On Divisibility of Class Numbers of Cubic Fields by Three

(BIRS Workshop: Alberta Number Theory Days XV)

Abbas Maarefparvar
Department of Mathematics \& Computer Science
University of Lethbridge

March 23, 2024

Notations:

- K : a number field, i.e., a finite extension of \mathbb{Q};
- $[K: \mathbb{Q}]$: the degree of K over \mathbb{Q};
- \mathcal{O}_{K} : the ring of integers of K;
- $\mathrm{Cl}(K)$: the ideal class group of K;
- h_{K} : the class number of K.

Decomposition of primes in number fields

For K, a number field with ring of integers \mathcal{O}_{K}, and a prime number p :

$$
p \mathcal{O}_{K}=\mathfrak{P}_{1}^{e_{1}} \ldots \mathfrak{P}_{g}^{e_{g}},
$$

where \mathfrak{P}_{i} 's are distinct prime ideals of \mathcal{O}_{K} and e_{i} 's are positive integers.

- The integers e_{i} 's are called the ramification indices of p in K;

Decomposition of primes in number fields

For K, a number field with ring of integers \mathcal{O}_{K}, and a prime number p :

$$
p \mathcal{O}_{K}=\mathfrak{P}_{1}^{e_{1}} \ldots \mathfrak{P}_{g}^{e_{g}}
$$

where \mathfrak{P}_{i} 's are distinct prime ideals of \mathcal{O}_{K} and e_{i} 's are positive integers.

- The integers e_{i} 's are called the ramification indices of p in K;
- If $e_{i}>1$, for at least one i, then we say p ramifies in K;

Decomposition of primes in number fields

For K, a number field with ring of integers \mathcal{O}_{K}, and a prime number p :

$$
p \mathcal{O}_{K}=\mathfrak{P}_{1}^{e_{1}} \ldots \mathfrak{P}_{g}^{e_{g}}
$$

where \mathfrak{P}_{i} 's are distinct prime ideals of \mathcal{O}_{K} and e_{i} 's are positive integers.

- The integers e_{i} 's are called the ramification indices of p in K;
- If $e_{i}>1$, for at least one i, then we say p ramifies in K;
- If $p \mathcal{O}_{K}=\mathfrak{P}^{[K: \mathbb{Q}]}$, we say p totally ramifies in K.

Decomposition of primes in number fields

For K, a number field with ring of integers \mathcal{O}_{K}, and a prime number p :

$$
p \mathcal{O}_{K}=\mathfrak{P}_{1}^{e_{1}} \ldots \mathfrak{P}_{g}^{e_{g}}
$$

where \mathfrak{P}_{i} 's are distinct prime ideals of \mathcal{O}_{K} and e_{i} 's are positive integers.

- The integers e_{i} 's are called the ramification indices of p in K;
- If $e_{i}>1$, for at least one i, then we say p ramifies in K;
- If $p \mathcal{O}_{K}=\mathfrak{P}^{[K: \mathbb{Q}]}$, we say p totally ramifies in K.

Example

The prime 2 totally ramifies in $K=\mathbb{Q}(\sqrt[3]{2})$, since $2 \mathcal{O}_{K}=(\sqrt[3]{2})^{3}$.

On Class Number Problems

Class number problems arise from studies of class groups of number fields of a specific degree.

On Class Number Problems

Class number problems arise from studies of class groups of number fields of a specific degree.

Gauss' class number one problems for quadratic fields (1801)

(1) An imaginary quadratic field $\mathbb{Q}(\sqrt{d})$ has class number one, if and only if $d=-1,-2,-3,-7,-11,-19,-43,-67,-163$.

On Class Number Problems

Class number problems arise from studies of class groups of number fields of a specific degree.

Gauss' class number one problems for quadratic fields (1801)

(1) An imaginary quadratic field $\mathbb{Q}(\sqrt{d})$ has class number one, if and only if $d=-1,-2,-3,-7,-11,-19,-43,-67,-163$.

- This problem was solved by Heegner (1954), Baker (1966), and Stark (1967).

On Class Number Problems

Class number problems arise from studies of class groups of number fields of a specific degree.

Gauss' class number one problems for quadratic fields (1801)

(1) An imaginary quadratic field $\mathbb{Q}(\sqrt{d})$ has class number one, if and only if $d=-1,-2,-3,-7,-11,-19,-43,-67,-163$.

- This problem was solved by Heegner (1954), Baker (1966), and Stark (1967).
(2) There are infinitely many real quadratic number fields with class number one
- This is still an open problem!

On Class Number Problems

Class number problems arise from studies of class groups of number fields of a specific degree.

Gauss' class number one problems for quadratic fields (1801)

(1) An imaginary quadratic field $\mathbb{Q}(\sqrt{d})$ has class number one, if and only if $d=-1,-2,-3,-7,-11,-19,-43,-67,-163$.

- This problem was solved by Heegner (1954), Baker (1966), and Stark (1967).
(2) There are infinitely many real quadratic number fields with class number one
- This is still an open problem!

Class groups of cubic fields have been investigated by many authors, e.g., Gerth, Honda, Barrucand, Cohn, Louboutin, Uchida, etc.

Theorem (Ishida, 1969)

Let K be a number field of degree ℓ, an odd prime, and denote its ring of integers by \mathcal{O}_{K}. If
(1) K is non-pure, i.e., $K \neq \mathbb{Q}(\sqrt[\ell]{m})$ for any ℓ-th power free integer m;

- \# \{primes ramify totally in $K\}>\operatorname{rank}_{\mathbb{Z}}\left(\mathcal{O}_{K}^{\times}\right)$,
then the class number of K is divisible by ℓ.

Theorem (Ishida, 1969)

Let K be a number field of degree ℓ, an odd prime, and denote its ring of integers by \mathcal{O}_{K}. If
(1) K is non-pure, i.e., $K \neq \mathbb{Q}(\sqrt[\ell]{m})$ for any ℓ-th power free integer m;
(2) $\#\{$ primes ramify totally in $K\}>\operatorname{rank}_{\mathbb{Z}}\left(\mathcal{O}_{K}^{\times}\right)$,
then the class number of K is divisible by ℓ.

Example

Let $K=\mathbb{Q}(\theta)$ be a non-pure cubic field, where θ is a root of the cubic polynomial

$$
f(X)=X^{3}+a X+b, \quad a, b \in \mathbb{Z}
$$

In the following cases, the class number of K is divisible by three:
(1) $-4 a^{3}-27 b^{2}>0$, and $\#\{$ primes ramify totally in $K\}>2$,
(2) $-4 a^{3}-27 b^{2}<0$, and $\#\{$ primes ramify totally in $K\}>1$.

Theorem (M.-Rajaei, 2019)

Let $m \neq \pm 1$ be a cube free integer and $K=\mathbb{Q}(\sqrt[3]{m})$ be a pure cubic field. If

$$
\#\{\text { primes ramify totally in } K\}>\operatorname{rank}_{\mathbb{Z}}\left(\mathcal{O}_{K}^{\times}\right)+1=2,
$$

then the class number of K is divisible by three.

Corollary

If $m \neq \pm 1$, a cube free integer, has at least three distinct prime divisors then the class number of $K=\mathbb{Q}(\sqrt[3]{m})$ is divisible by three.

Example

Let $K=\mathbb{Q}(\sqrt[3]{30})$. Then $h_{K}=3$.

Ramified primes in pure cubic fields

Proposition

Let $m=a b^{2}$ be a cube-free integer, where $a, b \neq 1$ are relatively prime.Then a prime p ramifies in $K=\mathbb{Q}(\sqrt[3]{m})$ if and only if $p \mid \operatorname{disc}(K / \mathbb{Q})$, where

$$
\operatorname{disc}(K / \mathbb{Q})= \begin{cases}-3(3 a b)^{2}, & m \not \equiv \pm 1(\bmod 9) \\ -3(a b)^{2}, & m \equiv \pm 1(\bmod 9)\end{cases}
$$

Moreover, p totally ramifies if and only if $p \left\lvert\, \frac{\operatorname{disc}(K / \mathbb{Q})}{3}\right.$.

Proof of Main Theorems

Theorem 1 (Ishida, 1969)
Let $K=\mathbb{Q}(\theta)$ be a non-pure cubic field. If $\#\{$ totally ramified primes in $K\}>\operatorname{rank}_{\mathbb{Z}}\left(\mathcal{O}_{K}^{\times}\right)$,
then $3 \mid h_{K}$.

Theorem 2 (M.-Rajaei, 2019)
Let $m \neq \pm 1$ be a cube free integer and $K=\mathbb{Q}(\sqrt[3]{m})$ be a pure cubic field. If
$\#\{$ totally ramified primes in $K\}>\operatorname{rank}_{\mathbb{Z}}\left(\mathcal{O}_{K}^{\times}\right)+1$,
then $3 \mid h_{K}$.

Proof of Theorem 2. Let $K=\mathbb{Q}(\sqrt[3]{m})$ and $L=\mathbb{Q}(\sqrt[3]{m}, \sqrt{-3})$. By a result of Zantema, the following sequence is exact

$$
0 \rightarrow H^{1}\left(\operatorname{Gal}(L / \mathbb{Q}), \mathcal{O}_{L}^{\times}\right) \rightarrow \bigoplus_{p \text { prime }} \frac{\mathbb{Z}}{e_{p(L / \mathbb{Q})}^{\mathbb{Z}}} \rightarrow \mathrm{Cl}(L)_{\text {sa }}^{G} \rightarrow 0
$$

where $e_{p(L / \mathbb{Q})}$ denotes the ramification index of p in L, and $\mathrm{Cl}(L)_{\mathrm{sa}}^{G}$ denotes the group of strongly ambiguous ideal classes of L, i.e.,

$$
\mathrm{Cl}(L)_{\mathrm{sa}}^{G}=\left\{[\mathfrak{a}] \in \mathrm{Cl}(L): \mathfrak{a}^{\sigma}=\mathfrak{a}, \forall \sigma \in \operatorname{Gal}(L / \mathbb{Q})\right\}
$$

Proof of Theorem 2. Let $K=\mathbb{Q}(\sqrt[3]{m})$ and $L=\mathbb{Q}(\sqrt[3]{m}, \sqrt{-3})$. By a result of Zantema, the following sequence is exact

$$
0 \rightarrow H^{1}\left(\operatorname{Gal}(L / \mathbb{Q}), \mathcal{O}_{L}^{\times}\right) \rightarrow \bigoplus_{p \text { prime }} \frac{\mathbb{Z}}{e_{p(L / \mathbb{Q})}^{\mathbb{Z}}} \rightarrow \mathrm{Cl}(L)_{\mathrm{sa}}^{G} \rightarrow 0
$$

where $e_{p(L / \mathbb{Q})}$ denotes the ramification index of p in L, and $\mathrm{Cl}(L)_{\mathrm{sa}}^{G}$ denotes the group of strongly ambiguous ideal classes of L, i.e.,

$$
\mathrm{Cl}(L)_{\mathrm{sa}}^{G}=\left\{[\mathfrak{a}] \in \mathrm{Cl}(L): \mathfrak{a}^{\sigma}=\mathfrak{a}, \forall \sigma \in \operatorname{Gal}(L / \mathbb{Q})\right\}
$$

Lemma (M.-Rajaei, 2019)

- If a prime p totally ramifies in K, then $3 \mid e_{p(L / \mathbb{Q})}$.
- We have $\left(\mathrm{Cl}(L)_{\mathrm{sa}}^{G}\right)_{3}=\left\{[\mathfrak{a}] \in \mathrm{Cl}(L)_{\mathrm{sa}}^{G}:[\mathfrak{a}]^{3}=1\right\} \hookrightarrow \mathrm{Cl}(K)$.

$$
0 \rightarrow H^{1}\left(\operatorname{Gal}(L / \mathbb{Q}), \mathcal{O}_{L}^{\times}\right) \rightarrow \bigoplus_{p \text { prime }} \frac{\mathbb{Z}}{e_{p(L / Q)}^{\mathbb{Z}}} \rightarrow \mathrm{Cl}(L)_{\mathrm{sa}}^{G} \rightarrow 0 ; L=\mathbb{Q}(\sqrt[3]{m}, \sqrt{-3})
$$

For $K=\mathbb{Q}(\sqrt[3]{m})$ and $E=\mathbb{Q}(\sqrt{-3})$, the restriction maps

$$
\operatorname{res}_{L / K}: H^{1}\left(\operatorname{Gal}(L / \mathbb{Q}), \mathcal{O}_{L}^{\times}\right) \rightarrow H^{1}\left(\operatorname{Gal}(L / K), \mathcal{O}_{L}^{\times}\right)
$$

and

$$
\operatorname{res}_{L / E}: H^{1}\left(\operatorname{Gal}(L / \mathbb{Q}), \mathcal{O}_{L}^{\times}\right) \rightarrow H^{1}\left(\operatorname{Gal}(L / E), \mathcal{O}_{L}^{\times}\right)
$$

are injective on the 2-subgroup and 3-subgroup of $H^{1}\left(\operatorname{Gal}\left(L / \mathbb{Q}, \mathcal{O}_{L}^{\times}\right)\right.$, respectively.

$$
0 \rightarrow H^{1}\left(\operatorname{Gal}(L / \mathbb{Q}), \mathcal{O}_{L}^{\times}\right) \rightarrow \bigoplus_{p \text { prime }} \frac{\mathbb{Z}}{e_{p(L / \mathbb{Q})^{\mathbb{Z}}}} \rightarrow \mathrm{Cl}(L)_{\mathrm{sa}}^{G} \rightarrow 0 ; L=\mathbb{Q}(\sqrt[3]{m}, \sqrt{-3})
$$

For $K=\mathbb{Q}(\sqrt[3]{m})$ and $E=\mathbb{Q}(\sqrt{-3})$, the restriction maps

$$
\operatorname{res}_{L / K}: H^{1}\left(\operatorname{Gal}(L / \mathbb{Q}), \mathcal{O}_{L}^{\times}\right) \rightarrow H^{1}\left(\operatorname{Gal}(L / K), \mathcal{O}_{L}^{\times}\right)
$$

and

$$
\operatorname{res}_{L / E}: H^{1}\left(\operatorname{Gal}(L / \mathbb{Q}), \mathcal{O}_{L}^{\times}\right) \rightarrow H^{1}\left(\operatorname{Gal}(L / E), \mathcal{O}_{L}^{\times}\right)
$$

are injective on the 2-subgroup and 3-subgroup of $H^{1}\left(\operatorname{Gal}\left(L / \mathbb{Q}, \mathcal{O}_{L}^{\times}\right)\right.$, respectively. Therefore,

$$
\# H^{1}\left(\operatorname{Gal}(L / \mathbb{Q}), \mathcal{O}_{L}^{\times}\right) \mid \underbrace{\# H^{1}\left(\operatorname{Gal}(L / K), \mathcal{O}_{L}^{\times}\right)}_{\text {a power of } 2} \cdot \underbrace{\# H^{1}\left(\operatorname{Gal}(L / E), \mathcal{O}_{L}^{\times}\right)}_{\text {a power of } 3} .
$$

$$
L=\mathbb{Q}(\sqrt[3]{m}, \sqrt{-3}), K=\mathbb{Q}(\sqrt[3]{m}), E=\mathbb{Q}(\sqrt{-3})
$$

Since $\operatorname{Gal}(L / K)$ and $\operatorname{Gal}(L / E)$ are cyclic, their Herbrand quotients are given by

$$
\begin{aligned}
& 1=Q\left(\operatorname{Gal}(L / K), \mathcal{O}_{L}^{\times}\right)=\frac{\# \widehat{H^{0}}\left(\operatorname{Gal}(L / K), \mathcal{O}_{L}^{\times}\right)}{\# H^{1}\left(\operatorname{Gal}(L / K), \mathcal{O}_{L}^{\times}\right)} \\
& \frac{1}{3}=Q\left(\operatorname{Gal}(L / E), \mathcal{O}_{L}^{\times}\right)=\frac{\# \widehat{H^{0}}\left(\operatorname{Gal}(L / E), \mathcal{O}_{L}^{\times}\right)}{\# H^{1}\left(\operatorname{Gal}(L / E), \mathcal{O}_{L}^{\times}\right)}
\end{aligned}
$$

$$
L=\mathbb{Q}(\sqrt[3]{m}, \sqrt{-3}), K=\mathbb{Q}(\sqrt[3]{m}), E=\mathbb{Q}(\sqrt{-3})
$$

Since $\operatorname{Gal}(L / K)$ and $\operatorname{Gal}(L / E)$ are cyclic, their Herbrand quotients are given by

$$
\begin{aligned}
& 1=Q\left(\operatorname{Gal}(L / K), \mathcal{O}_{L}^{\times}\right)=\frac{\# \widehat{H^{0}}\left(\operatorname{Gal}(L / K), \mathcal{O}_{L}^{\times}\right)}{\# H^{1}\left(\operatorname{Gal}(L / K), \mathcal{O}_{L}^{\times}\right)} \\
& \frac{1}{3}=Q\left(\operatorname{Gal}(L / E), \mathcal{O}_{L}^{\times}\right)=\frac{\# \widehat{H^{0}}\left(\operatorname{Gal}(L / E), \mathcal{O}_{L}^{\times}\right)}{\# H^{1}\left(\operatorname{Gal}(L / E), \mathcal{O}_{L}^{\times}\right)}
\end{aligned}
$$

We have

$$
\begin{aligned}
& \# \widehat{H^{0}}\left(\operatorname{Gal}(L / K), \mathcal{O}_{L}^{\times}\right) \left\lvert\, \# \frac{\mathcal{O}_{K}^{\times}}{\left(\mathcal{O}_{K}^{\times}\right)^{2}}=\# \frac{\{ \pm 1\} \cdot<\xi_{K}>}{\left\{(\pm 1)^{2}\right\} \cdot<\xi_{K}^{2}>}=2^{2}\right. \\
& \# \widehat{H^{0}}\left(\operatorname{Gal}(L / E), \mathcal{O}_{L}^{\times}\right) \left\lvert\, \# \frac{\mathcal{O}_{E}^{\times}}{\left(\mathcal{O}_{E}^{\times}\right)^{3}}=\# \frac{\left\{ \pm 1, \pm \zeta_{3}, \pm \zeta_{3}^{2}\right\}}{\left\{(\pm 1)^{3},\left(\pm \zeta_{3}\right)^{3},\left(\pm \zeta_{3}^{2}\right)^{3}\right\}}=3\right.
\end{aligned}
$$

where ξ_{K} is the fundamental unit of K and ζ_{3} is a third primitive root of unity.

$$
0 \rightarrow H^{1}\left(G, \mathcal{O}_{L}^{\times}\right) \rightarrow \bigoplus_{p \text { prime }} \frac{\mathbb{Z}}{e_{p(L / Q)^{\mathbb{Z}}}} \rightarrow \mathrm{Cl}(L)_{\mathrm{sa}}^{G} \rightarrow 0, G=\operatorname{Gal}(L / \mathbb{Q}) .
$$

Consequently,

$$
\# H^{1}\left(\operatorname{Gal}(L / \mathbb{Q}), \mathcal{O}_{L}^{\times}\right)\left|\# H^{1}\left(\operatorname{Gal}(L / K), \mathcal{O}_{L}^{\times}\right) \cdot \# H^{1}\left(\operatorname{Gal}(L / E), \mathcal{O}_{L}^{\times}\right)\right| 2^{2} \cdot 3^{2}
$$

$$
0 \rightarrow H^{1}\left(G, \mathcal{O}_{L}^{\times}\right) \rightarrow \bigoplus_{p \text { prime }} \frac{\mathbb{Z}}{e_{p(L / Q) \mathbb{Z}}} \rightarrow \mathrm{Cl}(L)_{\mathrm{sa}}^{G} \rightarrow 0, G=\operatorname{Gal}(L / \mathbb{Q}) .
$$

Consequently,

$$
\# H^{1}\left(\operatorname{Gal}(L / \mathbb{Q}), \mathcal{O}_{L}^{\times}\right)\left|\# H^{1}\left(\operatorname{Gal}(L / K), \mathcal{O}_{L}^{\times}\right) \cdot \# H^{1}\left(\operatorname{Gal}(L / E), \mathcal{O}_{L}^{\times}\right)\right| 2^{2} \cdot 3^{2} .
$$

Lemma (M.-Rajaei, 2019)

- If a prime p totally ramifies in K, then $3 \mid e_{p(L / \mathbb{Q})}$.
- We have $\left(\mathrm{Cl}(L)_{\mathrm{sa}}^{G}\right)_{3}=\left\{[\mathfrak{a}] \in \mathrm{Cl}(L)_{\mathrm{sa}}^{G}:[\mathfrak{a}]^{3}=1\right\} \hookrightarrow \mathrm{Cl}(K)$.

Now if at least three primes totally ramify in K, then

$$
3^{3} \mid \prod_{p \text { prime }} e_{p(L / \mathbb{Q})}=\# H^{1}\left(\operatorname{Gal}(L / \mathbb{Q}), \mathcal{O}_{L}^{\times}\right) \cdot \# \mathrm{Cl}(L)_{\mathrm{sa}}^{G} .
$$

$$
0 \rightarrow H^{1}\left(G, \mathcal{O}_{L}^{\times}\right) \rightarrow \bigoplus_{p \text { prime }} \frac{\mathbb{Z}}{e_{p(L / Q) \mathbb{Z}}} \rightarrow \mathrm{Cl}(L)_{\mathrm{sa}}^{G} \rightarrow 0, G=\operatorname{Gal}(L / \mathbb{Q}) .
$$

Consequently,

$$
\# H^{1}\left(\operatorname{Gal}(L / \mathbb{Q}), \mathcal{O}_{L}^{\times}\right)\left|\# H^{1}\left(\operatorname{Gal}(L / K), \mathcal{O}_{L}^{\times}\right) \cdot \# H^{1}\left(\operatorname{Gal}(L / E), \mathcal{O}_{L}^{\times}\right)\right| 2^{2} \cdot 3^{2} .
$$

Lemma (M.-Rajaei, 2019)

- If a prime p totally ramifies in K, then $3 \mid e_{p(L / \mathbb{Q})}$.
- We have $\left(\mathrm{Cl}(L)_{\mathrm{sa}}^{G}\right)_{3}=\left\{[\mathfrak{a}] \in \mathrm{Cl}(L)_{\mathrm{sa}}^{G}:[\mathfrak{a}]^{3}=1\right\} \hookrightarrow \mathrm{Cl}(K)$.

Now if at least three primes totally ramify in K, then

$$
3^{3} \mid \prod_{p \text { prime }} e_{p(L / \mathbb{Q})}=\# H^{1}\left(\operatorname{Gal}(L / \mathbb{Q}), \mathcal{O}_{L}^{\times}\right) \cdot \# \mathrm{Cl}(L)_{\mathrm{sa}}^{G} .
$$

Hence $\# \mathrm{Cl}(L)_{\mathrm{sa}}^{G}$ is divisible by three, so is h_{K}.

Remarks.

(1) The above method can be used to prove Ishida's result for cubic fields.
(2) More generally, a similar result holds for number fields of degree ℓ (an odd prime) whose Galois closures have Galois group isomorphic to D_{ℓ}, the dihedral group of order 2ℓ (M.-Rajaei, 2020).

