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The unfolding problem: inferring the true particle
spectrum from smeared observations

In measurement analyses, one is interested in the distribution
(spectrum) of some physical quantity, e.g., the energy, mass,
momentum.

Due to the finite resolution of the detectors, only a smeared version of
the physical quantity is observed.

true distribution f smeared distribution g

Figure: unfolding [Kuusela (2016)]
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Forward model for unfolding

Let f be the true distribution. The observed smeared distribution g is
given by

g(s) =

∫
T
k(s, t)f (t)dt

where the response kernel k represents the response of the detector and is
given by

k(s, t) = P(Y = s|X = t)

X = true collision event and Y = smeared observation.
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Uncertainty in the forward model

The response kernel k(s, t) is usually not available in closed form and
needs to be estimated using detector simulation.

The imperfect knowledge of the detector alignment and calibration as
well as the distribution of auxiliary variables can affect the response
kernel in different ways.

This leads to systematic uncertainty in the response kernel and hence
the unfolded solution as well.
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Using optimal transport to quantify uncertainty

Given two kernels k1, k2, the 2-Wasserstein distance between k1 and
k2 is defined as

W2(k1, k2) =

(∫ 1

0

(
F−1
1 (q)− F−1

2 (q)
)2

dq

)1/2

F−1
1 is the quantile function of k1 and F−1

2 is the quantile function of
k2 conditioned on a fixed t.
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Using optimal transport to quantify uncertainty
The Wasserstein barycenter of k1 and k2 with weights t = (t1, t2) is
given by

kt = argmin
k
{t1W2(k1, k) + t2W2(k2, k)}

Varying the weight t defines the geodesic (path) morphing between k1
and k2: {kt : t1, t2 ≥ 0, t1 + t2 = 1}.

Figure: geodesic connecting k1 and k2
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Discretization
Let {Tj}nj=1 be the partition of the true space T and {Si}mi=1 be the
partition of the smeared space.

Particle-level histogram: x ∼ Poisson(λ).
Detector-level histogram y ∼ Poisson(µ).

True histogram mean: λ = [
∫
T1

f (t)dt, ...,
∫
Tn

f (t)dt].

Smeared histogram mean: µ = [
∫
S1
g(s)ds, ...,

∫
Sm

g(s)ds].
f and g are the intensity functions of the Poisson processes.

µ = Kλ where the elements of response matrix K are given by

Kij =

∫
s∈Si

∫
t∈Tj

k(s, t)f (t)dtds∫
t∈Tj

f (t)dt

= P (smeared observation in bin i|true event in bin j)

Goal

Inference on the true histogram mean λ.
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Computing confidence interval for the true histogram mean
while accounting for the systematic uncertainty in the
response kernels

(1) Given two base kernels k1, k2, compute the geodesic
{kt = argmink{t1W (k1, k) + t2W (k2, k)} : t1, t2 ≥ 0, t1 + t2 = 1}.

(2) Compute the corresponding response matrices K1,K2, {Kt}.
(3) Unfold with One-at-a-time Strict-Bounds (OSB) (Stanley et al.

(2022)) using the detector-level histogram y and response matrices
K1,K2, {Kt}.

(4) Obtain a collection of confidence intervals C1,C2, {Ct} for λ.
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Simulation study - inclusive jet transverse momentum
spectrum

Simulate particle-level data using the intensity function

f0 (p⊥) = LN0

( p⊥
GeV

)−α
(
1− 2√

s
p⊥

)β

e−γ/p⊥ , 0 < p⊥ ≤
√
s

2

Number of bins in detector level = 40

Number of fine bins in particle level = 40

Number of wide bins in particle level = 10
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Simulation study - inclusive jet transverse momentum
spectrum

Figure: LEFT: intensity function; RIGHT: True histogram mean λ
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Simulation study - inclusive jet transverse momentum
spectrum

The detector smearing is modeled using crystal ball function

CB(t−s|µ, σ, α, γ) ∝

e
(t−s−µ)2

2σ2 t−s−µ
σ > −α( γ

α

)γ
e−

α2

2

( γ
α − α− t−s−µ

σ

)−γ t−s−µ
σ ≤ −α

Two base kernels

k1 : µ = 0, σ = 10, α = 1, γ = 2

k2 : µ = 7, σ = 12, α = 1, γ = 2
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Simulation study - inclusive jet transverse momentum
spectrum

Figure: k1 and k2 are the base kernels that we might obtain from detector
simulation
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Simulation study - inclusive jet transverse momentum
spectrum

Figure: Wasserstein geodesic of k1 and k2
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Simulation study - inclusive jet transverse momentum
spectrum

Figure: correct kernel represents the actual unknown detector response that
generates the smeared observation
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Unfold with the geodesic of the kernels
We unfold with the geodesic of the kernels using the OSB intervals on
one of the bins.

Figure: OSB confidence intervals for λ for bin 4; x-axis represents the weight that
determines the kernel on the geodesic.
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Unfold with the geodesic of the kernels

Figure: OSB confidence intervals for λ for 10 bins; each plot corresponds to 1
bin; x-axis represents the weight on the geodesic.
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Unfold with the geodesic of the kernels

We define confidence slabs to be the collection of 2-dimensional
confidence sets for the true histogram mean λ of 2 bins unfolded by
the geodesic of kernels defined by k1 and k2.

Confidence slabs cover the true histogram mean.

Figure: LEFT: Confidence slabs unfolded by the geodesic of K1 and K2; RIGHT:
Interpolation of unfolded boxes by K1 and K2
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Confidence slabs — more bins

Figure: Confidence slabs for all bins. Presence of nonlinear patterns.
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Confidence slabs have proper coverage

Figure: Coverage for confidence slabs
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Extrapolation
We can allow the weight t1, t2 < 0 to define extrapolation of the base
kernels:

{kt = argmin
k
{t1W (k1, k) + t2W (k2, k)} : t1 + t2 = 1}

Figure: Extrapolation of base kernels
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More base kernels
The Wasserstein barycenter of k1, k2, ..., km with weights
t = (t1, t2, ...tm) is given by

kt = argmin
k
{

m∑
i=1

t1W2(ki , k)}

Varying the weight t defines the Wasserstein hull of kernels defined by
k1, k2, ..., km: {kt :

∑m
i=1 ti = 1}.
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Summary and Open Problems

The unfolding problem: Systematic uncertainty in the forward model.

Method: Use optimal transport to quantify the uncertainty in the
response kernel.

Results: Confidence slabs with proper coverage when the correct
kernel is on (or close to) the geodesic of the base kernels.

Open problems: For a given kernel kt on the geodesic, we can view
the weight t as a nuisance parameter. How can we summarize the
collection of confidence intervals (dependent on t) into a single
confidence interval? Can we do profile likelihood? Can we learn t
from the data?
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APPENDIX: Simulation study - inclusive jet transverse
momentum spectrum

The detector smearing is modeled using crystal ball function

CB(t−s|µ, σ, α, γ) ∝

e
(t−s−µ)2

2σ2 t−s−µ
σ > −α( γ

α

)γ
e−

α2

2

( γ
α − α− t−s−µ

σ

)−γ t−s−µ
σ ≤ −α

One correct kernel and two alternative kernels

kcorrect : µ = 3, σ = 11, α = 1, γ = 2

k1 : µ = 0, σ = 10, α = 1, γ = 2

k2 : µ = 10, σ = 12, α = 1, γ = 2
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Simulation study - inclusive jet transverse momentum
spectrum

Figure: k1 and k2 are the base kernels that we might obtain from detector
simulation; correct kernel represents the actual unknown detector response that
generates the smeared observation.
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Simulation study - inclusive jet transverse momentum
spectrum

Figure: Wasserstein geodesic of k1 and k2
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Unfold with the geodesic of the kernels
We use the midpoints of the OSB intervals as the point estimates for
λ.

Figure: OSB midpoint solutions for geodesic of two kernels
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Unfold with the geodesic of the kernels
We define confidence slabs to be the collection of 2-dimensional
confidence sets for the true histogram mean λ of 2 bins unfolded by
the geodesic of kernels defined by k1 and k2.

Confidence slabs cover the true histogram mean.

The interpolation between the two corner confidence boxes (unfolded
by k1 and k2) fails to cover the true mean.

Figure: LEFT: Confidence slabs unfolded by the geodesic of K1 and K2; RIGHT:
Interpolation of unfolded boxes by K1 and K2
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Confidence slabs — more bins

Figure: Confidence slabs for all bins. Presence of nonlinear patterns.
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Confidence slabs have proper coverage

Figure: LEFT: Coverage for confidence slabs; RIGHT: Coverage for interpolation
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Simulation study - inclusive jet transverse momentum
spectrum

The detector smearing is modeled using Gaussian kernel

k1(s, t) = N(s|µ = t, σ = 10) (correct)

Two alternative kernels

k2(s, t) = N(s|µ = 0.98t, σ = 7), k3(s, t) = N(s|µ = 1.01t, σ = 15)
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Unfold with the geodesic of the kernels
We use the midpoints of the OSB intervals as the point estimates for
λ.

Figure: OSB midpoint solutions for geodesic of two kernels
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Unfold with the geodesic of the kernels
We define confidence slabs to be the collection of 2-dimensional
confidence sets for the true histogram mean λ of 2 bins unfolded by
the geodesic of kernels defined by k2 and k3.
Confidence slabs cover the true histogram mean.
The range of the confidence slabs is much smaller compared to the
span of the confidence sets unfolded by the two corner kernels k2, k3
(”two-point” confidence sets).

Figure: Confidence slab for bin 1 and bin 2
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Confidence slabs — more bins

Figure: Confidence slabs for the first 5 bins
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Confidence slabs have proper coverage

Figure: Coverage for confidence slabs and two-point confidence sets
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Confidence slabs have proper coverage

Figure: Coverage for confidence slabs and two-point confidence sets
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Applications to simulated LHC data

Unfold the jet transverse momentum spectrum in Drell-Yan events.

Generate Monte Carlo events {Xi ,Yi}ni=1 ∈ R2(n = 68180)
corresponding to particle and detector level jet p⊥ respectively.

To produce alternative kernels, we simulate the effect of a jet energy
uncertainty by location shifting and smearing of Yi .

Y
(1)
i = 1.02Yi + N(µ = 0, sd = 10) (correct)

Y
(2)
i = 1.1Yi + N(µ = 0, sd = 20)

Y
(3)
i = 0.9Yi + N(µ = 0, sd = 5)

Obtain kernel estimates k̂1, k̂2, k̂3 corresponding to

{Xi ,Y
(1)
i }, {Xi ,Y

(2)
i }, {Xi ,Y

(3)
i }.
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Kernel estimation

Kernel is the conditional density of smeared Y given true X :
k(y , x) = p(y |x).
We assume

Y = m(x) + σ(x)ϵ, σ(x) > 0, ϵ ∼ D(µ = 0)

Regress Y on X to obtain estimates m̂(x) and residuals
r̂i = yi − m̂(xi ).

Regress r̂2i on xi to obtain estimates σ̂2(x).

Estimate the density of ϵ using r̂i
σ̂(xi )

and obtain p̂ϵ.

Estimate the conditional density of Y given X by

p̂(y |x) = 1

σ̂(x)
p̂ϵ

(
y − m̂(x)

σ̂(x)

)
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Unfolding applied to simulated LHC data
Perform the same unfolding procedure as in the simulation study,
except we have estimated response kernels k̂ , particle-level intensity
function f̂ .

Figure: Confidence slabs for the first 5 bins
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Unfolding applied to simulated LHC data

In some cases, the confidence slabs (and the correct solution) can go
outside the two-point confidence sets.

Figure: Confidence slabs for bin 1 and bin2
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Unfolding with more kernels

Figure: LEFT: Confidence slabs for bin 0 and bin 1; RIGHT: Confidence slabs for
5 bins
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