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The unfolding problem: inferring the true particle

spectrum from smeared observations
@ In measurement analyses, one is interested in the distribution
(spectrum) of some physical quantity, e.g., the energy, mass,
momentum.

@ Due to the finite resolution of the detectors, only a smeared version of
the physical quantity is observed.

true distribution f smeared distribution g

Figure: unfolding [Kuusela (2016)]
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Forward model for unfolding

Let f be the true distribution. The observed smeared distribution g is
given by

g(s) = /T K(s, £)F(£)dt

where the response kernel k represents the response of the detector and is
given by

k(s,t) = P(Y =s|X =1t)

X = true collision event and Y = smeared observation.
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Uncertainty in the forward model

@ The response kernel k(s, t) is usually not available in closed form and
needs to be estimated using detector simulation.

@ The imperfect knowledge of the detector alignment and calibration as
well as the distribution of auxiliary variables can affect the response
kernel in different ways.

@ This leads to systematic uncertainty in the response kernel and hence
the unfolded solution as well.
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Using optimal transport to quantify uncertainty

@ Given two kernels ki, ko, the 2-Wasserstein distance between k; and
k> is defined as

1/2

Wa(ki, ko) = (/01 (F7(q) - F4(a))° dq)

o F;!is the quantile function of k; and F, ! is the quantile function of
ko conditioned on a fixed t.
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Using optimal transport to quantify uncertainty

@ The Wasserstein barycenter of ki and k» with weights t = (t1, t2) is
given by
ki = arg mkin{tl Wz(kl, k) + to W2(k2, k)}

@ Varying the weight t defines the geodesic (path) morphing between kg
and ky: {kt 1, 20,1+ = 1}.
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Figure: geodesic connecting k; and k;
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Discretization
o Let {T;}7_; be the partition of the true space T and {5;}[";
partition of the smeared space.

o Particle-level histogram: x ~ Poisson().
Detector-level histogram y ~ Poisson ().

o True histogram mean: A = [[, f t)dt fT dt]
Smeared histogram mean: p = [ g( - Js. g(s)ds].

f and g are the intensity functions of the P0|sson processes.

be the

o 1 = KX\ where the elements of response matrix K are given by

fses,- fteTj k(s, t)f(t)dtds

Jeer, f(t)dt

Kj =

= P (smeared observation in bin i|true event in bin j)

Goal
Inference on the true histogram mean .

(BIRS) 27 April 2023

7/23



Computing confidence interval for the true histogram mean
while accounting for the systematic uncertainty in the
response kernels

(1) Given two base kernels ki, ko, compute the geodesic
{kt = arg mink{tl W(kl, k) + b W(kg, k)} tt,tp >0, + = 1}.
(2) Compute the corresponding response matrices Ky, Ko, {Ky}.

(3) Unfold with One-at-a-time Strict-Bounds (OSB) (Stanley et al.
(2022)) using the detector-level histogram y and response matrices
K17 K27 {Kt}

(4) Obtain a collection of confidence intervals Ci, G, { G} for A.
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Simulation study - inclusive jet transverse momentum
spectrum

@ Simulate particle-level data using the intensity function
pumy —_— —_—— e —
o\PL 0 GeV \/EPL ) PL > 5

Number of bins in detector level = 40

Number of fine bins in particle level = 40

@ Number of wide bins in particle level = 10
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Simulation study - inclusive jet transverse momentum
spectrum
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Figure: LEFT: intensity function; RIGHT: True histogram mean A
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Simulation study - inclusive jet transverse momentum
spectrum

@ The detector smearing is modeled using crystal ball function

(t—s—p)?
e 2052 i& > —«
CB(t-SlM,O‘,a,’}/) X Y a2 ~ e\ = t—z—
(2)'e? R-a-=2) " =< -a

@ Two base kernels
ki :p=0,0=10,a=1,7v=2

ko :p=70=12,a=1,v=2

(BIRS) 27 April 2023 11/23



Simulation study - inclusive jet transverse momentum
spectrum
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Figure: k1 and k2 are the base kernels that we might obtain from detector
simulation
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Simulation study - inclusive jet transverse momentum
spectrum

Geodesic (convex hull) of the base kernels
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Figure: Wasserstein geodesic of k1 and k2
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Simulation study - inclusive jet transverse momentum

spectrum
Geodesic (convex hull) of the base kernels
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Figure: correct kernel represents the actual unknown detector response that

generates the smeared observation
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Unfold with the geodesic of the kernels

@ We unfold with the geodesic of the kernels using the OSB intervals on
one of the bins.
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Figure: OSB confidence intervals for A for bin 4; x-axis represents the weight that
determines the kernel on the geodesic.
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Unfold with the geodesic of the kernels
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Figure: OSB confidence intervals for A for 10 bins; each plot corresponds to 1
bin; x-axis represents the weight on the geodesic.

(BIRS)



Unfold with the geodesic of the kernels

@ We define confidence slabs to be the collection of 2-dimensional
confidence sets for the true histogram mean A of 2 bins unfolded by
the geodesic of kernels defined by k; and ko.

o Confidence slabs cover the true histogram mean.
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Figure: LEFT: Confidence slabs unfolded by the geodesic of K1 and K2; RIGHT:
Interpolation of unfolded boxes by K1 and K2
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Confidence slabs — more bins
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Figure: Confidence slabs for all bins. Presence of nonlinear patterns.



Confidence slabs have proper coverage
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Figure: Coverage for confidence slabs
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Extrapolation

@ We can allow the weight t1, t» < 0 to define extrapolation of the base
kernels:

{kt = arg mkin{tl W(kl, k) + b W(kz, k)} T+ = ].}
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Figure: Extrapolation of base kernels
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More base kernels

@ The Wasserstein barycenter of ki, ka, ..., kmy with weights
t = (t1, to, ...tm) is given by

m
ki = arg mkin{; t1 VVQ(/(,‘7 k)}
@ Varying the weight t defines the Wasserstein hull of kernels defined by
k17 k27 ceey km: {kt . Z,n;l ti = 1}
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Summary and Open Problems

@ The unfolding problem: Systematic uncertainty in the forward model.

@ Method: Use optimal transport to quantify the uncertainty in the
response kernel.

@ Results: Confidence slabs with proper coverage when the correct
kernel is on (or close to) the geodesic of the base kernels.

@ Open problems: For a given kernel k on the geodesic, we can view
the weight t as a nuisance parameter. How can we summarize the
collection of confidence intervals (dependent on t) into a single
confidence interval? Can we do profile likelihood? Can we learn t
from the data?
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APPENDIX: Simulation study - inclusive jet transverse

momentum spectrum

@ The detector smearing is modeled using crystal ball function

(t—s—p)?
e 202

CB(t—SlH, 0, q, 'Y) X

@ One correct kernel and two alternative kernels

Keorrect : 0 =3,0=11,a=1,v=2

ki :p=0,0=10,a=1,7v=2
ky: =100 =12,a=1,7v=2
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Simulation study - inclusive jet transverse momentum
spectrum
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Figure: k1 and k2 are the base kernels that we might obtain from detector
simulation; correct kernel represents the actual unknown detector response that
generates the smeared observation.
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Simulation study - inclusive jet transverse momentum
spectrum

Geodesic (convex hull) of the base kernels
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Figure: Wasserstein geodesic of k1 and k2
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Unfold with the geodesic of the kernels

@ We use the midpoints of the OSB intervals as the point estimates for
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Figure: OSB midpoint solutions for geodesic of two kernels
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Unfold with the geodesic of the kernels

@ We define confidence slabs to be the collection of 2-dimensional
confidence sets for the true histogram mean X of 2 bins unfolded by
the geodesic of kernels defined by k; and k.

@ Confidence slabs cover the true histogram mean.

@ The interpolation between the two corner confidence boxes (unfolded
by k1 and k) fails to cover the true mean.
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Figure: LEFT: Confidence slabs unfolded by the geodesic of K1 and K2; RIGHT:
Interpolation of unfolded boxes by K1 and K2
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Confidence slabs — more bins
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Figure: Confidence slabs for all bins. Presence of nonlinear patterns.



Confidence slabs have proper coverage
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Figure: LEFT: Coverage for confidence slabs; RIGHT: Coverage for interpolation
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Simulation study - inclusive jet transverse momentum

spectrum
@ The detector smearing is modeled using Gaussian kernel

ki(s,t) = N(s|u = t,0 =10) (correct)

@ Two alternative kernels

ko(s,t) = N(s|u = 0.98t,0 =7), ka(s, t) = N(s|u = 1.01t, 0 = 15)

K(slt= 500)
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Unfold with the geodesic of the kernels

@ We use the midpoints of the OSB intervals as the point estimates for
A
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Figure: OSB midpoint solutions for geodesic of two kernels
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Unfold with the geodesic of the kernels

o We define confidence slabs to be the collection of 2-dimensional
confidence sets for the true histogram mean A of 2 bins unfolded by
the geodesic of kernels defined by k» and ks.

@ Confidence slabs cover the true histogram mean.

@ The range of the confidence slabs is much smaller compared to the
span of the confidence sets unfolded by the two corner kernels ko, k3
(" two-point” confidence sets).
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Figure: Confidence slab for bin 1 and bin 2
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Confidence slabs — more bins
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Confidence slabs have proper coverage
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Applications to simulated LHC data

@ Unfold the jet transverse momentum spectrum in Drell-Yan events.

o Generate Monte Carlo events {X;, Y;}"_; € R?(n = 68180)

corresponding to particle and detector level jet p, respectively.

@ To produce alternative kernels, we simulate the effect of a jet energy

uncertainty by location shifting and smearing of Y;.
Yi(l) =1.02Y; 4+ N(p = 0, sd = 10) (correct)
Y = 1.1V, + N(u = 0, sd = 20)
Y3 —0.9Y; + N(1u = 0,sd = 5)

@ Obtain kernel estimates El, i(\g, i(\3 corresponding to
0, Y 06, v2), (x, vy)

1 ! 1
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Kernel estimation

o Kernel is the conditional density of smeared Y given true X:
k(y,x) = p(y[x).
o We assume

Y =m(x)+o(x)e, o(x)>0,e~ D(p=0)

Regress Y on X to obtain estimates m(x) and residuals
ri = yi — m(x;).

Regress r? on x; to obtain estimates 52(x).

Estimate the density of € using % and obtain p..

Estimate the conditional density of Y given X by

ply|x) = 8(1)() 5 <y ;(T)(x))
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Unfolding applied to simulated LHC data

@ Perform the same unfolding procedure as in the simulation study,
except we have estimated response kernels k, particle-level intensity
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Figure: Confidence slabs for the first 5 bins
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Unfolding applied to simulated LHC data

@ In some cases, the confidence slabs (and the correct solution) can go
outside the two-point confidence sets.
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Figure: Confidence slabs for bin 1 and bin2
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Unfolding with more kernels
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Figure: LEFT: Confidence slabs for bin 0 and bin 1; RIGHT: Confidence slabs for
5 bins

(BIRS)




	Appendix

