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The function s(n)

Let s(n) denote the sum of proper divisors of n, i.e.,

s(n) :=
∑
d|n
d<n

d = σ(n)− n,

where σ(n) is the sum-of-divisors function.

Example

s(6) = 1 + 2 + 3 = 6.
s(12) = 1 + 2 + 3 + 4 + 6 = 16.
s(p) = 1 for any prime p.

A positive integer n is called perfect s(n) = n, deficient if s(n) < n, and abundant if
s(n) > n.

Abundant numbers: 12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84,
88, 90, 96, 100, 102, . . .

Deficient numbers: 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25,
26, 27, . . .

Perfect numbers: 6, 28, 496, 8128, 33550336, 8589869056, 137438691328,
2305843008139952128, . . .
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The function s(n)

If S is a subset of the natural numbers, then the asymptotic density of S is given by

lim
x→∞

1

x
#{n ≤ x : n ∈ S},

if the limit exists.

Theorem (Davenport, 1933)

For every u > 0, let D(u) = {n ∈ N : s(n)/n ≤ u}. Then D(u) has an asymptotic
density for every u. Let D(u) denote this density, then D(u) is continuous everywhere
and lim

u→∞
D(u) = 1.

I The set of deficient numbers has asymptotic density D(1). (around 75.23%
(Déléglise, 1998), Kobayashi (2014))

I The set of abundant numbers has asymptotic density 1− D(1). (around 24.76%)

I The set of perfect numbers has asymptotic density 0.
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The function s(n)

I s can map sets of asymptotic density zero to sets with positive asymptotic density.

Example

Let A = {pq : p and q are distinct primes}.
Then #(A ∩ [1, x ])� x(log log x)/ log x . So, A has asymptotic density zero.

Note that s(pq) = p + q + 1.

The number of even integers less than x which are not the sum of two primes is at most
x1−δ for some δ > 0.
(Montgomery and Vaughan (1975) improving on works of Chukadov (1937), van der
Corput (1937) and Estermann (1938). Pintz (2018): δ = 0.28 works).

So, s(A) = {p + q + 1 : p, q distinct primes} contains almost all odd numbers so that
the asymptotic density of s(A) is 1/2.
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The preimages of s(n)-EGPS Conjecture

Conjecture (Erdős, Granville, Pomerance, Spiro, 1990)

Let A be a set with asymptotic density 0. Then s−1(A) also has asymptotic density 0.

Some special cases of the EGPS Conjecture have been proved.

I A: the set of primes. (Pollack, 2014)

I Aε = {m : |ω(m)− log logm| > ε log logm}, ε > 0 . (Troupe, 2015)

I A: the set of palindromes in any given base. (Pollack, 2015)

I A: any set of at most x1/2+ε positive integers with ε→ 0 as x →∞. (Pollack,
Pomerance, Thompson, 2017)

I A: the set of integers that can be written as a sum of two squares. (Troupe, 2020)

Except for the 2017 result, the proof all of the above heavily depend on the arithmetic
properties of the sets under consideration.
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(Ellipsephic) Integers with missing (restricted) digits

Let g ∈ N, g ≥ 3. Consider the base g expansion of n ∈ N,

n =
∑
j≥0

εj(n)g j ,

with εj(n) ∈ {0, . . . , g − 1}.

For a proper subset D ( {0, . . . , g − 1}, let

WD :=

{
n : n =

N∑
j=0

εj(n)g j , εj(n) ∈ D, N ∈ N

}

as the set of integers whose the digits are restricted in the set D.

The elements of WD are called integers with missing digits (or integers with restricted
digits). Mauduit referred to these numbers as ellipsephic integers (combining two Greek
words “ellipsis” = missing and “psiphic” = digit).
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Integers with missing digits

Let
WD(x) :=WD ∩ [1, x ].

If 0 ∈ D, we have

#WD
(
gN − 1

)
= |D|N ,

and if 0 6∈ D, then

#WD(gN − 1) =
N−1∑
`=0

|D|`+1 = |D| (|D|
N − 1)

(|D| − 1)

.
As #D ≤ g − 1, the set WD has asymptotic density zero.
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Integers with missing digits-arithmetic progressions

If we set g = 10 and D = {0, 3, 6, 9}, then any number in WD is divisible by 3.

However, if we exclude similar trivial obstructions, we expect that the sequence of
ellipsephic integers behaves like the sequence of the natural numbers.

For q ∈ N and a ∈ Z, let WD(x , a, q) = {n ≤ x : n ≡ a mod q}.

Theorem (Erdős, Mauduit, Sárközy, 1998)

Let D = {d1, d2, . . . , dt}, with

d1 = 0 ∈ D and gcd(d2, . . . , dt) = 1.

Then there exist constants c1 := c1(g , t) > 0 and c2 := c2(g , t) > 0 such that∣∣∣∣#WD(x , a, q)− #WD(x)

q

∣∣∣∣ = O

(
#WD(x)

q
exp

(
−c1

log x

log q

))
for all a ∈ Z and 1 < q ≤ exp(c2

√
log x) such that gcd(q, g(g − 1)) = 1.

The range of q in this result was improved by Konyagin in 2001 and by Col in 2009.
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Integers with missing digits-some arithmetic properties

On averaging over the modulus, the results can be extended to larger q .

Dartyge and Mauduit (2001) and independently Konyagin (2001) proved that there exists
an α := α(g ,D) such that∣∣∣∣#WD(x , a, q)− #WD(x)

q

∣∣∣∣ = O

(
#WD(x)

q
exp

(
−c1

log x

log q

))
holds for almost all q < xα satisfying gcd(q, g(g − 1)) = 1.

Banks and Shparlinski (2004) studied the average values of the Euler ϕ-function and the
sum-of-divisors function, σ on WD among many other arithmetic properties of WD.
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Integers with missing digits-Prime factors/Primes

Dartyge and Mauduit (2000) proved that there exist infinitely many n ∈ W{0,1} with at
most kg = (1 + o(1))8g/π prime factors as g →∞.

The problem of the existence of infinitely many primes with missing digits has been
solved recently.

Theorem (Maynard, 2019)

Let a0 ∈ {0, ..., 9}. The number of primes p ≤ x with no digit a0 in their base 10
expansions is

� x
log 9

log 10

log x
.

Maynard also provided a condition to determine whether there are finitely or infinitely
many n such that P(n) ∈ WD, for any given non-constant polynomial P ∈ Z[X ], large
enough base g , and D = {0, . . . , g − 1} \ {a0}.
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Integers with missing digits and s(n)

What about the preimages of the sets of ellipsephic integers under s(n)?

Theorem (B., Cesana, Dartyge, Dombrowsky, and Thompson, 2023)

Fix g ≥ 3, γ ∈ (0, 1), and a nonempty set D ( {0, 1, . . . , g − 1}. For all sufficiently large
x , the number of n ≤ x for which s(n) has all of its digits in base g restricted to digits in
D is O(x exp(−(log log x)γ)). That is,

#
(
s−1 (WD)

)
(x)� x exp(−(log log x)γ).

Since s(p) = 1 for all primes p, whenever the set D contains 1, it follows that the size of
the preimage set of D is � x

log x
as x →∞. So, the upper bound in the theorem is

essentially optimal in the sense that the constant γ ∈ (0, 1) could not be replaced by a
constant strictly greater than 1.

11 / 19



Integers with missing digits and s(n)

What about the preimages of the sets of ellipsephic integers under s(n)?

Theorem (B., Cesana, Dartyge, Dombrowsky, and Thompson, 2023)

Fix g ≥ 3, γ ∈ (0, 1), and a nonempty set D ( {0, 1, . . . , g − 1}. For all sufficiently large
x , the number of n ≤ x for which s(n) has all of its digits in base g restricted to digits in
D is O(x exp(−(log log x)γ)). That is,

#
(
s−1 (WD)

)
(x)� x exp(−(log log x)γ).

Since s(p) = 1 for all primes p, whenever the set D contains 1, it follows that the size of
the preimage set of D is � x

log x
as x →∞. So, the upper bound in the theorem is

essentially optimal in the sense that the constant γ ∈ (0, 1) could not be replaced by a
constant strictly greater than 1.
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Integers with missing digits and s(n)
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A Key Lemma

Main ingredient: an upper bound for the number of positive integers n ≤ x such
g k - σ(n) when g k is a large integer.

Lemma (Watson (1935), Pomerance (1977))

Let x ≥ 3 and q be a positive integer. The number of n ≤ x for which q - σ(n) is

O
(

x

(log x)1/ϕ(q)

)
, uniformly in q.

We can improve the upper bound, losing uniformity.

Lemma (BCDDT, 2023)

Let g ≥ 3 be a given integer. Let γ, δ ∈ (0, 1) and A > 0 also be given. Then for integers
k ∈ [log log log x ,A(log log x)γ ], we have∑

n≤x

gk -σ(n)

1� x exp
(
− (log log x)δ

)
,

where the constant implied by the � notation depends on the choices of g ,A, γ, δ.
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Proof that the lemma implies the theorem

Set g ∈ N, g ≥ 3, D ( {0, 1, . . . , g − 1} nonempty, x sufficiently large, and 0 < γ < 1.
For a positive integer

k ∈
[

(log log x)γ

log(g/|D|) , 2
(log log x)γ

log(g/|D|)

]
,

we write

#
(
s−1(WD)

)
(x) =

∑
n∈(s−1(WD))(x)

σ(n)≡0 mod gk

1 +
∑

n∈(s−1(WD))(x)

σ(n)6≡0 mod gk

1 =: S1 + S2.

For S2, we use our lemma and obtain

S2 =
∑
n≤x

s(n)∈WD
gk -σ(n)

1 ≤
∑
n≤x

gk -σ(n)

1 = O (x exp (− (log log x)γ)) .
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Proof that the lemma implies the theorem

Next, we work with
S1 =

∑
n∈(s−1(WD))(x)

σ(n)≡0 mod gk

1.

For

s(n) =
N∑
j=0

εj(s(n))g j

for some N ≥ 1, we put

B :=
k−1∑
j=0

εj(s(n))g j

as the number formed by the k-rightmost digits of s(n) so that

s(n) ≡ B mod g k .
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Proof that the lemma implies the theorem

Let n ∈
(
s−1(WD)

)
(x) with σ(n) ≡ 0 mod g k . Then, we have

n = σ(n)− s(n) ≡ −s(n) ≡ −B mod g k .

So, we can relax the condition on S1 with a congruence condition as follows:

S1 =
∑
n≤x

s(n)∈WD
σ(n)≡0 mod gk

1 ≤
∑
n≤x

n≡−B mod gk

B∈WD(gk−1)

1 ≤ #WD(g k − 1)

(⌊ x

g k

⌋
+ 1

)
.

We have

#WD(g k − 1) =

{
|D|k if 0 ∈ D,
(|D|k+1 − |D|)/(D| − 1) if 0 6∈ D.

As k ∈
[

(log log x)γ

log(g/|D|) , 2
(log log x)γ

log(g/|D|)

]
, we get

S1 � x exp (−k log (g/|D|))� x exp (−(log log x)γ) .

Thus
#(s−1 (WD))(x)� x exp(−(log log x)γ).
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Revisiting the lemma and the theorem

Lemma (BCDDT, 2023)

Let g ≥ 3 be a given integer. Let γ, δ ∈ (0, 1) and A > 0 also be given. Then for integers
k ∈ [log log log x ,A(log log x)γ ], we have∑

n≤x

gk -σ(n)

1� x exp
(
− (log log x)δ

)
,

where the constant implied by the � notation depends on the choices of g ,A, γ, δ.

Theorem (BCDDT, 2023)

Fix g ≥ 3, γ ∈ (0, 1), and a nonempty set D ( {0, 1, . . . , g − 1}. For all sufficiently large
x , the number of n ≤ x for which s(n) has all of its digits in base g restricted to digits in
D is O(x exp(−(log log x)γ)). That is,

#
(
s−1 (WD)

)
(x)� x exp(−(log log x)γ).

We also show that s(n) takes infinitely many different values in WD.
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THANK YOU!

I would also like to thank the organizers of Women in Numbers in Europe-4 for providing
us an opportunity to initiate this project.
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