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Introduction and Motivation

Introduction

The function ζ(s) is a very important function in mathematics. Let s be a
complex number with σ and t respectively it’s real and imaginary parts.
Then we define the zeta function as

ζ(s) =
∞∑
n=1

1

ns

for σ > 1, and for the remainder of the complex plane, it is defined as the
analytic continuation of the above function.
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Introduction and Motivation

Introduction

The study of zeros of the zeta function plays an important role in
analytical number theory.

Riemann Hypothesis(RH) is about the locations
of zeros of Riemann Zeta function. According to this hypothesis ζ(s) has
trivial zeros at negative even integers, that is s = −2,−4,−6, ..., and no
other real zeros and non-real zeros, also called the nontrivial zeros, are lie
on the critical line R(s) = 1

2 , and to date still is an open problem.
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Introduction and Motivation

Motivation

The zeros of the zeta function are intimately connected to the distribution
of prime numbers, for example, an explicit formula and study of the zeros
of zeta function lead to the estimate

π(x) = Li(x) + O

(
x

exp(c
√
log x)

)
For some c > 0 , where π(x) is the number of primes less than or equal to
x and Li(x) is the logarithmic integral function defined by
Li(x) =

∫ x
2

1
log t dt. The shape and constant in the error term are

determined by what we can prove about the number and location of zeros
of zeta.
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Introduction and Motivation

Zero density

We define N(σ,T ) as the number of nontrivial zeros ρ = β + iγ of zeta
function, with real part greater than σ and imaginary part between 0 and
T , such that ζ(ρ) = 0.

Let 1
2 < σ < 1, T > 0, we have

N(σ,T ) = #{ρ = β + iγ : ζ(ρ) = 0, 0 < γ < T , σ < β < 1}. (1)

I want to find the explicit upper bound for the number of zeros of the zeta
function within this rectangular region. This type of result is commonly
referred to as a zero density result. From Kadiri, Lumely and Ng [1],
bounds on N(σ,T ) often take the shape:

N(σ,T ) ≤ C1(σ)(logT )5−2σT
8
3
(1−σ) + C2(σ)(logT )2.

The main goal of my thesis will both improve the bound for C1(σ), but
also, change slightly the shape of the bound.
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History

History

There have been several authors who have worked on this topic.

In 1913
Bohr and Landau[2] proved that

N(σ,T ) = O

(
T

σ − 1/2

)
As T grows to infinity. In 1937 Ingham[3] showed that

N(σ,T ) = O
(
T (2+4c)(1−σ)(logT )5

)
.

By assuming that ζ(12 + it) = O(tc+ϵ).
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History

History

Ramaré[4] had proven an explicit version of Ingham’s bound. For example,
for σ = 0.90 this formula simplifies to

N(0.90,T ) < 1293.48(logT )
16
5 T

4
15 + 51.50(logT )2.

Kadiri, Lumley, and Ng[1] have presented a result that provides a tighter
bound for N(σ,T ). Their result improves upon both Ramare and Ingham’s
estimates by following Ingham’s argument but using a more general weight.
If we put σ = 0.90, We can see how this improves on Ramare’s estimate.

N(0.90,T ) < 11.499(logT )
16
5 T

4
15 + 3.186(logT )2.
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overview sketch of proof

Idea of proof

Now, I only present an outline of the proof, which are the main steps in
the paper of Kadiri, Lumley, and Ng. My approach will be to follow the
proof of Kadiri, Lumley and Ng but improve on it by using new results
established since their publication.

The main idea of finding an upper bound for N(σ,T ) is multiplying ζ(s)
into an entire function, P(s) derived as the product of (2− ζ(s) ·M(s))
and M(s) where M(s) is called a mollifier and let f (s) = ζ(s) ·M(s)− 1.
The series expansion for f (s) is expressed as a below dirichlet series

f (s) =
∑
n≥1

λ(n)

ns

with

{
λx(n) = 0 if n ≤ x
λx(n) =

∑
d|n
d≤x

µ(d) if n > x
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overview sketch of proof

Idea of proof

We have the resulting function as below,

h(s) = ζ(s) · P(s) (2)

= ζ(s) · [M(s)(2− ζ(s)M(s))] (3)

= 1− f (s)2 (4)

Since any zeros of the ζ(s) is zeros of the new function h(s), so our goal
becomes to find an upper bound for the number of zeros for the new
function . This means the key thing is we replace the function, ζ(s) with
the function h(s) with more zeros that is easier to study.
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overview sketch of proof

Counting zeros of zeta function in a rectangle region

There exists many useful tools in complex analysis to count the zeros of
the holomorphic function inside a specified rectangle region and, in my
thesis, by using the classic idea of Bohr, Landau, Carlson and Titchmarsh
as stated in[5] which uses the residue theorem, we can bound the number
of zeros by the following integrals:

N(σ,T ) ≤ 1

2π (σ − σ′)

(∫ T

H
log |h

(
σ′ + it

)
|dt +

∫ µ

σ′
arg h(τ + iT )dτ

−
∫ µ

σ′
arg h(τ + iH)dτ −

∫ T

H
log |h(µ+ it)|dt

)
.

Thus, my goal becomes to find an upper bound for each integral. As T
grows larger, the main contribution comes from the first integral and now I
will give an idea of how to estimate each integral.
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overview sketch of proof

First Integral

Ultimately, the smoothing, unsmoothing method and convexity theorem is
used to bound the first integral, (

∫ T
H log |h (σ′ + it) |dt).

For any f non-negative and continuous, and |h(s)| ≤ 1 + |f (s)|2, we have∫ T

H
log(|h(σ′ + it)|)dt ≤ (T − H) log

(
1 +

1

T − H

∫ T

H
|f (σ′ + it)|2dt

)
So the goal is to find a bound for

∫ T
H |f (σ + it)|2dt.
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overview sketch of proof

Smoothing method

One idea to bound
∫ T
H |f (σ + it)|2 is we can try smoothing and

unsmoothing method. By using smoothing method, we introduce the
smooth weight function g as a characteristic function and multiple to our
function f which becomes more easy to analyze the integral of the
smoothed function rather than the original one. We have∫ T

0
|f (σ + it)|2dt ≤

∫∞
−∞ |g(σ + it)|2|f (σ + it)|2dt

ω2

Where ω2 is a positive function depend on g and our goal becomes to find
an upper bound for

∫∞
−∞ |g(σ + it)|2|f (σ + it)|2dt
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overview sketch of proof

Unsmoothing method

Unsmoothing seems to involve reversing or inverting the process of
smoothing. So by unsmoothing method we obtain the below bound∫ ∞

−∞
|g(σ + it)|2 |f (σ + it)|2 dt ≤ ω1

∫ ∞

0
xβ−1e−αxβF (σ, xT )dx

Where

F (σ, xT ) =

∫ t

0
|f (σ + it)|2dt

So if we have a bound for F (σ,T ) we can find the bound for∫∞
−∞ |g(σ + it)|2 |f (σ + it)|2 dt. Since the error term arises here is

ω1

∫ ∞

0
xβ−1e−αxβdx

So one way to make the estimate tighter, is choosing another general
weight function. Nevertheless, it is an open problem to determine the best
weights g to use in this problem.
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overview sketch of proof

Convexity estimate

Since the goal is to find a bound for integral of our smoothed
function,

∫∞
−∞ |g(σ + it)|2|f (σ + it)|2dt at σ, the idea for bounding this

integral is using the convexity estimate.

Since by using unsmoothing method we find a good bound for∫∞
−∞ |g(σ + it)|2|f (σ + it)|2dt at σ1 =

1
2 and σ2 = 1 + ϵ, based on the

convexity estimate we can find a bound for smoothed function at σ. If we
call this integral J(σ), by convexity estimate we obtain the below bound,

J(σ) ≤ (J(σ1))
σ2−σ

σ2−σ1 (J(σ2))
σ−σ1
σ2−σ1

Where σ1 =
1
2 and σ2 = 1 + ϵ.
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overview sketch of proof

Boundin F (σ,T ) on the half line

For estimates on the half line, we have the below key inputs:

Bounds for ζ(s) on the critical line.

Kadiri, Lumely and Ng used the
below bound, For all T ≥ 3

|ζ(1
2
+ it)| ≤ 0.63T

1
6 logT

To improve the final bound, my goal is to substitute the improved
bound for ζ(s) by Patel and Yang. [6]. For all T ≥ 3, we have

|ζ(1
2
+ it)| ≤ 66.7t

27
164

Bound for M(s) on the critical line.∫ T

0
M(

1

2
+ it)2dt ≤ CT logT
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0
M(

1

2
+ it)2dt ≤ CT logT
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Boundin F (σ,T ) at σ2

Based on the expansion of f , We can write,

F (σ2,T ) =

∫ T

0
|f (σ2 + it)|2 dt =

∫ T

0

∣∣∣∣∣∣
∑
n≥1

λ(n)

nσ2+it

∣∣∣∣∣∣
2

dt

The idea for finding the upper bound for the above integral is using the
Montgomery and Vaughan’s mean value theorem for Dirichlet polynomials.

Also we will use this idea to find an upper bound for the fourth integral.
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Conclusion

With combining the bounds that we obtained for J(σ1) and J(σ2) by
unsmoothing method, and applying the Convexity Theorem, we find an
upper bound for J(σ). Then We substitute the bound for J(σ) in
smoothing method. Finally, based on the results obtained from these
methods, we provide a bound for F (σ,T ).

F (σ,T ) ≤ J(σ)

ω2

Therefore we have the below bound for the first integral,∫ T

H
log(|h(σ′ + it)|)dt ≤ C

(logT )4−2σT
8
3
(1−σ)

ω2
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Second and Third Integrals

The second and third integral is about finding an upper bound for∫ µ

σ′
arg h(τ + iT )dτ −

∫ µ

6′
arg h(τ + iH)dτ.

which is

≤ (µ− σ′) max
τ∈(σ′,µ)

(| arg h(τ + iT )|+ | arg h(τ + iH)|).

So the key to finding an upper bound for the difference of the integrals is
to find an upper bound for | arg h(τ + iT )|+ | arg h(τ + iH)|.
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Last Integral

The last bound we need is an upper bound for −
∫ T
H log |h(µ+ it)dt| or

equivalently an explicit lower bound for
∫ T
H log |h(µ+ it)|dt. This is very

similar to bounding F (σ2,T ) that we had in the first integral.

So the general idea for finding a bound for this integral is to use the
standard mean value theorem for Dirichlet polynomials. Therefore, we
have the below bound for the last integral

−
∫ T

H
log |hX (µ+ it)|dt ≤ B logT
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Finally, after these steps, I’m able to compile my bounds to obtain an
upper bound for the number of zeros, N(σ,T ), in a given region.
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