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Events from the experiments
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Experimental data

Experimental data are generated from one of the two processes:
Background (pb) - refers to the known physics (SM).
Signal (ps) - represents an unknown possible particle or interaction not
accounted for in the SM.

Experimental data density: q = (1− λ)pb + λps , λ ∈ [0, 1].
No signal: λ = 0 or equivalently q = pb, where λ is the signal strength.

Testing for signal can be formulated as:

H0 : λ = 0 versus H1 : λ > 0.

This is equivalent to a two-sample testing problem

H0 : q = pb versus H1 : q ̸= pb.
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Objectives

Model-Independent Signal Detection: Detect signal without assuming
a signal model.

Semi-Supervised Classifier Tests: Use a semi-supervised classifier to
handle the high-dimensionality of the data.

Interpretability:
▶ Signal Strength Estimation: Estimate the signal strength in the data.
▶ Active Subspace Methods: Characterize the signal and find subspaces

that influence the classifier.
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Model-dependent supervised methods (assume a signal
model)

Two sources of data are at hand:

Background + signal (MC simulations) sample - labelled observations

Background: X1, . . . ,Xmb
∼ pb

Signal: Y1, . . . ,Yms ∼ ps

Background + possible signal (experimental) sample - unlabelled
observations

Experimental: W1, . . . ,Wn ∼ q = (1− λ)pb + λps

Test H0 : λ = 0 vs H1 : λ > 0.

Train a classifier (h) to separate signal from background.
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Motivation for model-independent methods: systematically
misspecified signal

Classifier decision boundary Actual NP signal
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Model-independent semi-supervised methods (don’t
assume a signal model)

Two sources of data are at hand:

Background (MC simulations) sample - labelled observations

Background: X1, . . . ,Xmb
∼ pb

Background + possible signal (experimental) sample - unlabelled
observations

Experimental: W1, . . . ,Wn ∼ q = (1− λ)pb + λps

Train a semi-supervised classifier (h) to separate experimental from
background.

Note: Here pb is a simulator for SM background events, ps is an
unspecified signal distribution and the signal strength is λ. We only have
access to X ′s and W ′s; i.e., we have no direct access to pb, q, ps or λ.
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Signal detection via semi-supervised classifiers

We have:

Background: X1, . . . ,Xmb
∼ pb

Experimental: W1, . . . ,Wn ∼ q = (1− λ)pb + λps

A semi-supervised classifier (h) that separates X1, . . . ,Xmb
from

W1, . . . ,Wn.

We want to test H0 : λ = 0 vs H1 : λ > 0 or equivalently H0 : q = pb vs
q ̸= pb (Two-sample testing).

Recent approach: use classifiers to perform the test in high-dimensional
spaces (e.g., Kim et al. (2019, 2021))
Idea: If the classifier is able to distinguish between the two samples, then
there is a difference in the two distributions.
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Likelihood Ratio Test statistic

X1, . . . ,Xmb
∼ pb and W1, . . . ,Wn ∼ q = (1− λ)pb + λps .

Test H0 : λ = 0 vs H1 : λ > 0.

Likelihood Ratio of the experimental data Wi ’s:

Lq(λ)

Lq(0)
=

∏
i

ψ(Wi ), ψ = q/pb,

where q = (1− λ)pb + λps .

Goal: Estimate the ratio ψ using the classifier h instead of estimating
q and pb individually.
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Likelihood Ratio Test statistic

The classifier output (experimental membership probability) h, using
Bayes’ rule can be written as:

h(z) =
nψ(z)

nψ(z) +mb
,

where mb and n are the number of background and experimental
events respectively.

We can estimate ψ̂(z) = mbh(z)
n(1−h(z)) .

So, LRT statistic LRT = 2
∑

i log ψ̂(Wi ).
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Classifier performance based test statistics

H0 : λ = 0 vs H1 : λ > 0 is equivalent to H0 : q = pb vs H1 : q ̸= pb

1 Area Under the Curve (AUC)
Statistic: θ̂
Test H0 : θ = 0.5 vs H1 : θ > 0.5.

2 Misclassification Error Statistic:
M̂CE
Test H0 : MCE = 0.5 vs
H1 : MCE < 0.5.
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Calibration of the tests to control Type I error

Under the null both X ′s and W ′s are samples from the same distribution
pb. For all the statistics we have different ways of estimating the null
distribution:

Asymptotic

Nonparametric Bootstrap

Permutation
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Calibration of the tests to control Type I error

Under the null both X ′s and W ′s are samples from the same distribution
pb. For all the statistics we have different ways of estimating the null
distribution:

Asymptotic: We can derive and use the asymptotic distribution for
each of the test statistics; e.g., for AUC (Newcombe, 2006) under H0

θ̂ − 0.5√
Var0(θ̂)

⇝ N(0, 1),

where Var0(θ̂) can be estimated under H0.

Nonparametric Bootstrap: Randomly sample with replacement from
the X ’s and W ’s combined and randomly label them as either X ’s or
W ’s.

Permutation: Randomly permute the class labels of the X ’s and W ’s.
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Calibration methods
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Calibration methods
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Power of detecting a well-specified signal

Power to detect signal in 50 experiments (in percentage) in the Kaggle’s
Higgs Boson Machine Learning Challenge at α = 0.05..
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n
a
l
L
a
b
el
s

Signal Strength (λ)
Model Method 0.15 0.1 0.07 0.05 0.01 0

Supervised LRT Asymptotic 100 100 96 62 18 6
Permutation 100 98 98 86 6 0

Supervised Score Permutation 94 92 100 92 24 12

Semi-Supervised Asymptotic 100 98 74 38 6 2
LRT Permutation 100 98 72 38 6 2

Semi-Supervised Asymptotic 100 98 70 32 6 2
AUC Permutation 100 98 68 32 4 2

Slow Perm 100 100 94 56 8 4

Semi-Supervised Asymptotic 100 96 52 28 6 6
MCE Slow Perm 100 98 86 58 6 2
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Power of detecting a misspecified signal

Power to detect signal in 50 experiments (in percentage) in the Kaggle’s
Higgs Boson Machine Learning Challenge at α = 0.05.

S
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N
O

S
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n
a
l
L
a
b
el
s

Signal Strength (λ)
Model Method 0.15 0.1 0.07 0.05 0.01 0

Supervised LRT Asymptotic 2 10 2 8 6 4
Permutation 0 0 0 0 2 0

Supervised Score Permutation 0 0 0 0 2 8

Semi-Supervised Asymptotic 100 100 100 82 4 4
LRT Permutation 100 100 100 82 4 2

Semi-Supervised Asymptotic 100 100 100 78 8 4
AUC Permutation 100 100 100 80 8 2

Slow Perm 100 100 100 100 10 4

Semi-Supervised Asymptotic 100 100 100 66 6 4
MCE Slow Perm 100 100 100 98 8 2
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Power with increasing sample size

Power of the asymptotic model-independent tests for increasing sample sizes,
where n = 2× 104.
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Interpreting the semi-supervised classifier

To understand the signal that the semi-supervised classifier has identified,
we need to understand the semi-supervised classifier.

The trouble is that the classifier is trained to separate the experimental
from the background and not the signal from the background..

We consider the following:

Signal Strength Estimation: Estimate the signal strength in the data.

Active Subspace Methods: Characterize the signal and find subspaces
that influence the classifier.
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Signal strength (λ) estimation
We estimate the signal strength λ from the classifier using the
Neyman–Pearson quantile transform.
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Active subspace of the classifier for λ = 0.15

We use the active subspace of the classifier to identify variable
combinations that help separate the signal from the background.

The vectors capture the variable dependencies that influence the classifier.

Mean Gradient T-Stat First Eigenvector Second Eigenvector
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Flowchart of signal detection procedure
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Discussion: Incorporating systematics

So far, I haven’t spoken about systematics at all!
The methods proposed here assume that the background samples
X1, . . . ,Xmb

come from the “true” background distribution pb.
But X ’s are MC simulations which are likely to be systematically
misspecified.

Important question: Are the “signals” found true signals or differences
between the true background and a misspecified background?
Answer: Right now, we don’t know!

We can still use the methods to:

Identify and characterize regions of high-dimensional space where the
background is mismodelled.

Perform pilot analysis to guide future model-independent searches.
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Discussion: Incorporating systematics

Let γ ∈ Γ be the nuisance parameter. Then we want to test:

H0 : q ∈ {pb(γ) : γ ∈ Γ} versus H1 : q /∈ {pb(γ) : γ ∈ Γ}

This is an open problem that needs new methodology.

D’Agnolo et al. (2021b) makes a significant contribution in incorporating
systematics into high-dimensional two-sample testing (Gaia’s talk!).
See also D’Agnolo and Wulzer (2019); D’Agnolo et al. (2021a).

We additionally use the AUC and the MCE test statistics and estimate the
LRT using a semi-supervised high-dimensional classifier.
Interesting to see how we can incorporate systematics to the tests.
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Conclusions

Model-Independent Detection: Model-independent searches may have
more power to find unexpected or misspecified signals.

Semi-Supervised Classifier Tests:
▶ High-dimensional semi-supervised classifiers that separate experimental

data from the background can be used for signal detection.
▶ Explored using LRT, AUC and MCE statistics to perform the test -

AUC and MCE perform better than LRT.
▶ Explored various calibration methods (asymptotic, bootstrap and

permutation).

Interpretability:
▶ Signal Strength Estimation
▶ Active Subspace Methods

Open question: How to incorporate background systematics?
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▶ Explored various calibration methods (asymptotic, bootstrap and

permutation).

Interpretability:
▶ Signal Strength Estimation
▶ Active Subspace Methods

Open question: How to incorporate background systematics?
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Thank you!
Model-Independent Detection of New Physics Signals Using Interpretable

Semi-Supervised Classifier Tests. (arXiv:2102.07679)
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Model-dependent supervised methods test statistics

Likelihood Ratio on the Wi ’s for H0 : λ = 0 vs H1 : 0 < λ < 1:

Lq(λ)

Lq(0)
=

∏
i

[(1− λ) + λψ(Wi )], ψ = ps/pb,

where ψ can be estimated using a classifier trained on signal and
background MC simulations, ps and pb are the signal and background
models and λ is the signal strength.

1 Likelihood Ratio Test Statistic:

LRT = 2
∑
i

log
(
(1− λ̂MLE) + λ̂MLEψ̂(Wi )

)
2 Score Test Statistic:

S =
1

N

N∑
i=1

ψ̂(Wi ).

Asymptotic method for first, permutation and bootstrap methods for
both.
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Kaggle’s Higgs boson challenge 1

Data provided by ATLAS on CERN Open Data Portal.

15 variables.

Transverse momentum and energy as well as angles of resulting
particles and jets of particles in a collision event.

80,806 background events and 84,221 signal events.

Create experimental data in 50 simulations with varying signal
strength, λ.

Compare power of the methods in detecting the Higgs boson.

1https://www.kaggle.com/c/higgs-boson
Purvasha Chakravarti (UCL) Semi-Supervised Classifiers April 27, 2023 2 / 7
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Signal strength (λ) estimation

We define a Neyman-Pearson Quantile Transform:

ρ(w) = PX∼pb (h(X ) ≥ h(w)) ,

where h is the semi-supervised classifier.
If gq is the density of ρ(W ) when W ∼ q (the experimental density), then
we show that:

λ = gq(1).

So we can estimate:
λ̂ = ĝq(1).

To estimate gq we first estimate ρ(·) for the experimental data Wi :

ρ̂(Wi ) =
1

mb

mb∑
j=1

I{h̃(Xj) ≥ h̃(Wi )}
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Signal strength (λ) estimation

We define a Neyman-Pearson Quantile Transform:

ρ(w) = PX∼pb (h(X ) ≥ h(w)) → ρ̂(Wi ) =
1

mb

mb∑
j=1

I{h̃(Xj) ≥ h̃(Wi )}

1 If gq is the density of ρ(W )
when W ∼ q, then λ̂ = ĝq(1).

2 Estimate density of ρ̂(Wi )’s
using histograms.

3 Fit a Poisson regression model
above threshold T to estimate
ĝq(1).
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Identifying the active subspace that explains the classifier h̃

2D toy example.
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Identifying the active subspace that explains the classifier h̃

1 Consider the gradients of the
classifier surface:

∇zh(z)√
Var(∇zh(z))
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in the classifier surface.

3 Perform PCA on gradients
resulting in directions in which
the gradient varies the most.
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Identifying the active subspace that explains the classifier h̃

1 Consider the gradients of the
classifier surface:

∇zh(z)√
Var(∇zh(z))

2 The gradients explains changes
in the classifier surface.

3 Perform PCA on gradients
resulting in directions in which
the gradient varies the most.

4 Mean of the gradients gives
direction of change.
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Active Subspace of h(·)

For experimental data W1, . . . ,WN ,

∇zh(z)√
Var(∇zh)

- Tj =
̂∇zh(Wj )

̂√
Var(∇zh(Wj ))

using a local linear smoother on h.

Perform Principal Component Analysis (PCA) or sparse PCA on
H = (T1,T2, . . . ,TN)

T .

Let m1,m2, . . . be the leading eigenvectors - m̂1, m̂2, . . ..

E
[

∇zh(z)√
Var(∇zh)

]
,m1,m2 capture the changes in the classifier surface -

T = 1
N

∑N
j=1 Tj , m̂1, m̂2.
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