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1 Overview
In recent years some of the most exciting breakthroughs in Combinatorics on longstanding conjectures have
resulted from innovative applications of established techniques to areas where they not necessarily used
before. The goal of our workshop was to harness the power of collaboration and bring together open-minded
participants with different areas of expertise to produce novel research in a number of globally studied areas.
We aspired to create new productive long-term bonds between members of the global community.

A large focus of the workshop was on the training and career enhancement of junior researchers. This was
achieved through their fostering new collaborations with world-leading members of the global community
during our focused small group work sessions. This gave junior participants opportunities to learn about and
work in areas outside of their PhD/postdoctoral focus, gaining invaluable skills and knowledge. They were
able to forge meaningful relationships with senior members of the community outside their home institution.

1.1 Workshop objectives
1. A primary objective of the workshop was to stimulate and foster genuinely new (and productive) col-

laborations amongst participants in topical areas that are not necessarily what they would usually work
on and to create *new* long-term bonds between members of the global community.

2. Another key objective of the workshop was the training and career enhancement of junior participants.
We have deliberately decided to make the workshop small - 21 people, to not be intimidating for
more junior researchers and allow them to flourish. We aspired to a very welcoming and comfortable
environment and for them to be able to develop meaningful relationships with senior members of the
community.

3. We were committed to ensuring our final participant list is diverse and supports those under-represented
in the mathematical sciences. Systematic barriers to inclusion are all too present in our field and we do
not wish to enhance the problem.

In the sections below we will detail the scientific progress made during the workshop, and explain how we
met each of these objectives.
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2 Open Problems
One of the key goals of our workshop was to foster new and exciting collaborations amongst members of
the combinatorics community that did not typically work together. We invited all participants to submit
well thought out open problems in advance, and begun the workshop with an open problem session where
these problems would be presented. In this section we summarise the problems that were suggested for the
workshop.

Zero-sum cycles in Abelian groups (suggested by Natasha Morrison)
For a finite abelian groupA, define f(A) to be the minimum integer such that for every complete digraph Γ on
f vertices and every map w : E(Γ)→ A, there exists a directed cycle C in Γ such that

∑
e∈E(C) w(e) = 0.

We callw a weighting ofE(Γ) andC a zero-sum cycle. The question of determining f(A) arose in a paper by
Alon and Krivelevich [?] from 2021, who proved that f(Zp) ≤ 2p− 1, for p prime, and f(Zq) = O(q log q),
for any integer q ≥ 2. This result was improved upon and generalised by Mészáros and Steiner [?], who
showed that f(A) ≤ 8|A| for any finite abelian group A, and in particular, that f(Zp) ≤ 3

2p for prime p.
This was improved to show that f(B) ≤ 2|B| − 1, where B is any finite (not necessarily abelian) group
(see [?, ?]. In forthcoming work of Campbell, Hendrey, Gollin, and Steiner, this is improved to a tight bound
f(Zq) = q + 1 for every positive integer q.

In [?], we show that when p is a prime and k ≥ 1, then f(Zkp) ≤ 600p · k(log2(10k))2. We obtain a
stronger result when p = 2 of f(Zk2) ≤ 600k log2(2k).

A simple construction shows that f(Zkp) ≥ (p − 1)k. Indeed, let e1, . . . , ek be the elementary basis
elements of Zkp . Consider the complete digraph Γ on (p − 1)k vertices, let {V1, . . . , Vk} be an equipartition
of V (Γ), and label a directed edge xy by ei whenever x ∈ Vi. It is easy to see that, with this weighting, there
are no zero-sum cycles in Γ, as every cycle contains at most p− 1 edges labelled ei, for every i ∈ [k]. Thus
f(Zkp) ≥ (p− 1)k, as claimed.

Problem 1. Is it true that f(Zkp) = O(pk)?

Problem 2. Can improved bounds be found for powers of other Abelian groups? What about G = Zp×Zq?

Our proofs in [?] rely on bounds on the size of reduced sets. Given a multiset S with elements in an
abelian group A, the sumset of S, denoted Σ(S), is defined to be the set of all subset sums of S, namely

Σ(S) :=

{∑
t∈T

t : T ⊆ S

}
,

where the sum of elements in the empty set is defined to be zero, and hence |Σ(∅)| = 1. In particular,
0 ∈ Σ(S) for every multiset S whose elements lie in A. Say that S is reduced if |Σ(S)| > |Σ(S′)|, for every
S′ obtained by removing exactly one element from S. Let hp(k) be the size of a largest reduced multiset in
Zkp .

Problem 3. For p prime, is hp(k) = O(pk)?

In [?] we show that hp(k) = O(pk log(k)). We have reason to believe that hp(2) = 2(p− 1).

Problem 4. Let p be prime. Is there a constant C such that hp(2) ≤ 2p+ C?

Avoiding progressions in low dimensions (suggested by Gabriel Cur-
rier)
Let `m denotem points on a line with consecutive points of distance 1 apart. In other words, `m is anm-term
arithmetic progression with common difference 1. For finite pointsets S, T , we say that En → (S, T ) if every
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red/blue-coloring of n-dimensional euclidean space contains either a red (congruent) copy of S or a blue
(congruent) copy of T . If there exists a coloring where this is not the case, we say En 6→ (S, T ).

For a given s, n, let t(s, n) denote the largest t such that En → (`s, `t). It was shown, in a recent paper
of Conlon and Wu [?], that there exists a uniform upper bound on t(3, n) for all n ≥ 2; in particular, they
showed t(3, n) ≤ 1050. This was subsequently improved to t(3, n) ≤ 1176 by Führer and Tóth and then
t(3, n) ≤ 19 [?] by Currier, Moore and Yip [?]. In the other direction, it was shown recently that t(3, n) ≥ 3
for all n ≥ 2 [?].

To our knowledge, the bounds 3 ≤ t(3, n) ≤ 19 are the best known in all dimensions. This is somewhat
surprising, since one would expect t(3, n) to grow as n grows. Therefore, we suggest attempting to improve
these bounds in lower dimensions.

Problem 5. Can we show t(3, 2) < 19? That is, can we construct a red/blue coloring of the plane that
avoids red `3 and blue `19?

Problem 6. Similar questions are open for `4 and `5. In particular, it is known that t(4, n) ≤ 17 and
t(5, n) ≤ 9 for all n ≥ 2 [?]. Similarly, can these bounds be improved in low dimensions?

As mentioned before, the existing colorings are valid in all dimensions. These results rely on showing
some equidistribution results about quadratic polynomials mod p, and, somewhat surprisingly, involve almost
no geometry. Improving these results in low dimensions would likely have a much more geometric flavor. It
is a bit challenging to assess the difficulty of these problems, as (to my knowledge) there are very few known
results of this type.

It’s an old result of Erdős, Graham, Montgomery, Rothschild, Spencer and Straus [?] that En 6→ (`6, `6)
for all n ≥ 2, so the problem of determining t(6, n) reduces to that of determining t(s, n) for s < 6. The
corresponding problem for `2 also behaves a bit differently, as it’s known there does not exist an upper bound
on t(2, n) that is independent of n (in particular, t(2, n) is exponential in n; see, for example, the discussion
in [?]). However, the upper and lower bounds for t(2, n) in low dimensions are very far apart. In particular,
it’s known 5 ≤ t(2, 2) ≤ 1010, with the lower bound due to Tsaturian [?], and the upper bound due to Conlon
and Fox [?].

Problem 7. Can we get a reasonable upper bound on t(2, 2)? Say, something on the order of 100?

A reasonable jumping off point might be [?], since this is perhaps the known result that is closest to the
above problems. If these are having trouble getting off the ground, there are other low dimensional coloring
problems we could consider. For example, it is known, for every 4-point configuration K, that E2 → (`2,K)
[?]. Also, there exists an 8 point configuration K ′ such that E2 6→ (`2,K

′) [?]. Thus, we could consider
whether there are any smaller configurations for which this holds.

Problem 8. Does there exist a configuration K of 7 points in the plane such that E2 6→ (`2,K)?

(Edit: it seems this was answered in the positive by Szlam. To beat the best known result we would need
to find a configuration of 6 points.

Rainbow path coverings (suggested by Bertille Granet)
Answering an old conjecture of Chung [?], Fan [?] showed that the edges of any connected graph on n
vertices can be covered by at most dn2 e (not necessarily edge-disjoint) paths. One can see that this result is
tight by considering complete graphs: since any path in Kn covers at most n − 1 edges, one needs at least(
n
2

)
(n− 1)−1 = n

2 paths to cover E(Kn).
An edge-coloured graph is called rainbow if all of its edges have distinct colours. Bonamy, Botler, Dross,

Naia, and Skokan [?] recently asked for a rainbow analogue of the above mentioned path covering result.

Problem 9 ([?]). Does every properly edge-coloured graph G contain O(|V (G)|) rainbow paths that cover
E(G)?

In [?], the authors claimed that they can verify the weakening of Problem 9 where “paths” is replaced by
“trails”. Additionally, Kaique, Mota, and Naia [?] considered Problem 9 for random graphs. More precisely,
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they showed that if p = ω(( lnn
n )

1
2 ) andG ∼ G(n, p), then with high probability every proper edge-colouring

of G contains O(|V (G)|) rainbow paths that cover E(G). They also observed that for p = O(n−1), then
with high probability |E(G)| = O(n) and so the edges of any proper edge-colouring of G can be trivially
decomposed into O(n) rainbow paths.

If Problem 9 proves to be too challenging in general, then a natural stepping stone would be to consider
specific classes of graphs, such as dense graphs or G(n, p) in the missing range of p for example.

Problem 10 ([?]). Let Ω(n−1) ≤ p ≤ O(( lnn
n )

1
2 ) and G ∼ G(n, p). Show that with high probability every

proper edge-colouring of G contains O(|V (G)|) rainbow paths that cover E(G).

Ramsey number of linear hypergraph trees (suggested by Matı́as Pavez-
Signé)
Let k ≥ 2 and 1 ≤ ` ≤ k − 1. We say that a k-uniform hypergraph T is an `-tree if there is an ordering
e1, . . . , en of E(T ) such that for each 2 ≤ i ≤ n there exists an index 1 ≤ j ≤ i− 1 so that

T1 |ei ∩ ej | = `, and

T2
∣∣∣ei \⋃1≤s≤i−1 es

∣∣∣ = k − `.

Condition T1 says that whenever we add a new edge it must intersect in exactly ` vertices with a previous
edge, and condition T2 says that we add exactly k − ` new vertices at each step. The case ` = k − 1 is
referred to as tight trees and the case ` = 1 as loose trees.

I’m interested in trying to estimate the 2-colour Ramsey number of an arbitrary loose tree T with n
edges. In the case of graphs (k = 2), Burr and Erdős conjectured in the 70s that for every tree T with n
edges, R(T ) ≤ 2n, which was confirmed for large n by Yi Zhao in 2008 using the regularity method. This
bound is sharp when T is a star, though is not tight in general (there is another conjecture by Burr from 1974
which gives better estimates depending on the tree, but remains open).

For an arbitrary loose tree, I don’t expect to find exact results yet but rather find a general upper bound as
in the Burr–Erdős conjecture. The only known result that I’m aware of is the case of loose paths (which is one
of the canonical examples of hypergraph loose trees). For k ≥ 2 and n ≥ 1, let P (k)

1,n denote the k-uniform
loose path with n edges, that is, the k-graph with vertices v1, . . . , vn(k−1)+1 and edges e1, . . . , en such that,
for i ∈ [n],

ei = {v(i−1)(k−1)+1, . . . , v(i−1)(k−1)+k}.

For loose paths, we have an asymptotic result working for any uniformity k and an exact result which works
for uniformity k ≥ 8.

• Gyárfás–Sárközy–Szemerédi (2008): R(P
(k)
1,n ) = (2k − 1)n2 + o(n).

• Omidi–Shahsiah (2017): If k ≥ 8 and n ≥ 3, R(P
(k)
1,n ) = (k − 1)n+ bn+1

2 c.

The lower bound comes from the following canonical construction. Consider two disjoint red cliques with
vertex sets A and B, respectively, such that |A| = (k − 1)n and |B| = bn−1

2 c. Between A and B colour
every possible edge in blue. It is clear that P (k)

1,n does not embed in red as |A|, |B| ≤ (k − 1)n < |V (P
(k)
1,n )|.

If we try to embed P (k)
1,n in blue, the best strategy is to embed {v(2i−1)(k−1)+1}i≤dn2 e intoB and then connect

through A. This is not possible though as |B| < dn2 e.
In particular, this result implies that any general bound that could hope to find should be at least (k −

1)n + bn+1
2 c. In the case of graphs, a path gives the lowest possible Ramsey number amongst all trees with

a fixed number of edges and so it’s natural to expect the same thing happening for hypergraphs. Although
I couldn’t find any better colouring for uniformity k ≥ 3, I tend to think that the upper bound should be
kn+ o(n) rather than (2k − 1)n2 + o(n).

Problem 11. Let T be a k-uniform loose tree with n edges. Is it true that R(T ) ≤ kn+ o(n)?
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An intermediate step would be considering a special case of loose trees called k-expansion trees. Given
a 2-uniform tree T with n edges, the k-expansion of T is the k-uniform graph obtained from T by adding
(k − 2) new vertices to each edge. We say that a k-graph T is a k-expansion tree if there is a 2-uniform tree
T ′ such that T is the k-expansion of T ′.

Problem 12. Let T be a k-expansion tree with n edges. Is it true that R(T ) ≤ kn+ o(n)?

Induced cycles (suggested by Sophie Spirkl)
The first question is due to Linda Cook:

Problem 13. Given p and q, is there a polynomial-time algorithm for deciding if a given graph G contains
an induced cycle of length congruent to p mod q? What if I also want it to have length at least some `?

This is a problem with p, q, ` fixed; so the running time can depend on these in arbitrary ways. The answer
is known for any p, ` when q = 2 [?, ?].

There’s particular interest in the case p = 0 and q = 3 (see https://gilkalai.wordpress.
com/2014/12/19/when-a-few-colors-suffice/); [?] showed that these graphs have bounded
chromatic number (later generalized by [?]). I believe it’s conjectured that they are always 3-colourable?

Problem 14. Are graphs with no induced cycles of length 0 mod 3 always 3-colourable?

I’m not sure whose question this is; I believe I heard it from Marthe Bonamy.
I actually don’t know the answer to the following question, either (but it might be known to other people):

Problem 15. What happens in Problem 13 if we drop the word “induced”?

Incidentally, Problem 14 is known to be true if we drop the word “induced” [?].
At some point, there was a conjecture by Dan Král’ that maybe every graph as in Problem 14 has an edge

you can delete and preserve the property in question; but this was disproved by Marcin Wrochna.

Multiplicative graphs (suggested by Anna Gujgiczer)
A graph K is called multiplicative if G ×H → K implies G → K or H → K for every graph pair G and
H (where → denotes the existence of graph homomorphism). Hedetniemi conjectured in 1966 that every
complete graph is multiplicative. This conjecture is now refuted in general, but motivated by this question
multiplicaticity of other graphs were studied as well. Some graph operations proved to be useful in this type
of questions:

Definition 16 (Γk). For any odd k
V (Γk(G)) = V (G),
E(Γk(G)) = {{u, v}|u and v are endpoints of a walk of length exactly k in G}.
Definition 17 (Ωk). For any odd k = 2s− 1
V (Ωk(G)) = {(A0, , . . . , As−1) : ∀i Ai ⊆ [t], |A0| = 1, |A1| ≥ 1,∀i Ai ⊆ Ai+2, As−2 1As−1},
E(Ωk(G)) = {(A0, . . . , As−1), (B0, . . . , Bs−1)} : ∀i Ai−1 ⊆ Bi, Bi−1 ⊆ Ai and As−1 1Bs−1},
where A 1B means, that every vertex of A is connected to every vertex of B.

These two graph operations are left and right adjoints, meaning, that we have Γk(G)→ H if and only if
G→ Ωk(H). In [?] it is shown that K is multiplicative if and only if Ω3(K) is multiplicative (and this result
generalizes easily for any odd k). Moreover, we always have that Γk(Ωk(K)) is homomorphically equivalent
to K. The interesting case is when Ωk(Γk(K)) is homomorphically equivalent to K as well. This property
can be used to prove that Γk(K) is multiplicative, given that K is. (If K is multiplicative then Ωk(Γk(K)) is
multiplicative, if Ωk(Γk(K)) is multiplicative then Γk(K) is as well.)

In [?] they proved that if K is a graph with girth at least 13, then Ω3(Γ3(K)) is homomorphically equiv-
alent to K. Using this and the fact, that square-free graphs are multiplicative [?] we get, that if K has girth
at least 13, then Γ3(K) is multiplicative (which graph class was different from the previously known mul-
tiplivative graphs). The authors conjecture, that we can get a similar statement for other odd k values as
well.

https://gilkalai.wordpress.com/2014/12/19/when-a-few-colors-suffice/
https://gilkalai.wordpress.com/2014/12/19/when-a-few-colors-suffice/
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Problem 18. Is it true, that if K has girth at least 4k + 1, then Ωk(Γk(K)) is homomorphically equivalent
to K?

In general, it would be interesting to see when we can have this property.

Problem 19. For which graphs do we have that Ωk(Γk(K)) is homomorphically equivalent to K?

Another direction would be to investigate a ”relaxed” version of multiplicativity. In [?] Wrochna intro-
duced a relaxed version of Hedetniemi’s conjecture (which would have interesting topological implications).
It is the following: for every positive integer n and graph pairG andH , G×H → Kn implies Ωk(G)→ Kn

or Ωk(H)→ Kn (for some large enough odd k). In my knowledge this question is not well investigated. We
can change Kn to any known non-multiplicative graph and ask a similar question.

Problem 20. For which known non-multiplicative graphs K do we have relaxed multiplicativity i.e. that
G × H → K implies Ωk(G) → K or Ωk(H) → K (for some large enough odd k)? The known non-
multiplicatve graphs so far:

• K = G×H , s.t. G9 H and H 9 G,

• some Kneser graphs (see [?]),

• Kn for n ≥ 4.

Discrepancy (suggested by Joseph Hyde and Amedeo Sgueglia)
In discrepancy theory, the basic question is whether a structure can be partitioned in a balanced way, or if there
is always some discrepancy no matter how the partition is made. Questions of this type were first considered
by Erdős in the 60s (see [?, ?]) and we propose several discrepancy problems in different contexts.

More formally, for a set Ω and a family A of subsets of Ω, we define the discrepancy of A as

min
c

max
A∈A

∣∣∣∣∣∑
x∈A

c(x)

∣∣∣∣∣
where the minimum runs over all colourings c : Ω→ {−1, 1}.

General discrepancy
Gishboliner, Glock and Sgueglia [?] suggested to investigate how robust is discrepancy, possibly pursuing
the following line of research.

Problem 21 ([?]). Consider a random subset Ω′ ⊆ Ω obtained by including each element of Ω independently
with probability 1/2, and let A′ ⊆ A be the family of surviving sets. Can we (non-trivially) lower bound the
discrepancy of A′ in terms of the discrepancy of A?

Tight Hamilton cycles
In the context of (hyper)graphs, Ω is the edge set of some graph andA corresponds to a family of sub(hyper)graphs.
A popular recent area of research has been to determine how large the minimum degree of an n-vertex hy-
pergraph H needs to (asymptotically) be so that every 2-colouring of the edges of H contains a spanning
subgraph of a certain type with discrepancy Ω(n) (we will say that such a subgraph has high discrepancy in
this context).

This type of problem has been considered for graphs [see, e.g., [?, ?]], but not for hypergraphs until very
recently. For every ε > 0, Gishboliner, Glock and Sgueglia [?] showed that if n is sufficiently large, every
n-vertex k-uniform hypergraph H with δk−1(H) ≥ (1/2 + ε)n has a Hamilton cycle with high discrepancy.
This is a discrepancy version of a famous result of Rödl, Ruciński and Szemerédi [?], and is asymptotically
best possible as there are k-uniform hypergraphs H with δk−1(H) = n/2− O(1) which do not have a tight
Hamilton cycle (or even a perfect matching).
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Problem 22 ([?]). For 1 ≤ ` ≤ k − 2, which `-degree forces the existence of a tight Hamilton cycle with
high discrepancy?

While for ` = k − 1 the existence threshold is asymptotically the same as the discrepancy threshold, this
is not always the case. For example, Reiher, Rödl, Ruciński, Schacht and Szemerédi [?] showed that for n
sufficiently large an n-vertex 3-graphH with δ1(H) ≥ (5/9+o(1))

(
n
2

)
has a tight Hamilton cycle. However,

Balogh, Trelown and Zárate-Guerén [?] constructed the following 3-graph H on n vertices, with n divisible
by 2 and δ1(H) ≥ 3

4

(
n−1

2

)
such that every tight Hamilton cycle in H has precisely n/2 edges in each colour:

Partition V (H) into two vertex sets A,B with |A| = |B| = n/2 and take all 3-edges containing at least one
vertex from each of A and B. Then colour each edge with two vertices in A with red and each edge with two
vertices in B with blue.

We remark that we are aware of a group of people trying to show that δ1(H) ≥ (3/4 + ε)
(
n−1

2

)
forces

a perfect matching of high discrepancy. Moreover, we remark that [?] showed that for 2 ≤ ` ≤ k − 1, the
existence and the discrepancy thresholds for a perfect matching are asymptotically the same. It is therefore
natural to investigate if this too is the case for tight Hamilton cycles.

We remark that, while for conciseness we only introduced discrepancy for 2 colours, all the results stated
above have been proved for any number of colours.

Oriented discrepancy problems
A different take on discrepancy was introduced by Gishboliner, Krivelevich and Michaeli in [?] for oriented
graphs. For an oriented graph G and x, y ∈ V (G), we write xy to mean an edge oriented from x to y. Say
C = v1 . . . v`v1 is a cycle in an oriented graph G. Let σ+(C) and σ−(C) denote the number of forward and
backward edges in C, respectively; that is, σ+(C) := |{1 ≤ i ≤ ` : vivi+1 ∈ E(G)}| and σ−(C) := |{1 ≤
i ≤ ` : vi+1vi ∈ E(G)}|, with indices taken modulo `. Further, let σmax(C) := max{σ+(C), σ−(C)} and
σmin(C) := min{σ+(C), σ−(C)}. Note that σmax(C) and σmin(C) both remain the same irrespective of
the ‘direction’ the labelling of the vertices of C is produced in.

Freschi and Lo [?] recently proved the following, resolving a conjecture from [?]. (Gishboliner, Krivele-
vich and Michaeli [?] previously proved an approximate version of their conjecture.)

Theorem 23. Let G be an oriented graph on n ≥ 3 vertices with δ(G) ≥ n/2. Then there exists a Hamilton
cycle C in G such that σmax(C) ≥ δ(G).

Freschi and Lo [?] suggest a number of possible directions.

Problem 24 ([?]). Prove an Ore-type1 version of Theorem 23.

Problem 25 ([?]). Consider other structures with a natural concept of ‘direction’ built into them, such as
powers of Hamilton cycles.

They also suggest the following land to explore.

Problem 26 ([?]). Given a graph H , one can assign an arbitrary orientation to H . We then say that a
copy of H in G has large oriented discrepancy if significantly more than half of its edges agree (or disagree)
with the initial orientation. It would be interesting to determine which edge-orientation of H minimises (or
maximises) the minimum degree threshold required to ensure a host graph G contains a copy of H with a
certain amount of discrepancy.

Restricted solutions to linear equations and the number of Hadamard
matrices (Suggested by Asaf Ferber)
Many problems in combinatorial linear algebra require upper bounds on the number of solutions to an under-
determined system of linear equations Ax = b, where the coordinates of the vector x are restricted to take

1An ‘Ore-type’ condition is usually a bound on the sum of degrees of non-adjacent pairs of vertices in a graph. For example,
Ore’s theorem is the following: Let n ≥ 3. For an n-vertex graph G, if dG(x) + dG(y) ≥ n for all non-adjacent pairs of vertices
x, y ∈ V (G), then G contains a Hamilton cycle.
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values in some small subset (e.g., {±1}) of the underlying field. More specifically, let a1, . . . , am ∈ Rn,
and let x1, . . . , xm be i.i.d random variables taking values in some given set X ⊆ R. We wish to study the
following quantity: supb∈Rn Pr (

∑m
i=1 aixi = b) .

An initial motivation for me to study the above quantity came from the following problem: A square
matrix H of order n whose entries are in {±1} is called a Hadamard matrix of order n if its rows are
pairwise orthogonal (i.e. if HHT = nIn). Hadamard matrices are named after Jacques Hadamard, who
studied them in connection with his maximal determinant problem. Specifically, Hadamard asked for the
maximum value of the determinant of any n× n square matrix, all of whose entries are bounded in absolute
value by 1. He proved that the value of the determinant of such matrices cannot exceed nn/2. Moreover,
he showed that Hadamard matrices are the only ones that can attain this bound. Due to this fact, Hadamard
matrices have been the focus of considerable attention from many different communities: coding theory,
design theory, statistical inference, and signal processing, to name a few.

Hadamard matrices of order 1 and 2 are trivial to construct, and it is quite easy to see, by considering
the first three rows, that every other Hadamard matrix (if it exists) must be of order 4m for some m ∈ N.
Whereas Hadamard matrices of infinitely many orders have been constructed, the question of whether one of
order 4m exists for every m ∈ N is the most important open question on this topic, and remains wide open.

Conjecture 27 (The Hadamard conjecture). There exists a Hadamard matrix of order 4m for every m ∈ N.

As explicit constructions are very hard to obtain, we tried to show that there are not “too many” Hadamard
matrices of a given order 4m. To see that connection to vector anti-concentration inequalities, imagine that
one builds a Hadamard matrix row by row. Let Mk be the partial k × n matrix comprising the first k rows.
Clearly, to add the (k+ 1)st row, one needs to find a vector x ∈ {±1}n which is orthogonal to the row-space
of Mk. In other words, one wants to find such an x with Mkx = 0. Now, to obtain an upper bound on the
number of Hadamard matrices, one needs to upper bound the number of solutions to such linear system under
the restriction that x ∈ {±1}n. Together with Jain and Zhao [?] we showed that there are at most 2(1/2−ε)n2

Hadamard matrices of order n, which is the first non trivial bound known. Moreover, we made the following
conjecture:

Conjecture 28. There are 2O(n logn) Hadamard matrices of order n.

I would be very interested in getting any bound of the form 2n
1+o(1)

.
Another related problem is the following problem regarding the intersection of a random vector space

with the hypercube. Let v1, . . . , vm ∈ {±1}n and let Vm be their span. Clearly, as ±vi ∈ {±1}n for all i, it
follows that

|Vm ∩ {±1}n| ≥ 2n.

We say that Vm has a non-trivial intersection with the hypercube if the inequality above is strict.
A classical result of Odlyzko [?] from 1986 asserts that, for randomly chosen v1, . . . , vm ∈ {±1}n, the

probability that Vm has a non-trivial intersection with the hypercube is at most 4
(
m
3

) (
3
4

)n
+O

(
.7n
)
, as long

as m ≤ n− 10n/ log n. The main term in the estimate is the best possible, as it is the probability that some
three of these vectors have another ±1 vector in their span. Many years later, in their breakthrough result
about the singularity problem, Kahn, Komlós, and Szemerédi [?] have managed to extend Odlyzko’s result
to m ≤ n− C, where C is some large constant (same main term on the probability).

Observe that if we could take C = 1 in the above result, then one immediately obtains an upper bound
of around 4

(
n
3

) (
3
4

)n
on the probability that a uniformly random n × n matrix with ±1 entries is singular:

Expose the first n − 1 rows. With probability at most 4
(
n−1

3

) (
3
4

)n
their span has a non trivial intersection

with the hypercube. Condition on the intersection being trivial, the probability that the last row belongs to
the span of the first n− 1 rows is 2n2−n.

Here, we are interested in a large deviations version of this problem. Namely:

Problem 29. Let m ≤ n, and let v1, . . . , vm ∈ {±1}n randomly chosen (independently of each other).
Estimate, for a given t > 2n, the quantity

Q(t, n) = Pr
(∣∣Vm ∩ {±1}n

∣∣ ≥ t) .
I believe that even a partial solution to Problem 29 will have far-reaching applications. My favorite regime

to begin with is t ≥ 2εn, and in this case I believe that Q(n, t) ≤ 2−Θ(n2).
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Covering grids with multiplicity (suggested by Shagnik Das)
It is easy to see that you can cover all the points of {0, 1}d with two affine hyperplanes, and that this is best
possible. However, a famous theorem of Alon and Füredi [?] shows that if you must avoid the origin, then it
takes at least d hyperplanes to cover all other points of the hypercube.

Clifton and Huang [?] recently revived interest in this problem by considering a multiplicity version of
this problem — let f(d, k) denote the minimum number of hyperplanes needed to cover all nonzero points of
{0, 1}d at least k times, while avoiding the origin entirely. They used linear programming methods to show
f(d, k) = (Hd + o(1))k for fixed d and large k, where Hd is the dth Harmonic number. In the other regime,
where k is fixed and d is large, they extended the algebraic approach of Alon and Füredi to establish a lower
bound of f(d, k) ≥ d+ k + 1 for k ≥ 4 and d ≥ 3.

Soon afterwards, Sauermann and Wigderson [?] solved the algebraic version of the problem — they
proved that for k ≥ 3 and d ≥ 2k − 3, any polynomial in P ∈ R[x1, x2, . . . , xd] with P (~0) 6= 0 that has
zeroes of multiplicity at least k at all other points of {0, 1}d must have degree at least d + 2k − 3, and that
this bound is best possible.

This immediately improves the lower bound for the Clifton–Huang problem to f(d, k) ≥ d+2k−3 when
d ≥ 2k−3. However, Clifton and Huang conjecture that more hyperplanes are needed. An ambitious/longer-
term goal would be to prove them right.

Problem 30. Show that for every fixed k, when d is sufficiently large, we have f(d, k) ≥ d+
(
k
2

)
.

If true, this would be best possible — take the standard hyperplanes Hi = {~x : xi = 1} for i ∈ [d],
together with, for 1 ≤ s ≤ k − 1, k − s copies of the hyperplane {~x|

∑
i xi = s}. Some evidence in favour

of the conjecture was provided by Alon, who used hypergraph Ramsey to prove that when d is very large, if
we assume that we have the d standard hyperplanes {Hi : i ∈ [d]}, then we do need at least

(
k
2

)
additional

hyperplanes to complete the cover.
This problem might be challenging, since the Sauermann–Wigderson result suggests that the pure alge-

braic approach will not be enough, and instead a combination of algebraic and geometric or combinatorial
arguments may be needed. For the purposes of this workshop, I propose working in a related but seemingly
simpler setting.

Given sets S1, S2 ⊂ R, each containing 0 and of size n, consider the two-dimensional grid Γ = S1 × S2.
We define a k-cover of Γ to be a set of lines that avoids the origin and covers all other points of Γ at least k
times, and denote by covk(Γ) the minimum size of a k-cover of Γ.

A general theorem of Ball and Serra [?], which extends the algebraic arguments of Alon and Füredi,
shows that we have covk(Γ) ≥ (k + 1)(n − 1), and this is tight when k = 1. However, together with
Bishnoi, Boyadzhiyska and den Bakker [?], we showed that this is generally not tight for k ≥ 2. More
precisely, we used the linear programming approach of Clifton and Huang to establish the general bounds
(10− 4

√
5 + o(1))k(n− 1) ≤ covk(Γ) ≤ d 3k

2 e(n− 1), where the asymptotics are as n→∞.
Moreover, we show that whenever Γ is such that any non-horizontal and non-vertical line contains at most

o(n) points of Γ, then covk(Γ) ≥ ( 3
2 + o(1))k(n − 1). In particular, this shows the upper bound is close to

tight for almost all grids Γ.
However, the most natural grid, Γn = {0, 1, . . . , n−1}×{0, 1, . . . , n−1}, does not satisfy this condition.

For this special case, we prove (as k, n→∞)

(2− e−1/2 + o(1))k(n− 1) ≤ covk(Γn) ≤ (
√

2 + o(1))k(n− 1).

We prove the upper bound by explicit construction of a k-cover of Γn that only uses lines of slope 0,∞
and −1, and believe that it gives the correct value of covk(Γn). To support our beliefs, we further prove that
any cover using only these three types of lines must have size at least (

√
2 + o(1))k(n− 1). I think it is not

beyond the realms of possibility to prove this unconditionally.

Problem 31. For the standard grid Γn = {0, 1, . . . , n − 1} × {0, 1, . . . , n − 1}, show that, as k, n → ∞,
any set of lines in R2 that avoids the origin and covers all other points of Γn at least k times must have size
at least (

√
2 + o(1))k(n− 1).

Our proofs suggest that the difficulties arise from lines of slope 1 — these can contain many points of Γ
(and thus be efficient in a k-cover), but do not seem to fit together well with the lines of slope −1. Thus, it
may be helpful as a first step to establish the lower bound for covers with the following restrictions:
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(i) only contain lines of slope 0,∞, −1 or 1, or

(ii) do not contain lines of slope 1.

Finally, independently of determining the explicit value of covk(Γn), we suspect the standard grid might
be the easiest to cover, and it would be interesting to see if this can be proven.

Problem 32. Let Γ ⊂ R2 be an n× n grid. Is it true that we have covk(Γ) ≥ covk(Γn)?

Random inner-product sets (suggested by Aditya Potukuchi)
Let q be an odd prime power (the odd assumption is convenient but AFAIK not necessary). For subsets
A,B ⊆ F2

q let us define their inner product set

〈A,B〉 = {〈a, b〉 | a ∈ A, b ∈ B}.

In general 〈A,B〉 could have much smaller size than A or B. For instance if A = B = {αx : α ∈ Fq, x ∈
F2
q}, we have that |〈A,B〉| ≤ (|A| + 1)/2. The main intuition behind the following conjecture is that this

isn’t typically the case, and that for a small randomly chosen B, every 〈A,B〉 should be large

Conjecture 33. There is a large enough constant C and a small enough constant ε such that for a uniformly
randomly chosen set B ⊆ F2

q of size C log q, w.h.p.

min
A⊆F2

q

|A|≤εq

|〈A,B〉| ≥ |A|/2.

Remark: It’s not a bad idea (so far) to replace ‘inner-product’ with any symmetric bilinear function that
you might find more natural, for example Tr(αx · αy), for a linear α : F2

q → Fq2 . My original motivation
comes from a different function, but it seems there’s a nice (in my opinion) interpretation of the same context
for many different choices of the function.

This problem originally comes from the complexity theoretic side of coding theory (even the case d = 1
is interesting for what follows): The A-punctured degree-d Reed-Solomon code is the set

RSd(A) := {(f(x))x∈A | f ∈ Fq[X], deg(f) ≤ d},

i.e., the evaluation sets of all polynomials of degree at most d over Fq . Here, I am looking at polynomials as
functions from Fq to Fq . This has several properties that make it very interesting to study as vector spaces, as
graphs, as codes, etc.. One interesting property is that of list-recoverability. We say thatRSd(A) is (`, L)-list
recoverable if for every family of subsets {Sα}α∈A ⊂ Fq , each of size at most `, it holds that

|RSd(A) ∩ (×α∈ASi)| ≤ L.

The following is known to be an old problem in this field, but I can’t find it written down explicitly anywhere.
Venkat Guruswami told me that he was one of the people who (independently) started thinking about this at
the same time:

Problem 34. For A ⊆ Fq randomly chosen of size Ωd(log q), is it true that RSd(A) is (Ωd(q), Od(q))-list
recoverable?

The most relevant progress towards this problem as stated in my (maybe biased) opinion is [?], which
proves the statement for |A| ≥ Ωd(

√
q log q). There have been some papers since that reduce the size of A

by sub-polynomial factors, but with much smaller `, L compared to q. Conjecture 33 would prove the above
statement, but for (Ωd(q), Od(q log q))-list recoverablility, which is not only much more manageable, but
probably not far off from answering the full question (assuming it’s true).
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3 Presentations
In this section we give details on the talks at the workshop. We invited a small number of senior researchers
to give talks on powerful current methods or exciting recent results. Towards are goal of training younger
researchers, we encouraged any non-senior researcher who wanted to speak to volunteer give a talk and had
presentations from Stacie Baumann, Anna Gujgiczer, Aditya Potukuchi, and Amedeo Sgueglia.

3.1 Plenary talks
Speaker: Shagnik Das
Title: Explicit constructions of strong blocking sets and minimal codes
Abstract: A strong blocking set in a finite projective space is a set of points that intersects each hyper-
plane in a spanning set. In this talk we present a new graph theoretic construction of such sets: combining
constant-degree expanders with asymptotically good codes, we explicitly construct strong blocking sets in the
(k − 1)-dimensional projective space over Fq that have size O(qk). Since strong blocking sets have recently
been shown to be equivalent to minimal linear codes, our construction gives the first explicit construction of
Fq-linear minimal codes of length n and dimension k, for every prime power q, for which n = O(qk). This
is joint work with Noga Alon, Anurag Bishnoi and Alessandro Neri.

Speaker: Asaf Ferber
Title: Quantum algorithms on graphs
Abstract: In this talk I’ll give a short introduction to quantum computation and will illustrate how to utilize
it in order to speed up some classical graph algorithms. In particular, we will present an asymptotically tight
result for learning a Hamilton cycle using OR querries, and obtain a polynomial improvement for the best
known (∆ + 1)-coloring graph quantum algorithm for coloring a graph with maximum degree Delta. This is
based on joint works with Liam Hardiman (UCI), and with Xiaonan Chen (UCI) and Liam Hardiman.

Speaker: Sophie Spirkl
Title: Induced subgraphs and treewidth
Abstract: Treewidth is a graph parameter which is useful both for structure and for algorithms. Robertson
and Seymour showed which graph minors and which subgraphs “cause” large treewidth. However, the ques-
tion “Which induced subgraphs cause large treewidth?” is still wide open, and I’ll you some pieces of the
answer that have been found so far.

Speaker: Bhargav Narayanan
Title: Anticoncentration and Antichain Codes
Abstract: A basic problem at the intersection of probability and combinatorics is the Littlewood-Offord
anti-concentration problem: given real numbers a1, . . . , an, what is the largest possible point probability of
the random sum a1X1 + . . . + anXn for iid Bernoulli random variables X1, . . . , Xn? Several variants of
this problem, involving additional arithmetic constraints on the numbers a1, . . . , an, have proved to both be
deep and widely applicable; two notable examples of such variants include the Sarkozy-Szemeredi theorem
(resolving the Erdos-Moser problem) and Halasz’s theorem. A few years ago, it became evident to me that all
these arithmetic results are in fact specializations of a more abstract, purely combinatorial phenomenon. In
this talk, I will take the scenic route to the recent proof (with Ben Gunby, Xiaoyu He and Sam Spiro) of such
an abstract result, regarding the density of “antichain codes in the Boolean hypercube, surveying the history
of these problems and some of the many applications along the way.

Speaker: Julia Böttcher
Title: Graph universality
Abstract: Given a class G of n-vertex graphs, how can we construct a host graph H that contains them all as
subgraphs? GraphsH with this property are called universal forG, and the question gets interesting when we
put certain restrictions onH . For example, we might be interested in a graphH with as few edges as possible,
or a graph H which has only n vertices itself and still only few edges. Or we might ask when certain random
graphs are universal for G. This all leads to a variety of interesting and challenging problems. In the talk, I
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will explain what is known and what is open for some classes of graphs G. I will also detail some techniques
that I recently used with my co-authors Peter Allen and Anita Liebenau for progress when G consists of all
D-degenerate graphs for a fixed D.

4 Training and career enhancement of junior participants
The workshop was carefully designed to maximise the benefit to less senior researchers (details of how we
did this can be seen in our original proposal). As organisers, we designed the working groups in such a way
as to ensure that all junior researchers were in some group with more senior participants, so that they could
network and learn from their expertise. We also planned group social activities in the evenings to facilitate
networking in a more relaxed setting. We believe we were very successful in these goals, as we have received
several very positive emails from participants after the workshop thanking us for the invitation and telling us
what they gained from the experience.

One PhD student wrote: “The workshop was a great opportunity, and although we don’t have any exciting
progress to report at the moment, we are planning to keep working on our project. Overall it has been a
very friendly and stimulating experience, and I have met many new people. Hopefully this will lead to new
collaborations and ideas in the future! Many thanks!”

Another PhD student wrote: “What a lovely conference! As an early-career researcher, CCCIC was
extremely helpful in a variety of ways. First, it provided a relaxed and friendly environment in which I could
develop relationships both with my peers and with more senior researchers. Second, I was able to learn lots
of new math, both from talks and group work, and (maybe even more importantly) a number of excellent open
problems that I’m continuing to think about. Finally, on a more concrete level, I left BIRS with a planned
collaboration, and an invitation to another workshop! I’ve not had experiences like this at other conferences,
and I’m quite sure these opportunities resulted directly from the close-knit environment of the workshop. I’m
very grateful to have had the opportunity!”

5 Equity, Diversity and Inclusion
In order to achieve our third objective, we spent a lot of time and consideration before the workshop on
ensuring our final participant list was diverse and strongly includes those from groups under-represented in
the mathematical sciences.

More details about our nomination process can be found in our EDI statement, we present a summary
here. We solicited nominations for PhD students and postdocs to invite, both from invited participants and
other members of the community. This resulted in us being able to invite many wonderful young researchers
that were not already personally known to us the organisers. This resulted in all participants meeting new
colleagues and future collaborators at the workshop. We asked in particular for nominations of those under-
represented in the mathematical sciences and for nominations of participants that were based at different
institutions to the nominator (to try to ensure diversity and minimise nepotism).

As stated in our proposal, we wrote that ”We are aiming for at least 50% of our final participants to
identify as female and for at least 20% to be visible minorities.” We are happy to confirm that we had 10
female participants (out of 21), and that we exceeded our target for visible minorities.

We also wrote: “We will select a diverse and representative subset of the more senior participants to give
longer talks”. We are happy to say that we believe we achieved this goal.

In addition, we achieved diversity in participants for career stage, type of instition, and global location,
amongst other criteria.

6 Ongoing Collaborations and Conclusion
The majority of the week was spent working in small groups on the open problems mentioned above. Several
groups made progress towards their problems and, although none were entirely solved during the week, many
groups are continuing to collaborate to build off the initial progress made in Banff. It is worth noting that
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many participants were, as intended, working in new areas outside of their expertise, so it is not unsurprising
that progress will take more than a week to come.

We note, in addition, that a number of other collaborations (that is, to work on problems not discussed at
the workshop) and research visits been planned by participants who met at our workshop.

We believe that the workshop was a great success, both scientifically and for the career enhancement of
more junior researchers. We are very happy to have been able to facilitate such a positive impact on the more
junior members of our community, especially given how disruptive the previous few years have been. We
very much hope to be able to repeat this success with a similar event in the future.
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