
$$

- Field equations + Ansatz: algebraic relations for the Ansatz parameters
- Global charges can be calculated: (J, Q)
- Horizon charges: area, horizon angular momentum
- Parameters related to the asymptotical structure of the global solution cannot be calculated: Mass, angular velocity

Near-horizon geometry branch structure: EM flat

|| 2. Near Horizon Formalism ||

Near-horizon geometry branch structure: EM-AdS

|| 2. Near Horizon Formalism ||

Near-horizon geometry branch structure: EMCS-AdS, Q=2.720699, $\lambda=5$

3. Exploring the global solutions

EM-AdS vs
EMCS-AdS $\lambda=1$ (SUGRA)
vs
EMCS-AdS $\lambda=1.5$

EM-AdS black holes with $\mathrm{Q}=0.044, \mathrm{~L}=1$

EM-AdS black holes with $\mathrm{Q}=0.044, \mathrm{~L}=1$

|| 3. Exploring the global solutions ||

EMCS-AdS black holes with $\mathrm{Q}=0.044, \mathrm{~L}=1$
$\lambda=1$ (SUGRA)
$\lambda=1.5$

|| 3. Exploring the global solutions ||

EMCS-AdS black holes with $\mathrm{Q}=0.044, \mathrm{~L}=1$
$\lambda=1$ (SUGRA)

$\lambda=1.5$

EMCS-AdS black holes with $\mathrm{Q}=0.044, \mathrm{~L}=1, \lambda=1.5$

3. Exploring the global solutions

Global solutions and branch structure for $\lambda>2$
|| 3. Exploring the global solutions ||

Global and NH solutions, $\lambda>2$ scheme:

Global extremal black holes, $\lambda>2$ scheme:

|| 3. Exploring the global solutions ||

Branch structure, $\lambda>2$ scheme:

$\mathrm{J}=0, \mathrm{Q}=2.720699, \Lambda=-0.06, \lambda=5$, Extremal

Thank you for your attention!

PRL112 (2014) 011101
PRD92 (2015) 044025

